Skip to content
2000
image of Exploring the Efficacy and Mechanism of Astragalus Polysaccharide in Treating Allergic Asthma through Network Pharmacology, Bioinformatics, and Experimental Verification

Abstract

Introduction

Allergic asthma is an inflammatory disease of the airways that causes great distress to the patient's normal life. Astragalus Polysaccharide (APS) is the main active ingredient in the traditional Chinese medicine Bunge, which has the effect of regulating immune function.

Objective

This study aimed to evaluate the effect of APS on allergic asthma and investigate its potential mechanism of action.

Methods

This study utilized network pharmacology to predict the relevant targets and signaling pathways of APS treatment for allergic asthma. Subsequently, an animal model was established using Ovalbumin (OVA) induction. The efficacy of APS was verified using histopathologic staining and Airway Hyperresponsiveness (AHR) assay. Signaling pathways were examined using Western Blot (WB). Finally, bioinformatics analysis was utilized to explore the correlation between the progression of allergic asthma and signaling pathways.

Results

Network pharmacology analysis identified 15 intersection targets significantly enriched in the PI3K/AKT signaling pathway. The results of molecular docking showed that small molecule drugs have a strong binding ability to target proteins. The experiments confirmed APS successfully suppressed the pathological symptoms in allergic asthma model mice. Subsequently, WB provided evidence supporting that APS has potential therapeutic effects mediated through the PI3K/AKT signaling pathway. The bioinformatics results confirmed that disease progression in allergic asthma patients does correlate with the PI3K/AKT signaling pathway.

Conclusion

Our study suggests that APS may treat allergic asthma by targeting the PI3K/AKT signaling pathway. This provides a basis for preliminary research on the clinical application of APS for treating allergic asthma.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073368307250409055727
2025-04-29
2025-09-11
Loading full text...

Full text loading...

/deliver/fulltext/cchts/10.2174/0113862073368307250409055727/BMS-CCHTS-2024-710.html?itemId=/content/journals/cchts/10.2174/0113862073368307250409055727&mimeType=html&fmt=ahah

References

  1. Li Y. Wang D. Zhi L. Zhu Y. Qiao L. Zhu Y. Hu X. Wang Q. Cao Y. Gao Y. Chen Y. Zhang Z. Bi F. Yan G. Respiratory tract infections in children with allergic asthma on allergen immunotherapy during influenza season. Sci. Rep. 2021 11 1 2083 10.1038/s41598‑021‑81558‑0 33483566
    [Google Scholar]
  2. Devadoss D. Daly G. Manevski M. Houserova D. Hussain S.S. Baumlin N. Salathe M. Borchert G.M. Langley R.J. Chand H.S. A long noncoding RNA antisense to ICAM-1 is involved in allergic asthma associated hyperreactive response of airway epithelial cells. Mucosal Immunol. 2021 14 3 630 639 10.1038/s41385‑020‑00352‑9 33122732
    [Google Scholar]
  3. Tian D. Yang L. Wang S. Zhu Y. Shi W. Zhang C. Jin H. Tian Y. Xu H. Sun G. Liu K. Zhang Z. Zhang D. Double negative T cells mediate Lag3-dependent antigen-specific protection in allergic asthma. Nat. Commun. 2019 10 1 4246 10.1038/s41467‑019‑12243‑0 31534137
    [Google Scholar]
  4. Cevhertas L. Ogulur I. Maurer D.J. Burla D. Ding M. Jansen K. Koch J. Liu C. Ma S. Mitamura Y. Peng Y. Radzikowska U. Rinaldi A.O. Satitsuksanoa P. Globinska A. van de Veen W. Sokolowska M. Baerenfaller K. Gao Y. Agache I. Akdis M. Akdis C.A. Advances and recent developments in asthma in 2020. Allergy 2020 75 12 3124 3146 10.1111/all.14607 32997808
    [Google Scholar]
  5. Conde E. Bertrand R. Balbino B. Bonnefoy J. Stackowicz J. Caillot N. Colaone F. Hamdi S. Houmadi R. Loste A. Kamphuis J.B.J. Huetz F. Guilleminault L. Gaudenzio N. Mougel A. Hardy D. Snouwaert J.N. Koller B.H. Serra V. Bruhns P. Grouard-Vogel G. Reber L.L. Dual vaccination against IL-4 and IL-13 protects against chronic allergic asthma in mice. Nat. Commun. 2021 12 1 2574 10.1038/s41467‑021‑22834‑5 33976140
    [Google Scholar]
  6. Finotto S. Resolution of allergic asthma. Semin. Immunopathol. 2019 41 6 665 674 10.1007/s00281‑019‑00770‑3 31705318
    [Google Scholar]
  7. Tumes D.J. Papadopoulos M. Endo Y. Onodera A. Hirahara K. Nakayama T. Epigenetic regulation of T‐helper cell differentiation, memory, and plasticity in allergic asthma. Immunol. Rev. 2017 278 1 8 19 10.1111/imr.12560 28658556
    [Google Scholar]
  8. Galli S.J. Tsai M. IgE and mast cells in allergic disease. Nat. Med. 2012 18 5 693 704 10.1038/nm.2755 22561833
    [Google Scholar]
  9. Kwah J.H. Peters A.T. Asthma in adults: Principles of treatment. Allergy Asthma Proc. 2019 40 6 396 402 10.2500/aap.2019.40.4256 31690379
    [Google Scholar]
  10. Holgate S.T. Wenzel S. Postma D.S. Weiss S.T. Renz H. Sly P.D. Asthma. Nat. Rev. Dis. Primers 2015 1 1 15025 10.1038/nrdp.2015.25 27189668
    [Google Scholar]
  11. Akar-Ghibril N. Casale T. Custovic A. Phipatanakul W. Allergic endotypes and phenotypes of asthma. J. Allergy Clin. Immunol. Pract. 2020 8 2 429 440 10.1016/j.jaip.2019.11.008 32037107
    [Google Scholar]
  12. Ebrahimi M. Asadi M. Akhavan O. Graphene-based nanomaterials in fighting the most challenging viruses and immunogenic disorders. ACS Biomater. Sci. Eng. 2022 8 1 54 81 10.1021/acsbiomaterials.1c01184 34967216
    [Google Scholar]
  13. Rahimnejad M. Rasouli F. Jahangiri S. Ahmadi S. Rabiee N. Ramezani Farani M. Akhavan O. Asadnia M. Fatahi Y. Hong S. Lee J. Lee J. Hahn S.K. Engineered biomimetic membranes for organ-on-a-chip. ACS Biomater. Sci. Eng. 2022 8 12 5038 5059 10.1021/acsbiomaterials.2c00531 36347501
    [Google Scholar]
  14. Chan H.H.L. Ng T. Traditional chinese medicine (TCM) and allergic diseases. Curr. Allergy Asthma Rep. 2020 20 11 67 10.1007/s11882‑020‑00959‑9 32875353
    [Google Scholar]
  15. Xu H. Chen J. Chen P. Li W. Shao J. Hong S. Wang Y. Chen L. Luo W. Liang G. Costunolide covalently targets NACHT domain of NLRP3 to inhibit inflammasome activation and alleviate NLRP3-driven inflammatory diseases. Acta Pharm. Sin. B 2023 13 2 678 693 10.1016/j.apsb.2022.09.014 36873170
    [Google Scholar]
  16. Chen S. Chen Z. Wang Y. Hao W. Yuan Q. Zhou H. Gao C. Wang Y. Wu X. Wang S. Targeted delivery of Chinese herb pair-based berberine/tannin acid self-assemblies for the treatment of ulcerative colitis. J. Adv. Res. 2022 40 263 276 10.1016/j.jare.2021.11.017 36100331
    [Google Scholar]
  17. Liu J. Liu S. Yu M. Li J. Xie Z. Gao B. Liu Y. Anti‐inflammatory effect and mechanism of catalpol in various inflammatory diseases. Drug Dev. Res. 2023 84 7 1376 1394 10.1002/ddr.22096 37534768
    [Google Scholar]
  18. Antoniak K. Studzińska-Sroka E. Szymański M. Dudek-Makuch M. Cielecka-Piontek J. Korybalska K. Antiangiogenic, anti-inflammatory and antioxidant properties of Bidens tripartite herb, Galium verum herb and Rumex hydrolapathum root. Molecules 2023 28 13 4966 10.3390/molecules28134966 37446627
    [Google Scholar]
  19. Ong W.Y. Herr D.R. Sun G.Y. Lin T.N. Anti-inflammatory effects of phytochemical components of Clinacanthus nutans. Molecules 2022 27 11 3607 10.3390/molecules27113607 35684542
    [Google Scholar]
  20. Park S. Lee S. Weon Y. Kim T. Kim H. Lee T. Anti-inflammatory activity of a medicinal herb extract mixture, HM-V, on an animal model of DNCB-induced chronic skin inflammation. Plants 2021 10 8 1546 10.3390/plants10081546 34451592
    [Google Scholar]
  21. Liu H. Cheng H.Z. Qi X.Y. Fan Y.Z. Yuan Z.Z. Xu Y.L. Liu Y. Guo K. Li S.H. Anti‐inflammatory secoiridoids from the medicinal herb Gentianopsis barbata. Chem. Biodivers. 2024 11 e202402653 10.1002/cbdv.202402653 39528401
    [Google Scholar]
  22. Luo Z. Dong J. Wu J. Impact of Icariin and its derivatives on inflammatory diseases and relevant signaling pathways. Int. Immunopharmacol. 2022 108 108861 10.1016/j.intimp.2022.108861 35597118
    [Google Scholar]
  23. Han Y.G. Lv X. Tan Y.L. Ding Y-S. Zhang C-Y. Bian H. Exploring the mechanism of bufei decoction in the treatment of bronchial asthma based on network pharmacology and molecular docking. Comb. Chem. High Throughput Screen. 2025 28 5 768 780 10.2174/0113862073285566240223144925
    [Google Scholar]
  24. Yang Y. Zhou X. Jia G. Li T. Li Y. Zhao R. Wang Y. Network pharmacology based research into the effect and potential mechanism of Portulaca oleracea L. polysaccharide against ulcerative colitis. Comput. Biol. Med. 2023 161 106999 10.1016/j.compbiomed.2023.106999 37216777
    [Google Scholar]
  25. Cheng X-D. Jia X-B. Feng L. Jiang J. Study thought of material basis of secondary development of major traditional Chinese medicine varieties on basis of combination of in vivo and in vitro experiments. Zhongguo Zhongyao Zazhi 2013 38 23 4174 4180 24791512
    [Google Scholar]
  26. Ren Q. Zhao S. Ren C. Ma Z. RETRACTED: Astragalus polysaccharide alleviates LPS-induced inflammation injury by regulating miR-127 in H9c2 cardiomyoblasts. Int. J. Immunopathol. Pharmacol. 2018 31 2058738418759180 10.1177/2058738418759180 29451405
    [Google Scholar]
  27. Sheik A. Kim K. Varaprasad G.L. Lee H. Kim S. Kim E. Shin J.Y. Oh S.Y. Huh Y.S. The anti-cancerous activity of adaptogenic herb Astragalus membranaceus. Phytomedicine 2021 91 153698 10.1016/j.phymed.2021.153698 34479785
    [Google Scholar]
  28. Liu P. Zhao H. Luo Y. Anti-aging implications of Astragalus Membranaceus (Huangqi): A well-known chinese tonic. Aging Dis. 2017 8 6 868 886 10.14336/AD.2017.0816 29344421
    [Google Scholar]
  29. Auyeung K.K. Han Q.B. Ko J.K. Astragalus membranaceus : A review of its protection against inflammation and gastrointestinal cancers. Am. J. Chin. Med. 2016 44 1 1 22 10.1142/S0192415X16500014 26916911
    [Google Scholar]
  30. Li C. Liu Y. Zhang Y. Li J. Lai J. Astragalus polysaccharide: A review of its immunomodulatory effect. Arch. Pharm. Res. 2022 45 6 367 389 10.1007/s12272‑022‑01393‑3 35713852
    [Google Scholar]
  31. Wang S. Sun Y. Zhang J. Cui X. Xu Z. Ding D. Zhao L. Li W. Zhang W. Astragalus polysaccharides/chitosan microspheres for nasal delivery: Preparation, optimization, characterization, and pharmacodynamics. Front. Pharmacol. 2020 11 230 10.3389/fphar.2020.00230 32256349
    [Google Scholar]
  32. Dong N. Li X. Xue C. Zhang L. Wang C. Xu X. Shan A. Astragalus polysaccharides alleviates LPS‐induced inflammation via the NF‐κB/MAPK signaling pathway. J. Cell. Physiol. 2020 235 7-8 5525 5540 10.1002/jcp.29452 32037545
    [Google Scholar]
  33. Zhou L. Liu Z. Wang Z. Yu S. Long T. Zhou X. Bao Y. Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MyD88-dependent signaling pathway in vitro and in vivo. Sci. Rep. 2017 7 1 44822 10.1038/srep44822 28303957
    [Google Scholar]
  34. Meng X. Wei M. Wang D. Qu X. Zhang K. Zhang N. Li X. Astragalus polysaccharides protect renal function and affect the TGF- β /Smad signaling pathway in streptozotocin-induced diabetic rats. J. Int. Med. Res. 2020 48 5 0300060520903612 10.1177/0300060520903612 32475187
    [Google Scholar]
  35. Lu Y. Xing Q.-Q. Xu J.-Y. Ding D. Zhao X. Astragalus polysaccharide modulates ER stress response in an OVA-LPS induced murine model of severe asthma. Int. J. Biol. Macromol. 2016 93 Pt A 995 1006 10.1016/j.ijbiomac.2016.09.058 27645929
    [Google Scholar]
  36. Wang X.H. Huang W.M. Astragalus polysaccharides exert protective effects in newborn rats with bronchopulmonary dysplasia by upregulating the expression of EGFL7 in lung tissue. Int. J. Mol. Med. 2014 34 6 1529 1536 10.3892/ijmm.2014.1951 25270395
    [Google Scholar]
  37. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  38. Fang S. Dong L. Liu L. Guo J. Zhao L. Zhang J. Bu D. Liu X. Huo P. Cao W. Dong Q. Wu J. Zeng X. Wu Y. Zhao Y. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021 49 D1 D1197 D1206 10.1093/nar/gkaa1063 33264402
    [Google Scholar]
  39. Yu J. Ji H.-Y. Liu A.-J. Alcohol-soluble polysaccharide from Astragalus membranaceus: Preparation, characteristics and antitumor activity. Int. J. Biol. Macromol. 2018 118 Pt B 2057 2064 10.1016/j.ijbiomac.2018.07.073 30009907
    [Google Scholar]
  40. Shi L. Zhang C. Liu L. Xi Z. Chen M. Effects of astragalus polysaccharides on CD8+ tissue-resident memory T cells in mice with herpes simplex. Evid. Based Complement. Alternat. Med. 2022 2022 1 11 10.1155/2022/7729136 35388305
    [Google Scholar]
  41. Bing P. Zhou W. Tan S. Study on the mechanism of astragalus polysaccharide in treating pulmonary fibrosis based on “drug-target-pathway” network. Front. Pharmacol. 2022 13 865065 10.3389/fphar.2022.865065 35370663
    [Google Scholar]
  42. Jiang J. Wu C. Gao H. Song J. Li H. Effects of astragalus polysaccharides on immunologic function of erythrocyte in chickens infected with infectious bursa disease virus. Vaccine 2010 28 34 5614 5616 10.1016/j.vaccine.2010.06.025 20598783
    [Google Scholar]
  43. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  44. Piñero J. Queralt-Rosinach N. Bravo A. Deu-Pons J. Bauer-Mehren A. Baron M. Sanz F. Furlong L.I. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford) 2015 2015 0 bav028 10.1093/database/bav028 25877637
    [Google Scholar]
  45. Wishart D.S. Feunang Y.D. Guo A.C. Lo E.J. Marcu A. Grant J.R. Sajed T. Johnson D. Li C. Sayeeda Z. Assempour N. Iynkkaran I. Liu Y. Maciejewski A. Gale N. Wilson A. Chin L. Cummings R. Le D. Pon A. Knox C. Wilson M. DrugBank 5.0: A major update to the drugbank database for 2018. Nucleic Acids Res. 2018 46 D1 D1074 D1082 10.1093/nar/gkx1037 29126136
    [Google Scholar]
  46. Li Y.H. Yu C.Y. Li X.X. Zhang P. Tang J. Yang Q. Fu T. Zhang X. Cui X. Tu G. Zhang Y. Li S. Yang F. Sun Q. Qin C. Zeng X. Chen Z. Chen Y.Z. Zhu F. Therapeutic target database update 2018: Enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res. 2018 46 D1 D1121 D1127 10.1093/nar/gkx1076 29140520
    [Google Scholar]
  47. Stelzer G. Rosen N. Plaschkes I. Zimmerman S. Twik M. Fishilevich S. Stein T.I. Nudel R. Lieder I. Mazor Y. Kaplan S. Dahary D. Warshawsky D. Golan Y.G. Kohn A. Rappaport N. Safran M. Lancet D. The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformat. 2016 54 1 33 10.1002/cpbi.5 27322403
    [Google Scholar]
  48. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  49. Mering C. Huynen M. Jaeggi D. Schmidt S. Bork P. Snel B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 2003 31 1 258 261 10.1093/nar/gkg034 12519996
    [Google Scholar]
  50. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  51. Rad M. Ebrahimipour G. Bandehpour M. Akhavan O. Yarian F. SOEing PCR/Docking optimization of protein A-G/scFv-Fc-bioconjugated au nanoparticles for interaction with meningitidis bacterial antigen. Catalysts 2023 13 5 790 10.3390/catal13050790
    [Google Scholar]
  52. Sanner M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999 17 1 57 61 10660911
    [Google Scholar]
  53. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  54. Zhou Y. Wang T. Zhao X. Wang J. Wang Q. Plasma metabolites and gut microbiota are associated with T cell imbalance in BALB/c model of eosinophilic asthma. Front. Pharmacol. 2022 13 819747 10.3389/fphar.2022.819747 35662725
    [Google Scholar]
  55. Hou Y.C. Wu J.M. Wang M.Y. Wu M.H. Chen K.Y. Yeh S.L. Lin M.T. Modulatory effects of Astragalus polysaccharides on T‐cell polarization in mice with polymicrobial sepsis. Mediators Inflamm. 2015 2015 1 826319 10.1155/2015/826319 26693207
    [Google Scholar]
  56. Ren Y. Su X. Kong L. Li M. Zhao X. Yu N. Kang J. Therapeutic effects of histone deacetylase inhibitors in a murine asthma model. Inflamm. Res. 2016 65 12 995 1008 10.1007/s00011‑016‑0984‑4 27565183
    [Google Scholar]
  57. Claesson-Welsh L. Welsh M. VEGFA and tumour angiogenesis. J. Intern. Med. 2013 273 2 114 127 10.1111/joim.12019 23216836
    [Google Scholar]
  58. Lau M.T. So W.K. Leung P.C.K. Fibroblast growth factor 2 induces E-cadherin down-regulation via PI3K/Akt/mTOR and MAPK/ERK signaling in ovarian cancer cells. PLoS One 2013 8 3 e59083 10.1371/journal.pone.0059083 23554977
    [Google Scholar]
  59. Liu H. Mi S. Li Z. Hua F. Hu Z.W. Interleukin 17A inhibits autophagy through activation of PIK3CA to interrupt the GSK3B-mediated degradation of BCL2 in lung epithelial cells. Autophagy 2013 9 5 730 742 10.4161/auto.24039 23514933
    [Google Scholar]
  60. Dumas A. Bernard L. Poquet Y. Lugo-Villarino G. Neyrolles O. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell. Microbiol. 2018 20 12 e12966 10.1111/cmi.12966 30329198
    [Google Scholar]
  61. Busse W.W. Lemanske R.F. Jr Asthma. N. Engl. J. Med. 2001 344 5 350 362 10.1056/NEJM200102013440507 11172168
    [Google Scholar]
  62. Méndez-Enríquez E. Hallgren J. Mast cells and their progenitors in allergic asthma. Front. Immunol. 2019 10 821 10.3389/fimmu.2019.00821 31191511
    [Google Scholar]
  63. Guo H.W. Yun C.X. Hou G.H. Du J. Huang X. Lu Y. Keller E.T. Zhang J. Deng J.G. Mangiferin attenuates TH1/TH2 cytokine imbalance in an ovalbumin-induced asthmatic mouse model. PLoS One 2014 9 6 e100394 10.1371/journal.pone.0100394 24955743
    [Google Scholar]
  64. Sun L. Fu J. Lin S.H. Sun J.L. Xia L. Lin C.H. Liu L. Zhang C. Yang L. Xue P. Wang X. Huang S. Han X. Chen H.L. Huang M.S. Zhang X. Huang S.K. Zhou Y. Particulate matter of 2.5 μm or less in diameter disturbs the balance of TH17/regulatory T cells by targeting glutamate oxaloacetate transaminase 1 and hypoxia-inducible factor 1α in an asthma model. J. Allergy Clin. Immunol. 2020 145 1 402 414 10.1016/j.jaci.2019.10.008 31647966
    [Google Scholar]
  65. Lloyd C.M. Hawrylowicz C.M. Regulatory T cells in asthma. Immunity 2009 31 3 438 449 10.1016/j.immuni.2009.08.007 19766086
    [Google Scholar]
  66. Qian L. Mehrabi Nasab E. Athari S.M. Athari S.S. Mitochondria signaling pathways in allergic asthma. J. Investig. Med. 2022 70 4 863 882 10.1136/jim‑2021‑002098 35168999
    [Google Scholar]
  67. Ma B. Athari S.S. Mehrabi Nasab E. Zhao L. PI3K/AKT/mTOR and TLR4/MyD88/NF-κB signaling inhibitors attenuate pathological mechanisms of allergic asthma. Inflammation 2021 44 5 1895 1907 10.1007/s10753‑021‑01466‑3 33860870
    [Google Scholar]
  68. Jeong J.S. Kim J.S. Kim S.R. Lee Y.C. Defining bronchial asthma with phosphoinositide 3-kinase delta activation: Towards endotype-driven management. Int. J. Mol. Sci. 2019 20 14 3525 10.3390/ijms20143525 31323822
    [Google Scholar]
  69. Debeljak J. Korošec P. Lopert A. Fležar M. Košnik M. Rijavec M. Asthma treatment response to inhaled corticosteroids is associated with variants in VEGFA gene. Gene 2021 783 145573 10.1016/j.gene.2021.145573 33737125
    [Google Scholar]
  70. Detoraki A. Granata F. Staibano S. Rossi F.W. Marone G. Genovese A. Angiogenesis and lymphangiogenesis in bronchial asthma. Allergy 2010 65 8 946 958 10.1111/j.1398‑9995.2010.02372.x 20415716
    [Google Scholar]
  71. Yuksel H. Yilmaz O. Karaman M. Bagriyanik H.A. Firinci F. Kiray M. Turkeli A. Karaman O. Role of vascular endothelial growth factor antagonism on airway remodeling in asthma. Ann. Allergy Asthma Immunol. 2013 110 3 150 155 10.1016/j.anai.2012.12.015 23548522
    [Google Scholar]
  72. Laddha A.P. Kulkarni Y.A. VEGF and FGF-2: Promising targets for the treatment of respiratory disorders. Respir. Med. 2019 156 33 46 10.1016/j.rmed.2019.08.003 31421589
    [Google Scholar]
  73. Yadav U.C.S. Naura A.S. Aguilera-Aguirre L. Boldogh I. Boulares H.A. Calhoun W.J. Ramana K.V. Srivastava S.K. Aldose reductase inhibition prevents allergic airway remodeling through PI3K/AKT/GSK3β pathway in mice. PLoS One 2013 8 2 e57442 10.1371/journal.pone.0057442 23460857
    [Google Scholar]
  74. Wang W.C. Kuo C.Y. Tzang B.S. Chen H.M. Kao S.H. IL‐6 augmented motility of airway epithelial cell BEAS‐2B via Akt/GSK‐3β signaling pathway. J. Cell. Biochem. 2012 113 11 3567 3575 10.1002/jcb.24235 22740511
    [Google Scholar]
  75. Kao T.C. Shyu M.H. Yen G.C. Glycyrrhizic acid and 18beta-glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3beta signaling and glucocorticoid receptor activation. J. Agric. Food Chem. 2010 58 15 8623 8629 10.1021/jf101841r 20681651
    [Google Scholar]
  76. Li W. Hu X. Wang S. Jiao Z. Sun T. Liu T. Song K. Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation. Int. J. Biol. Macromol. 2020 145 985 997 10.1016/j.ijbiomac.2019.09.189 31669273
    [Google Scholar]
  77. Zhou Y. Zong Y. Liu Z. Zhao H. Zhao X. Wang J. Astragalus polysaccharides enhance the immune response to OVA antigen in BALB/c mice. BioMed Res. Int. 2021 2021 1 9976079 10.1155/2021/9976079 34258286
    [Google Scholar]
  78. He X. Liu L. Luo X. Zhu J. Yang H. Wang J. Chen L. Zhong L. Astragalus polysaccharide relieves inflammatory responses in guinea pigs with allergic rhinitis via ameliorating NF-kB-mediated Treg/Th17 imbalance. Am. J. Rhinol. Allergy 2022 36 5 638 648 10.1177/19458924221098847 35585694
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073368307250409055727
Loading
/content/journals/cchts/10.2174/0113862073368307250409055727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test