Skip to content
2000
image of Metabolomics and Network Pharmacology Analyses Reveal the Mechanism of Moxibustion in Knee Osteoarthritis

Abstract

Introduction

This study aimed to explore the mechanism of moxibustion in the knee by combining osteoarthritis metabolomics and network pharmacology.

Methods

A rat knee osteoarthritis (KOA) model was established by intra-articular injection of papain. The efficacy of moxibustion in KOA rats was evaluated by swelling degree, pathological progress, and mobility loss of knee joint. On this basis, the metabolic mechanism of moxibustion in relieving knee osteoarthritis was analyzed by metabolomics analysis.

Results

Moxibustion significantly reduced joint swelling and inflammation in the knee joint of KOA rats. Sixteen metabolites and nine metabolic pathways were found to be associated with the mechanism of action of moxibustion in metabolomics analysis results. According to network pharmacology, 3186 KOA disease targets, 158 drug targets, and 89 intersecting targets were obtained. The key targets included MAPK-3, AKT-1, RELA, MAPK-8, MAPK-14, . Signal pathways were found to be involved in mechanisms of moxibustion in knee osteoarthritis, such as alanine, aspartate, and glutamate metabolism, cysteine and methionine metabolism, and arginine and proline metabolism.

Discussion

At present, the mechanism of moxibustion for KOA is not completely clear, but it is certain that its effect is related to the effect produced by heat and radiation. In addition, the aromatic substances produced during the combustion of moxa leaves have anti-inflammatory, antioxidant, and immune-enhancing effects on KOA.

Conclusion

The mechanism of moxibustion in knee osteoarthritis may involve alanine, aspartate, and glutamate metabolism, cysteine and methionine metabolism, arginine and proline metabolism, amino tRNA biosynthesis, and D-glutamine and D-glutamate metabolism signaling pathways with MAPK-3, AKT-1, RELA, MAPK-8, and MAPK-14 as core targets. More precise mechanisms need to be verified by further systematic molecular biology experiments.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073365403250423070858
2025-05-07
2025-10-31
Loading full text...

Full text loading...

References

  1. Copp G. Robb K.P. Viswanathan S. Culture-expanded mesenchymal stromal cell therapy: Does it work in knee osteoarthritis? A pathway to clinical success. Cell. Mol. Immunol. 2023 20 6 626 650 10.1038/s41423‑023‑01020‑1 37095295
    [Google Scholar]
  2. Chen R.H. Clinical effect of chinese medicine external treatment method for knee osteoarthritis. Chin. J.Clin. Rational. Drug. Use. 2022 15 10 94 96 10.1015887/j.cnki.13‑1389/r.2022.10.029
    [Google Scholar]
  3. Chen Y. Wang R.Q. Liu J.X. Zhang Z.D. Jia Y.J. Lv J.H. Shi J. Xu J. Jia C.S. Effect of moxibustion on inflammatory factors and oxidative stress factors in patients with knee osteoarthritis: A randomized controlled trial. Chin. Acupunct. Moxibustion 2020 40 9 913 917 10.13703/j.0255‑2930.20200310‑k0011 32959582
    [Google Scholar]
  4. Chen D.Y. Zhang H. Zhang L. Wang Y.H. Wang X.D. Feng J.L. Liang J. Zhong X. Determination of kojic acid in fermented foods by solid-phase extraction coupled with ultra performance liquid chromatography-tandem mass spectrometry. Se Pu 2023 41 7 632 639 10.3724/SP.J.1123.2022.10002 37387284
    [Google Scholar]
  5. Chen C. Ye L. Yi J. Liu T. Li Z. FN1 mediated activation of aspartate metabolism promotes the progression of triple-negative and luminal a breast cancer. Breast Cancer Res. Treat. 2023 201 3 515 533 10.1007/s10549‑023‑07032‑9 37458908
    [Google Scholar]
  6. Díaz-Pascual F. Lempp M. Nosho K. Jeckel H. Jo J.K. Neuhaus K. Hartmann R. Jelli E. Hansen M.F. Price-Whelan A. Dietrich L.E.P. Link H. Drescher K. Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies. eLife 2021 10 10 e70794 10.7554/eLife.70794 34751128
    [Google Scholar]
  7. Damyanovich A.Z. Staples J.R. Marshall K.W. 1H NMR investigation of changes in the metabolic profile of synovial fluid in bilateral canine osteoarthritis with unilateral joint denervation. Osteoarthritis Cartilage 1999 7 2 165 172 10.1053/joca.1998.0205 10222215
    [Google Scholar]
  8. Martinez-Redondo P. Guillen-Guillen I. Davidsohn N. Wang C. Prieto J. Kurita M. Hatanaka F. Zhong C. Hernandez-Benitez R. Hishida T. Lezaki T. Sakamoto A. Nemeth A.N. Hishida Y. Esteban C.R. Shojima K. Huang L. Shokhirev M. Nuñez-Delicado E. Campistol J.M. Guillen-Vicente I. Rodriguez-Iñigo E. Lopez-Alcorocho J.M. Guillen-Vicente M. Church G. Reddy P. Guillen-Garcia P. Liu G.H. Belmonte J.C.I. αKLOTHO and sTGFβR2 treatment counteract the osteoarthritic phenotype developed in a rat model. Protein Cell 2020 11 3 219 226 10.1007/s13238‑019‑00685‑7 31950348
    [Google Scholar]
  9. Meng X. Grad S. Wen C. Lai Y. Alini M. Qin L. Wang X. An impaired healing model of osteochondral defect in papain-induced arthritis. J. Orthop. Translat. 2021 26 101 110 10.1016/j.jot.2020.07.005 33437629
    [Google Scholar]
  10. Damyanovich A.Z. Avery L. Staples J.R. Marshall K.W. 1H NMR metabolic profiling of synovial fluid from patients with anterior cruciate ligament tears and hemarthrosis. Osteoarthritis Cartilage 2023 31 8 1066 1077 10.1016/j.joca.2023.03.016 37146959
    [Google Scholar]
  11. Wang C.L. Wan Z.X. Zhou J. Liu Y. Zhang H. Li Y. Su T.S. Network pharmacology of volatile components of Artemisia Argyi on Knee osteoarthropathy. World. Chin. Med. 2021 16 20 2975 10.3969/j.issn.1673‑7202.2021.20.003
    [Google Scholar]
  12. Xing Q. Liu X. Liu Z. Yan Q. Hu Y. Li W. Peng K. Elucidating the mechanism of Buyanghuanwu decoction acting on pulmonary fibrosis based on network pharmacology and animal studies. Comb. Chem. High Throughput Screen. 2024 27 7 1046 1055 10.2174/1386207326666230823093958 37612869
    [Google Scholar]
  13. You J.S. He S.C. Chen L. Guo Z.H. Gao F. Zhang M.Y. Dan L. Chen W. Analysis of pharmacological activities and mechanisms of essential oil in leaves of C. grandis ‘Tomentosa’ by GC-MS/MS and network pharmacology. Comb. Chem. High Throughput Screen. 2023 26 9 1689 1700 10.2174/1386207325666220610182644 35702766
    [Google Scholar]
  14. Zhao R. Li X. Zhang H. Chen X. Wang Y. Network pharmacology study on the mechanism of gastrodin reversing depressive symptoms in traumatically stressed rats. Comb. Chem. High Throughput Screen. 2023 26 9 1755 1765 10.2174/1386207325666220928143206 36173042
    [Google Scholar]
  15. Jiang H.Y. Wang H.X. Wang J. Potential toxicity of impurity B in furosemide preparation. Zhongnan Yaoxue 202119 12 10.7539/j.issn.1672‑2981.2021.12.00
    [Google Scholar]
  16. Fu Y. Chen S. Mao J. Pan Y. Huang C. Xiong J. Yan C. Huang X. Zhang H. Mechanism of thermosensitive moxibustion on knee osteoarthritis in rabbit models. Chinese Acupuncture. Moxibustion. 2018 38 3 291 296 10.13703/j.0255‑2930.2018.03.017 29701048
    [Google Scholar]
  17. Francklyn C.S. Mullen P. Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J. Biol. Chem. 2019 294 14 5365 5385 10.1074/jbc.REV118.002956 30670594
    [Google Scholar]
  18. Gu Y. Jin Q. Hu J. Wang X. Yu W. Wang Z. Wang C. Liu Y. Chen Y. Yuan W. Causality of genetically determined metabolites and metabolic pathways on osteoarthritis: a two-sample mendelian randomization study. J. Transl. Med. 2023 21 1 357 10.1186/s12967‑023‑04165‑9 37259122
    [Google Scholar]
  19. Gao X. Guo R. Li Y. Kang G. Wu Y. Cheng J. Jia J. Wang W. Li Z. Wang A. Xu H. Jia Y. Li Y. Qi X. Wei Z. Wei C. Contribution of upregulated aminoacyl‐tRNA biosynthesis to metabolic dysregulation in gastric cancer. J. Gastroenterol. Hepatol. 2021 36 11 3113 3126 10.1111/jgh.15592 34159625
    [Google Scholar]
  20. Hu X. Cui S. Ke C. Tao Y. Huang J. Yang X. Advances on microbial synthesis of L-proline and trans-4-hydroxy-L-proline Chin. J. Biotechnol. 2022 38 12 4498 4519 10.13345/j.cjb.220739 36593190
    [Google Scholar]
  21. Jiao Y. Guo B.C. Zhong J.W. Tian Y.F. Ma C. Mechanism of action of moxibustion in treating knee osteoarthritis. China’s Naturopathy. 2021 29 20 123 125 10.10621/j.cnki.11‑3555/r.2021.2047
    [Google Scholar]
  22. Jia X. Ma J. Chen X. Li W. Zhou X. Lei B. Zhao X. Mao Y. Immunoregulation and anti-metalloproteinase bioactive injectable polysalicylate matrixgel for efficiently treating osteoarthritis. Mater. Today Bio 2022 15 100277 10.1016/j.mtbio.2022.100277 35601894
    [Google Scholar]
  23. Jubouri M. Talarico G.G.M. Weber J.M. Mennigen J.A. Alanine alters the carbohydrate metabolism of rainbow trout: Glucose flux and cell signaling. J. Exp. Biol. 2021 224 15 jeb232918 10.1242/jeb.232918 34374410
    [Google Scholar]
  24. Usher K.M. Zhu S. Mavropalias G. Carrino J.A. Zhao J. Xu J. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res. 2019 7 1 9 10.1038/s41413‑019‑0047‑x 30937213
    [Google Scholar]
  25. Zhang W. Robertson W.B. Zhao J. Chen W. Xu J. Emerging trend in the pharmacotherapy of osteoarthritis. Front. Endocrinol. (Lausanne) 2019 10 431 10.3389/fendo.2019.00431 31312184
    [Google Scholar]
  26. Jacob M. Nimer R.M. Alabdaljabar M.S. Sabi E.M. Al-Ansari M.M. Housien M. Sumaily K.M. Dahabiyeh L.A. Abdel Rahman A.M. Metabolomics profiling of nephrotic syndrome towards biomarker discovery. Int. J. Mol. Sci. 2022 23 20 12614 10.3390/ijms232012614 36293474
    [Google Scholar]
  27. Jara C.P. de Andrade Berti B. Mendes N.F. Engel D.F. Zanesco A.M. Pereira de Souza G.F. de Medeiros Bezerra R. de Toledo Bagatin J. Maria-Engler S.S. Morari J. Velander W.H. Velloso L.A. Araújo E.P. Glutamic acid promotes hair growth in mice. Sci. Rep. 2021 11 1 15453 10.1038/s41598‑021‑94816‑y 34326383
    [Google Scholar]
  28. Kaneko Y. Tanigawa N. Sato Y. Kobayashi T. Nakamura S. Ito E. Soma T. Miyamoto K. Kobayashi S. Harato K. Matsumoto M. Nakamura M. Niki Y. Miyamoto T. Oral administration of N-acetyl cysteine prevents osteoarthritis development and progression in a rat model. Sci. Rep. 2019 9 1 18741 10.1038/s41598‑019‑55297‑2 31822750
    [Google Scholar]
  29. Liu S.M. Cai F.F. Yao M. Tang J.Y. Clinical observation on treating knee osteoarthritis (Syndrome of impediment caused by win, cold, and dampness) with thunder-fire moxibustion combined with ultrashort wave therapy. World. Chin. Med. 2023 18 05 682 686 10.3969/j.issn.1673‑7202.2023.05.017
    [Google Scholar]
  30. Liu T. Xiao W. Chen M. Mao R. San Xu; Peng, Q.; Zhao, Z.; Wang, Q.; Xie, H.; Deng, Z.; Li, J. Aberrant amino acid metabolism promotes neurovascular reactivity in rosacea. JCI Insight 2022 7 22 e161870 10.1172/jci.insight.161870 36219476
    [Google Scholar]
  31. Li W. Shen X. Wang J. Sun X. Yuan Q. Engineering microorganisms for the biosynthesis of dicarboxylic acids. Biotechnol. Adv. 2021 48 107710 10.1016/j.biotechadv.2021.107710 33582180
    [Google Scholar]
  32. Luukkonen P.K. Sakuma I. Gaspar R.C. Mooring M. Nasiri A. Kahn M. Zhang X.M. Zhang D. Sammalkorpi H. Penttilä A.K. Orho-Melander M. Arola J. Juuti A. Zhang X. Yimlamai D. Yki-Järvinen H. Petersen K.F. Shulman, GI Inhibition of HSD17B13 protects against liver fibrosis by inhibition of pyrimidine catabolism in nonalcoholic steatohepatitis. Proc. Natl. Acad. Sci. USA 2023 120 4 e2217543120 10.1073/pnas.2217543120
    [Google Scholar]
  33. Morris S.M. Jr Arginine metabolism revisited. J. Nutr. 2016 146 12 2579S 2586S 10.3945/jn.115.226621 27934648
    [Google Scholar]
  34. Norikura T. Sasaki Y. Kojima-Yuasa A. Kon A. Glyoxylic acid, an α-Keto Acid metabolite derived from glycine, promotes myogenesis in C2C12 cells. Nutrients 2023 15 7 1763 10.3390/nu15071763 37049603
    [Google Scholar]
  35. Pavão M.L. Ferin R. Lima A. Baptista J. Cysteine and related aminothiols in cardiovascular disease, obesity and insulin resistance. Adv. Clin. Chem. 2022 109 75 127 10.1016/bs.acc.2022.03.003 35953129
    [Google Scholar]
  36. Patin F. Corcia P. Vourc’h P. Nadal-Desbarats L. Baranek T. Goossens J.F. Marouillat S. Dessein A.F. Descat A. Madji Hounoum B. Bruno C. Leman S. Andres C.R. Blasco H. Omics to explore amyotrophic lateral sclerosis evolution: The central role of arginine and proline metabolism. Mol. Neurobiol. 2017 54 7 5361 5374 10.1007/s12035‑016‑0078‑x 27590138
    [Google Scholar]
  37. Phang J.M. Proline metabolism in cell regulation and cancer biology: Recent advances and hypotheses. Antioxid. Redox Signal. 2019 30 4 635 649 10.1089/ars.2017.7350 28990419
    [Google Scholar]
  38. Qin C.Y. Zang L.Q. Mechanism of erucamide mediating anti-stress liver injury through inbibiting glycine cleavage in rats. Chin. J. Hospital. Pharm. 2021 41 17 1710 1717 10.13286/j.1001‑5213.2021.17.03
    [Google Scholar]
  39. Richard M.J. Driban J.B. McAlindon T.E. Pharmaceutical treatment of osteoarthritis. Osteoarthritis Cartilage 2023 31 4 458 466 10.1016/j.joca.2022.11.005 36414224
    [Google Scholar]
  40. Jian-Hui S. Hai-Ru H. Xiao-Qin L.I. Hong-Mei L.I. Li-Ping K. Yuan Z. Comparison of therapeutic effect of moxibustion materials from different places and storage periods on knee osteoarthritis.China J. Chin. materia medica 202045 17 40654070 10.19540/j.cnki.cjcmm.20200608.203 33164390
    [Google Scholar]
  41. Sansone V. Applefield R.C. De Luca P. Pecoraro V. Gianola S. Pascale W. Pascale V. Does a high-fat diet affect the development and progression of osteoarthritis in mice? A systematic review. Bone Joint Res. 2019 8 12 582 592 10.1302/2046‑3758.812.BJR‑2019‑0038.R1 31934329
    [Google Scholar]
  42. Shet K. Siddiqui S.M. Yoshihara H. Kurhanewicz J. Ries M. Li X. High‐resolution magic angle spinning NMR spectroscopy of human osteoarthritic cartilage. NMR Biomed. 2012 25 4 538 544 10.1002/nbm.1769 21850648
    [Google Scholar]
  43. Stipanuk M.H. Metabolism of sulfur-containing amino acids: How the body copes with excess methionine, cysteine, and sulfide. J. Nutr. 2020 150 1 2494S 2505S 10.1093/jn/nxaa094 33000151
    [Google Scholar]
  44. Song G. Gan Q. Qi W. Wang Y. Xu M. Li Y. Fructose stimulated colonic arginine and proline metabolism dysbiosis, altered microbiota and aggravated intestinal barrier dysfunction in DSS-induced colitis rats. Nutrients 2023 15 3 782 10.3390/nu15030782 36771488
    [Google Scholar]
  45. Tufts L. Shet Vishnudas K. Fu E. Kurhanewicz J. Ries M. Alliston T. Li X. Correlating high‐resolution magic angle spinning NMR spectroscopy and gene analysis in osteoarthritic cartilage. NMR Biomed. 2015 28 5 523 528 10.1002/nbm.3285 25761416
    [Google Scholar]
  46. Tiwari K. Dubey V.K. Fresh insights into the pyrimidine metabolism in the trypanosomatids. Parasit. Vectors 2018 11 1 87 10.1186/s13071‑018‑2660‑8 29422065
    [Google Scholar]
  47. Upadhyayula P.S. Higgins D.M. Mela A. Banu M. Dovas A. Zandkarimi F. Patel P. Mahajan A. Humala N. Nguyen T.T.T. Chaudhary K.R. Liao L. Argenziano M. Sudhakar T. Sperring C.P. Shapiro B.L. Ahmed E.R. Kinslow C. Ye L.F. Siegelin M.D. Cheng S. Soni R. Bruce J.N. Stockwell B.R. Canoll P. Dietary restriction of cysteine and methionine sensitizes gliomas to ferroptosis and induces alterations in energetic metabolism. Nat. Commun. 2023 14 1 1187 10.1038/s41467‑023‑36630‑w 36864031
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073365403250423070858
Loading
/content/journals/cchts/10.2174/0113862073365403250423070858
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test