Full text loading...
The objective of this investigation was to examine the mechanism through which Radix isatidis operates, utilizing network pharmacology and molecular docking techniques.
A Protein-Protein Interaction (PPI) network connecting the targets of the active ingredients with those related to febrile diseases was constructed through STRING. The analysis of the core nodes was conducted using the Cytoscape software, followed by further exploring the PPI network using the DAVID database. Lastly, the underlying mechanism of the antipyretic action was also examined utilizing the DAVID database. Mice were injected intraperitoneally with lipopolysaccharides (LPS) and treated by continuous gavage with Radix isatidis. The mice were then evaluated using temperature monitoring, blood tests, organ index calculations, PI3K-AKT pathway protein assays, and reverse transcription polymerase chain reaction (RT-PCR) assays for inflammatory factors.
Twelve active components of Radix isatidis were screened, and 107 genes were identified at the intersection of Radix isatidis and fever. These genes were found to be involved in the PI3K-AKT signaling pathway, proteoglycans in cancer, and mechanisms related to blood lipids and atherosclerosis. The top nine targets identified by constructing a PPI network were IL6, AKT1, EGFR, STAT3, CASP3, ESR1, PTGS2, PPARG, and MAPK3, indicating that Radix isatidis may play a protective role by affecting the PI3K/AKT-related signaling pathway.
In the in vitro experimental validation, a fever model was established using LPS, while Radix isatidis was used for treatment, and the PI3K/AKT/NF-κB pathway was validated by temperature monitoring, observation of pathological tissue sections, western blotting, immunohistochemistry, RT-PCR, and other technical means. In vivo experiments were conducted to verify the method in multiple mediums, and both the genetic changes and related pathway proteins are consistent with the KEGG prediction.
The PI3K/AKT pathway was identified through PPI network analysis, key target identification, and KEGG pathway enrichment. Subsequent in vivo studies in mice confirmed that Radix isatidis could alleviate inflammation and body fever caused by LPS by affecting the PI3K/AKT pathway.