Skip to content
2000
image of Evaluation of Cranberry as a Novel Therapeutic Strategy for Intracerebroventricular (ICV) Quinolinic Acid-induced Cognitive Impairment in Rats

Abstract

Background

Cranberry (Vaccinium macrocarpon) is rich in vitamins, minerals, anthocyanins, flavonoids, and phenolic acids, offering potent antioxidant activity. Polyphenols in cranberries are linked to neuroprotective effects via modulation of oxidative stress, inflammation, and signaling pathways.

Objectives

This study evaluated the neuroprotective effects of cranberries on behavioral and neurochemical abnormalities induced by intracerebroventricular (ICV) quinolinic acid (QA) in Wistar rats, focusing on ERK and PI3K/AKT pathway modulation.

Methods

Thirty Wistar rats were divided into groups: control, QA (240 nM, ICV), QA + cranberry (0.5 g/kg, p.o.), and QA + high-dose cranberry (2 g/kg, p.o.). Treatments continued for 21 days. Behavioral performance was assessed via Novel Object Recognition, Morris Water Maze, rotarod, and footprint analysis. Biochemical assays measured oxidative/nitrosative stress markers, mitochondrial complex activities, and cholinergic function. Histological analysis evaluated neuronal integrity.

Results

QA treatment impaired cognition, motor function, and mitochondrial activity, increased oxidative stress (↑MDA, ↑nitrite, ↓GSH), and induced cholinergic dysfunction. Cranberry supplementation, particularly at 2 g/kg, significantly improved memory, learning, and motor coordination, restored GSH, reduced MDA and nitrite levels, enhanced mitochondrial complexes I, II, and IV activities, and normalized cholinergic markers. Histology confirmed reduced neuronal degeneration and inflammation.

Discussion

Cranberries exhibit neuroprotective effects likely via antioxidant, anti-inflammatory, and anti-excitotoxic mechanisms, promoting synaptic plasticity and neuronal survival.

Conclusion

Cranberries may serve as a potential natural therapeutic strategy for cognitive deficits and neurodegenerative conditions, warranting further translational studies.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073375293250520050009
2025-05-26
2025-10-31
Loading full text...

Full text loading...

References

  1. Livingston G. Huntley J. Sommerlad A. Ames D. Ballard C. Banerjee S. Brayne C. Burns A. Cohen-Mansfield J. Cooper C. Costafreda S.G. Dias A. Fox N. Gitlin L.N. Howard R. Kales H.C. Kivimäki M. Larson E.B. Ogunniyi A. Orgeta V. Ritchie K. Rockwood K. Sampson E.L. Samus Q. Schneider L.S. Selbæk G. Teri L. Mukadam N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020 396 10248 413 446 10.1016/S0140‑6736(20)30367‑6 32738937
    [Google Scholar]
  2. Chatterjee S. Oxidative stress, inflammation, and disease. In: Oxidative Stress and Biomaterials. Elsevier 2016 35 58 10.1016/B978‑0‑12‑803269‑5.00002‑4
    [Google Scholar]
  3. Rekatsina M. Paladini A. Piroli A. Zis P. Pergolizzi J.V. Varrassi G. Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: A narrative review. Adv. Ther. 2020 37 1 113 139 10.1007/s12325‑019‑01148‑5 31782132
    [Google Scholar]
  4. Filosto M. Scarpelli M. Cotelli M.S. Vielmi V. Todeschini A. Gregorelli V. Tonin P. Tomelleri G. Padovani A. The role of mitochondria in neurodegenerative diseases. J. Neurol. 2011 258 10 1763 1774 10.1007/s00415‑011‑6104‑z 21604203
    [Google Scholar]
  5. Jabir N.R. Firoz C.K. Baeesa S.S. Ashraf G.M. Akhtar S. Kamal W. Kamal M.A. Tabrez S. Synopsis on the linkage of Alzheimer’s and Parkinson’s disease with chronic diseases. CNS Neurosci. Ther. 2015 21 1 1 7 10.1111/cns.12344 25399848
    [Google Scholar]
  6. Park M.H. Kwon D.Y. Jung J.M. Han C. Jo I. Jo S.A. Mini‐Mental Status Examination as predictors of mortality in the elderly. Acta Psychiatr. Scand. 2013 127 4 298 304 10.1111/j.1600‑0447.2012.01918.x 22901036
    [Google Scholar]
  7. Nichols E. Steinmetz J.D. Vollset S.E. Fukutaki K. Chalek J. Abd-Allah F. Abdoli A. Abualhasan A. Abu-Gharbieh E. Akram T.T. Al Hamad H. Alahdab F. Alanezi F.M. Alipour V. Almustanyir S. Amu H. Ansari I. Arabloo J. Ashraf T. Astell-Burt T. Ayano G. Ayuso-Mateos J.L. Baig A.A. Barnett A. Barrow A. Baune B.T. Béjot Y. Bezabhe W.M.M. Bezabih Y.M. Bhagavathula A.S. Bhaskar S. Bhattacharyya K. Bijani A. Biswas A. Bolla S.R. Boloor A. Brayne C. Brenner H. Burkart K. Burns R.A. Cámera L.A. Cao C. Carvalho F. Castro-de-Araujo L.F.S. Catalá-López F. Cerin E. Chavan P.P. Cherbuin N. Chu D-T. Costa V.M. Couto R.A.S. Dadras O. Dai X. Dandona L. Dandona R. De la Cruz-Góngora V. Dhamnetiya D. Dias da Silva D. Diaz D. Douiri A. Edvardsson D. Ekholuenetale M. El Sayed I. El-Jaafary S.I. Eskandari K. Eskandarieh S. Esmaeilnejad S. Fares J. Faro A. Farooque U. Feigin V.L. Feng X. Fereshtehnejad S-M. Fernandes E. Ferrara P. Filip I. Fillit H. Fischer F. Gaidhane S. Galluzzo L. Ghashghaee A. Ghith N. Gialluisi A. Gilani S.A. Glavan I-R. Gnedovskaya E.V. Golechha M. Gupta R. Gupta V.B. Gupta V.K. Haider M.R. Hall B.J. Hamidi S. Hanif A. Hankey G.J. Haque S. Hartono R.K. Hasaballah A.I. Hasan M.T. Hassan A. Hay S.I. Hayat K. Hegazy M.I. Heidari G. Heidari-Soureshjani R. Herteliu C. Househ M. Hussain R. Hwang B-F. Iacoviello L. Iavicoli I. Ilesanmi O.S. Ilic I.M. Ilic M.D. Irvani S.S.N. Iso H. Iwagami M. Jabbarinejad R. Jacob L. Jain V. Jayapal S.K. Jayawardena R. Jha R.P. Jonas J.B. Joseph N. Kalani R. Kandel A. Kandel H. Karch A. Kasa A.S. Kassie G.M. Keshavarz P. Khan M.A.B. Khatib M.N. Khoja T.A.M. Khubchandani J. Kim M.S. Kim Y.J. Kisa A. Kisa S. Kivimäki M. Koroshetz W.J. Koyanagi A. Kumar G.A. Kumar M. Lak H.M. Leonardi M. Li B. Lim S.S. Liu X. Liu Y. Logroscino G. Lorkowski S. Lucchetti G. Lutzky Saute R. Magnani F.G. Malik A.A. Massano J. Mehndiratta M.M. Menezes R.G. Meretoja A. Mohajer B. Mohamed Ibrahim N. Mohammad Y. Mohammed A. Mokdad A.H. Mondello S. Moni M.A.A. Moniruzzaman M. Mossie T.B. Nagel G. Naveed M. Nayak V.C. Neupane Kandel S. Nguyen T.H. Oancea B. Otstavnov N. Otstavnov S.S. Owolabi M.O. Panda-Jonas S. Pashazadeh Kan F. Pasovic M. Patel U.K. Pathak M. Peres M.F.P. Perianayagam A. Peterson C.B. Phillips M.R. Pinheiro M. Piradov M.A. Pond C.D. Potashman M.H. Pottoo F.H. Prada S.I. Radfar A. Raggi A. Rahim F. Rahman M. Ram P. Ranasinghe P. Rawaf D.L. Rawaf S. Rezaei N. Rezapour A. Robinson S.R. Romoli M. Roshandel G. Sahathevan R. Sahebkar A. Sahraian M.A. Sathian B. Sattin D. Sawhney M. Saylan M. Schiavolin S. Seylani A. Sha F. Shaikh M.A. Shaji K.S. Shannawaz M. Shetty J.K. Shigematsu M. Shin J.I. Shiri R. Silva D.A.S. Silva J.P. Silva R. Singh J.A. Skryabin V.Y. Skryabina A.A. Smith A.E. Soshnikov S. Spurlock E.E. Stein D.J. Sun J. Tabarés-Seisdedos R. Thakur B. Timalsina B. Tovani-Palone M.R. Tran B.X. Tsegaye G.W. Valadan Tahbaz S. Valdez P.R. Venketasubramanian N. Vlassov V. Vu G.T. Vu L.G. Wang Y-P. Wimo A. Winkler A.S. Yadav L. Yahyazadeh Jabbari S.H. Yamagishi K. Yang L. Yano Y. Yonemoto N. Yu C. Yunusa I. Zadey S. Zastrozhin M.S. Zastrozhina A. Zhang Z-J. Murray C.J.L. Vos T. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the global burden of disease study 2019. Lancet Public Health 2022 7 2 e105 e125 10.1016/S2468‑2667(21)00249‑8 34998485
    [Google Scholar]
  8. Cathomas F. Guetter K. Seifritz E. Klaus F. Kaiser S. Quinolinic acid is associated with cognitive deficits in schizophrenia but not major depressive disorder. Sci. Rep. 2021 11 1 9992 10.1038/s41598‑021‑89335‑9 33976271
    [Google Scholar]
  9. Watne L.O. Pollmann C.T. Neerland B.E. Quist-Paulsen E. Halaas N.B. Idland A.V. Hassel B. Henjum K. Knapskog A.B. Frihagen F. Raeder J. Godø A. Ueland P.M. McCann A. Figved W. Selbæk G. Zetterberg H. Fang E.F. Myrstad M. Giil L.M. Cerebrospinal fluid quinolinic acid is strongly associated with delirium and mortality in hip-fracture patients. J. Clin. Invest. 2023 133 2 e163472 10.1172/JCI163472 36409557
    [Google Scholar]
  10. Maddison D.C. Giorgini F. The kynurenine pathway and neurodegenerative disease. Semin. Cell Dev. Biol. 2015 40 134 141 10.1016/j.semcdb.2015.03.002 25773161
    [Google Scholar]
  11. Singh R.K. Devi S. Prasad D.N. Synthesis, physicochemical and biological evaluation of 2-amino-5-chlorobenzophenone derivatives as potent skeletal muscle relaxants. Arab. J. Chem. 2015 8 3 307 312 10.1016/j.arabjc.2011.11.013
    [Google Scholar]
  12. Singh R.K. Prasad D.N. Bhardwaj T.R. Synthesis, physicochemical properties and kinetic study of bis(2-chloroethyl)amine as cytotoxic agent for brain delivery. Arab. J. Chem. 2015 8 380 387 10.1016/j.arabjc.2012.11.005
    [Google Scholar]
  13. Schwarcz R Stone TW The kynurenine pathway and the brain: Challenges, controversies and promises. Neuropharmacology 2017 112 Pt B 237 247 10.1016/j.neuropharm.2016.08.003 27511838
    [Google Scholar]
  14. Lugo-Huitrón R. Ugalde Muñiz P. Pineda B. Pedraza-Chaverrí J. Ríos C. Pérez-de la Cruz V. Quinolinic acid: An endogenous neurotoxin with multiple targets. Oxid. Med. Cell. Longev. 2013 2013 1 14 10.1155/2013/104024 24089628
    [Google Scholar]
  15. Phing A.H. Makpol S. Nasaruddin M.L. Wan Zaidi W.A.; Ahmad, N.S.; Embong, H. Altered tryptophan-kynurenine pathway in delirium: A review of the current literature. Int. J. Mol. Sci. 2023 24 6 5580 10.3390/ijms24065580 36982655
    [Google Scholar]
  16. Xia Z. Dudek H. Miranti C.K. Greenberg M.E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 1996 16 17 5425 5436 10.1523/JNEUROSCI.16‑17‑05425.1996 8757255
    [Google Scholar]
  17. Kumar S. Singh R.K. Bhardwaj T.R. Therapeutic role of nitric oxide as emerging molecule. Biomed. Pharmacother. 2017 85 182 201 10.1016/j.biopha.2016.11.125 27940398
    [Google Scholar]
  18. Kolahdouzan M. Hamadeh M.J. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci. Ther. 2017 23 4 272 290 10.1111/cns.12684 28317317
    [Google Scholar]
  19. Rice D.C. Animal models of cognitive impairment produced by developmental lead exposure. In: Animal Models of Cognitive Impairment. Boca Raton, FL CRC Press 2006 10.1201/9781420004335.sec2
    [Google Scholar]
  20. Puri V. Kanojia N. Sharma A. Huanbutta K. Dheer D. Sangnim T. Natural product-based pharmacological studies for neurological disorders. Front. Pharmacol. 2022 13 1011740 10.3389/fphar.2022.1011740 36419628
    [Google Scholar]
  21. Česonienė L. Daubaras R. Phytochemical composition of the large cranberry (Vaccinium Macrocarpon) and the small cranberry (Vaccinium Oxycoccos). In: Nutritional composition of fruit cultivars. Elsevier 2016 173 194 10.1016/B978‑0‑12‑408117‑8.00008‑8
    [Google Scholar]
  22. Skrovankova S. Sumczynski D. Mlcek J. Jurikova T. Sochor J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015 16 10 24673 24706 10.3390/ijms161024673 26501271
    [Google Scholar]
  23. Palikova I. Vostalova J. Zdarilova A. Svobodova A. Kosina P. Vecera R. Stejskal D. Proskova J. Hrbac J. Bednar P. Maier V. Cernochova D. Simanek V. Ulrichova J. Long-term effects of three commercial cranberry products on the antioxidative status in rats: A pilot study. J. Agric. Food Chem. 2010 58 3 1672 1678 10.1021/jf903710y 20058864
    [Google Scholar]
  24. Zhao S. Liu H. Gu L. American cranberries and health benefits – An evolving story of 25 years. J. Sci. Food Agric. 2020 100 14 5111 5116 10.1002/jsfa.8882 29315597
    [Google Scholar]
  25. Chu Y.F. Liu R.H. Cranberries inhibit LDL oxidation and induce LDL receptor expression in hepatocytes. Life Sci. 2005 77 15 1892 1901 10.1016/j.lfs.2005.04.002 15982671
    [Google Scholar]
  26. Kahlon T.S. Smith G.E. In vitro binding of bile acids by blueberries (Vaccinium spp.), plums (Prunus spp.), prunes (Prunus spp.), strawberries (Fragaria X ananassa), cherries (Malpighia punicifolia), cranberries (Vaccinium macrocarpon) and apples (Malus sylvestris). Food Chem. 2007 100 3 1182 1187 10.1016/j.foodchem.2005.10.066
    [Google Scholar]
  27. Sharma S. Kumar S. Singh R.K. A recent advance on phytochemicals, nutraceutical and pharmacological activities of buckwheat. Comb. Chem. High Throughput Screen. 2024 27 18 2654 2666 10.2174/0113862073265824231004115334 37818573
    [Google Scholar]
  28. Seeram N.P. Adams L.S. Hardy M.L. Heber D. Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. J. Agric. Food Chem. 2004 52 9 2512 2517 10.1021/jf0352778 15113149
    [Google Scholar]
  29. Vattem D.A. Jang H-D. Levin R. Shetty K. synergism of cranberry phenolics with ellagic acid and rosmarinic acid for antimutagenic and DNA protection functions. J. Food Biochem. 2006 30 1 98 116 10.1111/j.1745‑4514.2005.00063.x
    [Google Scholar]
  30. Sun J. Hai Liu R. Cranberry phytochemical extracts induce cell cycle arrest and apoptosis in human MCF-7 breast cancer cells. Cancer Lett. 2006 241 1 124 134 10.1016/j.canlet.2005.10.027 16377076
    [Google Scholar]
  31. Vu K.D. Carlettini H. Bouvet J. Côté J. Doyon G. Sylvain J.F. Lacroix M. Effect of different cranberry extracts and juices during cranberry juice processing on the antiproliferative activity against two colon cancer cell lines. Food Chem. 2012 132 2 959 967 10.1016/j.foodchem.2011.11.078
    [Google Scholar]
  32. Shukla D. Maheshwari R. Patel K. Balaraman R. Sen A. Effect of Vaccinium macrocarpon on MK-801-induced psychosis in mice. Indian J. Pharmacol. 2018 50 5 227 235 10.4103/ijp.IJP_74_17 30636825
    [Google Scholar]
  33. Witucki Ł. Kurpik M. Jakubowski H. Szulc M. Łukasz Mikołajczak P. Jodynis-Liebert J. Kujawska M. Neuroprotective effects of cranberry juice treatment in a rat model of Parkinson’s disease. Nutrients 2022 14 10 2014 10.3390/nu14102014 35631155
    [Google Scholar]
  34. Buttner-Ennever J. The Rat Brain in Stereotaxic Coordinates. Cambridge, Massachusetts Academic Press 1997
    [Google Scholar]
  35. D’Hooge R. De Deyn P.P. Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev. 2001 36 1 60 90 10.1016/S0165‑0173(01)00067‑4 11516773
    [Google Scholar]
  36. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 1984 11 1 47 60 10.1016/0165‑0270(84)90007‑4 6471907
    [Google Scholar]
  37. Barnhart C.D. Yang D. Lein P.J. Using the Morris water maze to assess spatial learning and memory in weanling mice. PLoS One 2015 10 4 e0124521 10.1371/journal.pone.0124521 25886563
    [Google Scholar]
  38. Vorhees C.V. Williams M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006 1 2 848 858 10.1038/nprot.2006.116 17406317
    [Google Scholar]
  39. Karl T. Pabst R. von Hörsten S. Behavioral phenotyping of mice in pharmacological and toxicological research. Exp. Toxicol. Pathol. 2003 55 1 69 83 10.1078/0940‑2993‑00301 12940631
    [Google Scholar]
  40. Tenorio G. Kulkarni A. Kerr B.J. Resident glial cell activation in response to perispinal inflammation leads to acute changes in nociceptive sensitivity: Implications for the generation of neuropathic pain. Pain 2013 154 1 71 81 10.1016/j.pain.2012.09.008 23103436
    [Google Scholar]
  41. Bohlen M. Cameron A. Metten P. Crabbe J.C. Wahlsten D. Calibration of rotational acceleration for the rotarod test of rodent motor coordination. J. Neurosci. Methods 2009 178 1 10 14 10.1016/j.jneumeth.2008.11.001 19041892
    [Google Scholar]
  42. Nehru B. Verma R. Khanna P. Sharma S.K. Behavioral alterations in rotenone model of Parkinson’s disease: Attenuation by co-treatment of centrophenoxine. Brain Res. 2008 1201 122 127 10.1016/j.brainres.2008.01.074 18308296
    [Google Scholar]
  43. Jangra A. Kwatra M. Singh T. Pant R. Kushwah P. Ahmed S. Dwivedi D. Saroha B. Lahkar M. Edaravone alleviates cisplatin-induced neurobehavioral deficits via modulation of oxidative stress and inflammatory mediators in the rat hippocampus. Eur. J. Pharmacol. 2016 791 51 61 10.1016/j.ejphar.2016.08.003 27492363
    [Google Scholar]
  44. Kasbe P. Jangra A. Lahkar M. Mangiferin ameliorates aluminium chloride-induced cognitive dysfunction via alleviation of hippocampal oxido-nitrosative stress, proinflammatory cytokines and acetylcholinesterase level. J. Trace Elem. Med. Biol. 2015 31 107 112 10.1016/j.jtemb.2015.04.002 26004900
    [Google Scholar]
  45. Cui J. Wang G. Kandhare A.D. Mukherjee-Kandhare A.A. Bodhankar S.L. Neuroprotective effect of naringin, a flavone glycoside in quinolinic acid-induced neurotoxicity: Possible role of PPAR-γ, Bax/Bcl-2, and caspase-3. Food Chem. Toxicol. 2018 121 95 108 10.1016/j.fct.2018.08.028 30130594
    [Google Scholar]
  46. Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979 95 2 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  47. El-Demerdash F. Dewer Y. ElMazoudy R.H. Attia A.A. Kidney antioxidant status, biochemical parameters and histopathological changes induced by methomyl in CD-1 mice. Exp. Toxicol. Pathol. 2013 65 6 897 901 10.1016/j.etp.2013.01.002 23375192
    [Google Scholar]
  48. Ellman G.L. Courtney K.D. Andres V. Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961 7 2 88 95 10.1016/0006‑2952(61)90145‑9 13726518
    [Google Scholar]
  49. Iwase T. Tajima A. Sugimoto S. Okuda K. Hironaka I. Kamata Y. Takada K. Mizunoe Y. A simple assay for measuring catalase activity: A visual approach. Sci. Rep. 2013 3 1 3081 10.1038/srep03081 24170119
    [Google Scholar]
  50. Kwatra M. Jangra A. Mishra M. Sharma Y. Ahmed S. Ghosh P. Kumar V. Vohora D. Khanam R. Naringin and sertraline ameliorate doxorubicin-induced behavioral deficits through modulation of serotonin level and mitochondrial complexes protection pathway in rat hippocampus. Neurochem. Res. 2016 41 9 2352 2366 10.1007/s11064‑016‑1949‑2 27209303
    [Google Scholar]
  51. King T.E. Howard R.L. Preparations and Properties of Soluble NADH Dehydrogenases from Cardiac Muscle. In: Methods in Enzymology Elsevier 1967 10 275 294
    [Google Scholar]
  52. Prakash C. Soni M. Kumar V. Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review. J. Appl. Toxicol. 2016 36 2 179 188 10.1002/jat.3256 26510484
    [Google Scholar]
  53. Gulati K. Chakraborti A. Ray A. Modulation of stress-induced neurobehavioral changes and brain oxidative injury by nitric oxide (NO) mimetics in rats. Behav. Brain Res. 2007 183 2 226 230 10.1016/j.bbr.2007.06.018 17675257
    [Google Scholar]
  54. Jangra A. Sriram C.S. Lahkar M. Lipopolysaccharide-induced behavioral alterations are alleviated by sodium phenylbutyrate via attenuation of oxidative stress and neuroinflammatory cascade. Inflammation 2016 39 4 1441 1452 10.1007/s10753‑016‑0376‑5 27192986
    [Google Scholar]
  55. Devore E.E. Kang J.H. Breteler M.M.B. Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann. Neurol. 2012 72 1 135 143 10.1002/ana.23594 22535616
    [Google Scholar]
  56. Kang J.S. Jeon Y.J. Kim H.M. Han S.H. Yang K.H. Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide-stimulated macrophages. J. Pharmacol. Exp. Ther. 2002 302 1 138 144 10.1124/jpet.302.1.138 12065710
    [Google Scholar]
  57. Sehajpal S. Prasad D.N. Singh R.K. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch. Pharm. 2019 352 7 1800339 10.1002/ardp.201800339 31231875
    [Google Scholar]
  58. Neto C.C. Cranberry and its phytochemicals: A review of in vitro anticancer studies. J. Nutr. 2007 137 1 186S 193S (Suppl.) 10.1093/jn/137.1.186S 17182824
    [Google Scholar]
  59. McKay D.L. Blumberg J.B. Cranberries (Vaccinium macrocarpon) and cardiovascular disease risk factors. Nutr. Rev. 2007 65 11 490 502 10.1301/nr.2007.nov.490‑502 18038941
    [Google Scholar]
  60. Seeram N.P. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem. 2008 56 3 627 629 10.1021/jf071988k 18211023
    [Google Scholar]
  61. Kalonia H. Kumar P. Kumar A. Pioglitazone ameliorates behavioral, biochemical and cellular alterations in quinolinic acid induced neurotoxicity: Possible role of peroxisome proliferator activated receptor-ϒ (PPARϒ) in Huntington’s disease. Pharmacol. Biochem. Behav. 2010 96 2 115 124 10.1016/j.pbb.2010.04.018 20450929
    [Google Scholar]
  62. Guillemin G.J. Williams K.R. Smith D.G. Smythe G.A. Croitoru-Lamoury J. Brew B.J. Quinolinic acid in the pathogenesis of Alzheimer’s disease. Adv. Exp. Med. Biol. 2003 527 167 176 10.1007/978‑1‑4615‑0135‑0_19 15206729
    [Google Scholar]
  63. Dal-Pan A. Dudonné S. Bourassa P. Bourdoulous M. Tremblay C. Desjardins Y. Calon F. Cognitive-Enhancing effects of a polyphenols-rich extract from fruits without changes in neuropathology in an animal model of Alzheimer’s disease. J. Alzheimers Dis. 2016 55 1 115 135 10.3233/JAD‑160281 27662290
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073375293250520050009
Loading
/content/journals/cchts/10.2174/0113862073375293250520050009
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test