Skip to content
2000
image of Exploring the Active Ingredients and Core Targets of Erxia Decoction in the Treatment of Sleep Disorder by Integration of Network Pharmacology and Proteomics

Abstract

Aims

For clarifying the “multi genes and multi targets” characteristic of the treatment of Erxia Decoction (EXD), the aim of this study was to employ network pharmacology technology to perform cluster analysis on selected EXD targets.

Background

EXD, a famous Chinese herbal prescription, consisting of (PR) and (PS), was mainly used to treat sleep disorder (SLD).

Objective

Using network pharmacology combined with proteomics to find out the main active components and core targets of EXD in the treatment of SLD.

Method

By constructing the network of drug–component–target, the key protein targets of EXD for the treatment of SLD were screened. Then the interaction of the main active components of EXD and predicted candidate targets were verified. Then the proteomic analysis was used to screen the core targets in BV2 cells treated with EXD or the chemical ingredients, and the expression level was validated by Western blotting. Finally, molecular docking was used to further evaluate the mechanism of the action of the main ingredients and the core targets.

Result

The 24 components of EXD mainly participate in the SLD treatment process by acting on 15 important key genes, and the core signal pathways were identified in the process of the action of EXD in treating SLD. Four key ingredients and five core targets were revealed from the results of network pharmacological analysis combination with proteomics, and then the AKT1 protein as a key target was validated by PCR and Western blotting.

Conclusion

This study preliminarily revealed EXD, morin (MOR) and quercetin (QUE) mainly inhibited the AKT1 core targets for the treatment of SLD using the network pharmacological analysis, proteomics, Western blotting and molecular docking.

The results elucidated partly the molecular mechanism and provided clues and a basis for further research.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073348555250320035548
2025-04-29
2025-08-18
Loading full text...

Full text loading...

References

  1. Matenchuk B.A. Mandhane P.J. Kozyrskyj A.L. Sleep, circadian rhythm, and gut microbiota. Sleep Med. Rev. 2020 53 101340 10.1016/j.smrv.2020.101340 32668369
    [Google Scholar]
  2. de Oliveira D.L. Hirotsu C. Tufik S. Andersen M.L. The interfaces between vitamin D, sleep and pain. J. Endocrinol. 2017 234 1 R23 R36 10.1530/JOE‑16‑0514 28536294
    [Google Scholar]
  3. Garbarino S. Lanteri P. Bragazzi N.L. Magnavita N. Scoditti E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun. Biol. 2021 4 1 1304 10.1038/s42003‑021‑02825‑4 34795404
    [Google Scholar]
  4. Baranwal N. Yu P.K. Siegel N.S. Sleep physiology, pathophysiology, and sleep hygiene. Prog. Cardiovasc. Dis. 2023 77 59 69 10.1016/j.pcad.2023.02.005 36841492
    [Google Scholar]
  5. Cousins J.N. Fernández G. The impact of sleep deprivation on declarative memory. Prog. Brain Res. 2019 246 27 53 10.1016/bs.pbr.2019.01.007 31072562
    [Google Scholar]
  6. Palagini L. Hertenstein E. Riemann D. Nissen C. Sleep, insomnia and mental health. J. Sleep Res. 2022 31 4 e13628 10.1111/jsr.13628 35506356
    [Google Scholar]
  7. K Pavlova M. Latreille V. Sleep Disorders. Am. J. Med. 2019 132 3 292 299 10.1016/j.amjmed.2018.09.021 30292731
    [Google Scholar]
  8. Dubessy A.L. Arnulf I. Sleepiness in neurological disorders. Rev. Neurol. (Paris) 2023 179 7 755 766 10.1016/j.neurol.2023.07.005 37598089
    [Google Scholar]
  9. Cohen Z.L. Eigenberger P.M. Sharkey K.M. Conroy M.L. Wilkins K.M. Insomnia and other sleep disorders in older adults. Psychiatr. Clin. North Am. 2022 45 4 717 734 10.1016/j.psc.2022.07.002 36396275
    [Google Scholar]
  10. ICSD-3 TRP: International Classification of Sleep Disorders. 3rd Ed. USA American Academy of Sleep Medicine 2023 1 12
    [Google Scholar]
  11. Tüzün M. Kallweit U. Seidel S. Endrich O. Trelle S. Leone M.A. Bruni O. Dodel R. Konti M. Lolich M. Pupillo E. Ramankulov D. Vignatelli L. Meyer-Massetti C. Schmidt M. Bassetti C.L.A. The burden of sleep/wake disorders: Excessive daytime sleepiness and insomnia project. Methods Protoc. 2024 7 5 70 10.3390/mps7050070 39311371
    [Google Scholar]
  12. Prasartpornsirichoke J. Pityaratstian N. Poolvoralaks C. Sirinimnualkul N. Ormtavesub T. Hiranwattana N. Phonsit S. Rungnirundorn T. The prevalence and economic burden of treatment-resistant depression in Thailand. BMC Public Health 2023 23 1 1541 10.1186/s12889‑023‑16477‑y 37573321
    [Google Scholar]
  13. Åkerstedt T. Bellocco R. Widman L. Eriksson J. Ye W. Adami H.O. Trolle Lagerros Y. The association of short and long sleep with mortality in men and women. J. Sleep Res. 2024 33 2 e13931 10.1111/jsr.13931 37192602
    [Google Scholar]
  14. Zolfaghari S. Keil A. Pelletier A. Postuma R.B. Sleep disorders and mortality: A prospective study in the Canadian longitudinal study on aging. Sleep Med. 2024 114 128 136 10.1016/j.sleep.2023.12.023 38183803
    [Google Scholar]
  15. Wang Y. Fan H. Ren Z. Liu X. Niu X. Sleep disorder, Mediterranean diet, and all-cause and cause-specific mortality: A prospective cohort study. BMC Public Health 2023 23 1 904 10.1186/s12889‑023‑15870‑x 37202744
    [Google Scholar]
  16. Wang C. Liu Y. Chen X. Zhu J. Wu Q. Chen H. Liao H. Lin J. Wang Z. Zheng Z. Chen R. Meta-analysis of correlation between sleep duration and gender difference in adults with type 2 diabetes. Sleep Breath. 2023 27 6 2325 2332 10.1007/s11325‑023‑02841‑0 37160494
    [Google Scholar]
  17. Antza C. Kostopoulos G. Mostafa S. Nirantharakumar K. Tahrani A. The links between sleep duration, obesity and type 2 diabetes mellitus. J. Endocrinol. 2022 252 2 125 141 10.1530/JOE‑21‑0155 34779405
    [Google Scholar]
  18. Abelleira R. Zamarrón C. Riveiro V. Casal A. Toubes M.E. Rábade C. Ricoy J. Lama A. Rodríguez-Núñez N. Ferreiro L. Rodríguez-Ozores J. Valdés L. Relationship between obstructive sleep apnea and type 2 diabetes mellitus. Med. Clín. (Barc.) 2024 162 8 363 369 10.1016/j.medcli.2023.11.014 38220552
    [Google Scholar]
  19. Dai Y. Vgontzas A.N. Chen L. Zheng D. Chen B. Fernandez-Mendoza J. Karataraki M. Tang X. Li Y. A meta-analysis of the association between insomnia with objective short sleep duration and risk of hypertension. Sleep Med. Rev. 2024 75 101914 10.1016/j.smrv.2024.101914 38442466
    [Google Scholar]
  20. Han B. Chen W.Z. Li Y.C. Chen J. Zeng Z.Q. Sleep and hypertension. Sleep Breath. 2020 24 1 351 356 10.1007/s11325‑019‑01907‑2 31402441
    [Google Scholar]
  21. Li C. Shang S. Relationship between sleep and hypertension: Findings from the NHANES (2007-2014). Int. J. Environ. Res. Publ. Heal. 2021 18 15 7867 10.3390/ijerph18157867 34360157
    [Google Scholar]
  22. Chen Y. Kartsonaki C. Clarke R. Guo Y. Du H. Yu C. Yang L. Pei P. Stevens R. Burgess S. Hua Y. Chen J. Lv J. Li L. Chen Z. Chen J. Chen Z. Clarke R. Collins R. Guo Y. Li L. Lv J. Peto R. Walters R. Avery D. Boxall R. Bennett D. Chang Y. Chen Y. Chen Z. Clarke R. Du H. Gilbert S. Hacker A. Hill M. Holmes M. Iona A. Kartsonaki C. Kerosi R. Lancaster G. Lewington S. Lin K. McDonnell J. Millwood I. Nie Q. Radhakrishnan J. Ryder P. Sansome S. Schmidt D. Sherliker P. Sohoni R. Stevens B. Turnbull I. Walters R. Wang J. Wang L. Wright N. Yang L. Yang X. Guo Y. Han X. Hou C. Lv J. Pei P. Liu C. Yu C. Xia Q. Pang Z. Gao R. Li S. Wang S. Liu Y. Du R. Zang Y. Cheng L. Tian X. Zhang H. Zhai Y. Ning F. Sun X. Li F. Lv S. Wang J. Hou W. Zou M. Jiang G. Zhou X. Yang L. He H. Yu B. Li Y. Xu Q. Kang Q. Guo Z. Wang D. Hu X. Chen J. Fu Y. Fu Z. Wang X. Weng M. Guo Z. Wu S. Li Y. Li H. Fu Z. Wu M. Zhou Y. Zhou J. Tao R. Yang J. Su J. Liu F. Zhang J. Hu Y. Lu Y. Ma L. Tang A. Zhang S. Jin J. Liu J. Tang Z. Chen N. Huang Y. Li M. Meng J. Pan R. Jiang Q. Lan J. Liu Y. Wei L. Zhou L. Wang N.C.P. Meng F. Qin Y. Wang S. Wu X. Zhang N. Chen X. Zhou W. Luo G. Li J. Chen X. Zhong X. Liu J. Sun Q. Ge P. Ren X. Dong C. Zhang H. Mao E. Wang X. Wang T. zhang X. Zhang D. Zhou G. Feng S. Chang L. Fan L. Gao Y. He T. Sun H. He P. Hu C. Zhang X. Wu H. Yu M. Hu R. Wang H. Qian Y. Wang C. Xie K. Chen L. Zhang Y. Pan D. Gu Q. Huang Y. Chen B. Yin L. Liu H. Fu Z. Xu Q. Xu X. Zhang H. Long H. Li X. Zhang L. Qiu Z. Sleep duration and risk of stroke and coronary heart disease: A 9-year community-based prospective study of 0.5 million Chinese adults. BMC Neurol. 2023 23 1 327 10.1186/s12883‑023‑03367‑4 37710209
    [Google Scholar]
  23. Gan T.M. Yang Y.J. Mo G.L. Wang S.R. Li S.H. Li J.Y. Sleep disorders are closely associated with coronary heart disease in US adults (≥20 years): A cross-sectional study. Medicine (Baltimore) 2024 103 37 e39698 10.1097/MD.0000000000039698 39287284
    [Google Scholar]
  24. Dey S. Sun E. Frishman W.H. Aronow W.S. Sleep disorders and coronary artery disease. Cardiol. Rev. 2023 31 4 219 224 10.1097/CRD.0000000000000478 36301202
    [Google Scholar]
  25. Addo P.N.O. Mundagowa P.T. Zhao L. Kanyangarara M. Brown M.J. Liu J. Associations between sleep duration, sleep disturbance and cardiovascular disease biomarkers among adults in the United States. BMC Public Health 2024 24 1 947 10.1186/s12889‑024‑18381‑5 38566084
    [Google Scholar]
  26. Tian X. Xia X. Zhang Y. Xu Q. Luo Y. Wang A. Temporary relationship between sleep duration and depression and its impact on future risk of cardiovascular disease. J. Affect. Disord. 2024 350 559 564 10.1016/j.jad.2024.01.185 38266925
    [Google Scholar]
  27. Miller M.A. Howarth N.E. Sleep and cardiovascular disease. Emerg. Top. Life Sci. 2023 7 5 457 466 10.1042/ETLS20230111 38084859
    [Google Scholar]
  28. Madrid-Valero J.J. Barclay N.L. Rowe R. Perach R. Buysse D.J. Ordoñana J.R. Eley T.C. Gregory A.M. Association between symptoms of sleep apnea and problem behaviors in young adult twins and siblings. Psychol. Med. 2021 51 7 1175 1182 10.1017/S0033291719004070 32026794
    [Google Scholar]
  29. Johnson K.P. Zarrinnegar P. Autism spectrum disorder and sleep. Child Adolesc. Psychiatr. Clin. N. Am. 2021 30 1 195 208 10.1016/j.chc.2020.08.012 33223062
    [Google Scholar]
  30. Pearson O. Uglik-Marucha N. Miskowiak K.W. Cairney S.A. Rosenzweig I. Young A.H. Stokes P.R.A. The relationship between sleep disturbance and cognitive impairment in mood disorders: A systematic review. J. Affect. Disord. 2023 327 207 216 10.1016/j.jad.2023.01.114 36739007
    [Google Scholar]
  31. Maggi G. Trojano L. Barone P. Santangelo G. Sleep disorders and cognitive dysfunctions in Parkinson’s disease: A meta-analytic study. Neuropsychol. Rev. 2021 31 4 643 682 10.1007/s11065‑020‑09473‑1 33779875
    [Google Scholar]
  32. Cooper R. Di Biase M.A. Bei B. Quach J. Cropley V. Associations of changes in sleep and emotional and behavioral problems from late childhood to early adolescence. JAMA Psychiatry 2023 80 6 585 596 10.1001/jamapsychiatry.2023.0379 37017952
    [Google Scholar]
  33. Tedjasukmana R. Sleep disturbances linked to genetic disorders. Sleep Med. Clin. 2022 17 1 77 86 10.1016/j.jsmc.2021.10.005 35216763
    [Google Scholar]
  34. Parkes J.D. Lock C.B. Genetic factors in sleep disorders. J. Neuro. Neurosur. Psychia. 1989 52 101 10.1136/jnnp.52.Suppl.101
    [Google Scholar]
  35. Li Z.Y. Liu C.G. Lan Q.X. Huang Z.M. Li P.Q. Sun Z. Cao Y. Application of medicinal pair “banxia (Pinelliae Rhizoma)-xiakucao (Prunellae Spica)” in treatment of malignant tumor based on image thinking. J. Shando. Univ. Tradit. Chin. Med. 2023 47 3 266 269 10.16294/j.cnki.1007‑659x.2023.03.002
    [Google Scholar]
  36. Chen C.J. Liu X. Chiou J.S. Hang L.W. Li T.M. Tsai F.J. Ko C.H. Lin T.H. Liao C.C. Huang S.M. Liang W.M. Lin Y.J. Effects of Chinese herbal medicines on dementia risk in patients with sleep disorders in Taiwan. J. Ethnopharmacol. 2021 264 113267 10.1016/j.jep.2020.113267 32822822
    [Google Scholar]
  37. Singh A. Zhao K. Treatment of insomnia with traditional chinese herbal medicine. Int. Rev. Neurobiol. 2017 135 97 115 10.1016/bs.irn.2017.02.006 28807167
    [Google Scholar]
  38. Su Q. Zou D. Gai N. Li H. Kuang Z. Ni X. Traditional Chinese Medicine for Post-stroke sleep disorders: The evidence mapping of clinical studies. Front. Psychiatry 2022 13 865630 10.3389/fpsyt.2022.865630 35782438
    [Google Scholar]
  39. Zhang W. Tian W. Wang Y. Jin X. Guo H. Wang Y. Tang Y. Yao X. Explore the mechanism and substance basis of Mahuang FuziXixin decoction for the treatment of lung cancer based on network pharmacology and molecular docking. Comput. Biol. Med. 2022 151 Pt A 106293 10.1016/j.compbiomed.2022.106293 36399857
    [Google Scholar]
  40. Liu Y. Liang Y. Su Y. Hu J. Sun J. Zheng M. Huang Z. Exploring the potential mechanisms of Yi-Yi-Fu-Zi-Bai-Jiang-San therapy on the immune-inflamed phenotype of colorectal cancer via combined network pharmacology and bioinformatics analyses. Comput. Biol. Med. 2023 166 107432 10.1016/j.compbiomed.2023.107432 37729701
    [Google Scholar]
  41. Yan Y. Li J. Zhang Y. Wang H. Qin X. Zhai K. Du C. Screening the effective components of Suanzaoren decoction on the treatment of chronic restraint stress induced anxiety-like mice by integrated chinmedomics and network pharmacology. Phytomedicine 2023 115 154853 10.1016/j.phymed.2023.154853 37156059
    [Google Scholar]
  42. Shang L. Wang Y. Li J. Zhou F. Xiao K. Liu Y. Zhang M. Wang S. Yang S. Mechanism of Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. Phytomedicine. 2023 115 154853 10.1016/j.jep.2022.115876 37156059
    [Google Scholar]
  43. Duan Z. Wang Y. Lu Z. Tian L. Xia Z.Q. Wang K. Chen T. Wang R. Feng Z. Shi G. Xu X. Bu F. Ding Y. Jiang F. Zhou J. Wang Q. Chen Y. Wumei Wan attenuates angiogenesis and inflammation by modulating RAGE signaling pathway in IBD: Network pharmacology analysis and experimental evidence. Phytomedicine 2023 111 154658 10.1016/j.phymed.2023.154658 36706698
    [Google Scholar]
  44. Wang R. Yang T. Feng Q. Jiang Y. Yuan X. Zhao L. Liu N. Liu Z. Zhang Y. Wang L. Cheng G. Yao J. Sun C. Zhang G. Gu Q. Integration of network pharmacology and proteomics to elucidate the mechanism and targets of traditional Chinese medicine Biyuan Tongqiao granule against allergic rhinitis in an ovalbumin-induced mice model. J. Ethnopharmacol. 2024 318 Pt A 116816 10.1016/j.jep.2023.116816 37414198
    [Google Scholar]
  45. Zhang Z.Y. Zhang X. Molecular mechanism of hypertension treatment by couplet medicines of rhizoma pinelliae and spica pruneilae based on network pharmacology and molecular docking. J. Emerg. Tradit. Chin. Med. 2021 30 2 222 226 10.3969/j.issn.1004‑745X.2021.02.009
    [Google Scholar]
  46. Chen C.Y. Ho L.T. Yang F.Y. Juan C.C. Au L.C. Prunellae spica extract contains antagonists for human endothelin receptors. Am. J. Chin. Med. 2013 41 1 85 98 10.1142/S0192415X13500079 23336509
    [Google Scholar]
  47. Liu Y.Z. Wang X.L. Han W.J. Li L.X. Wu R.P. Wang Y.X. Zhu M.J. Analysis of prescription rules for hyperlipidemia comorbid with hypertension based on latent structure model and association rules. Zhongguo Zhongyao Zazhi 2024 49 18 5045 5054 10.19540/j.cnki.cjcmm.20240604.501 39701687
    [Google Scholar]
  48. Liu D. Zhang Y. Chen X.L. Liu A.H. Xu J.Y. Zhang Y. Pharmacological study on antidepressant effect of compound mixture of pinellia tuber and prunella spike. Med. J. Chin. Peop. Arm. Pol. For. 2009 20 1 9 11 10.14010/j.cnki.wjyx.2009.01.004
    [Google Scholar]
  49. Yi L.T. Zhang L. Ding A.W. Xu Q. Zhu Q. Kong L.D. Orthogonal array design for antidepressant compatibility of polysaccharides from Banxia-Houpu decoction, a traditional Chinese herb prescription in the mouse models of depression. Arch. Pharm. Res. 2009 32 10 1417 1423 10.1007/s12272‑009‑2011‑6 19898805
    [Google Scholar]
  50. Kim A. Lee S.Y. Seo C.S. Chung S.K. Prunellae spica extract suppresses teratoma formation of pluripotent stem cells through p53-mediated apoptosis. Nutrients 2020 12 3 721 10.3390/nu12030721 32182802
    [Google Scholar]
  51. Meng T. Liu J. Chang H. Qie R. Reverse predictive analysis of Rhizoma Pinelliae and Rhizoma Coptidis on differential miRNA target genes in lung adenocarcinoma. Medicine (Baltimore) 2023 102 7 e32999 10.1097/MD.0000000000032999 36800601
    [Google Scholar]
  52. Lei Y. Yuan H. Gai L. Wu X. Luo Z. Uncovering active ingredients and mechanisms of Spica Prunellae in the treatment of colon adenocarcinoma: A study based on network pharmacology and bioinformatics. Comb. Chem. High Throu. Screen. 2021 24 2 306 318 10.2174/1386207323999200730210536 32748741
    [Google Scholar]
  53. Lin S. Nie B. Song K. Ye R. Yuan Z. Pinelliae Rhizoma Praeparatum Cum Alumine extract: Sedative and hypnotic effects in mice and component compounds. BioMed Res. Int. 2019 2019 1 9 10.1155/2019/6198067 31183370
    [Google Scholar]
  54. Wu X. Zhao J. Zhang M. Li F. Zhao T. Yang L. Sedative, hypnotic and anticonvulsant activities of the ethanol fraction from Rhizoma Pinelliae Praeparatum. J. Ethnopharmacol. 2011 135 2 325 329 10.1016/j.jep.2011.03.016 21402138
    [Google Scholar]
  55. Lin S. Chen H. Nie B. Jiang C. Yang H. Wang Q. Yuan Z. Raw Pinelliae Rhizoma: Examination of sedative and hypnotic effects in mice and chemical analysis. Sle. Brea. 2023 27 3 1143 1153 10.1007/s11325‑022‑02714‑y 36166133
    [Google Scholar]
  56. Ma K. Liu F. Shou Y.K. Zhou S.Q. Zhou C.J. Wang Q. Zeng C.C. Liu Z.Y. Analysis on academic characteristics and medication rules of traditional Chinese medical master Liu Zu-yi for treating insomnia. Zhongguo Zhongyao Zazhi 2019 44 12 2607 2615 10.19540/j.cnki.cjcmm.20190225.001 31359731
    [Google Scholar]
  57. Ma Y.M. Zhang Y. Liang Q. Chai Z. Zhou R. Study on image thinking of insomnia treated by pinellia and Prunella vulgaris. Liao. J. Tradi. Chin. Med. 2018 45 3 503 504 10.13192/j.issn.1000‑1719.2018.03.015
    [Google Scholar]
  58. Zhao J.L. Zhao T. Zhang M. Yang L.Q. Wu X.Y. Bai S.Q. Feng W.W. Li P.X. Study on image thinking of insomnia treated by pinellia and Prunella vulgaris. Anhui Nongye Kexue 2011 39 35 21627 21628 10.13989/j.cnki.0517‑6611.2011.35.087
    [Google Scholar]
  59. Zhao J.L. Wu X.Y. Yang L.Q. Li Y.J. Wang W.W. Zou Y.M. Study on the sedative and hypnotic effects of Spica prunellae. Lishiz. Med. Mater. Medica. Res. 2009 20 2 443 444 10.3969/j.issn.1008‑0805.2009.02.100
    [Google Scholar]
  60. Ma C. Li B. Silverman D. Ding X. Li A. Xiao C. Huang G. Worden K. Muroy S. Chen W. Xu Z. Tso C.F. Huang Y. Zhang Y. Luo Q. Saijo K. Dan Y. Microglia regulate sleep through calcium-dependent modulation of norepinephrine transmission. Nat. Neurosci. 2024 27 2 249 258 10.1038/s41593‑023‑01548‑5 38238430
    [Google Scholar]
  61. Li T. Gao Y. He M. Gui Z. Zhao B. Cao Y. Chen T. Zhu J. Wang J. Zhong Q. Zhang Z. P2X7 receptor-activated microglia in cortex is critical for sleep disorder under neuropathic pain. Front. Neurosci. 2023 17 1095718 10.3389/fnins.2023.1095718 36816134
    [Google Scholar]
  62. Liu X. Ma Y. Ouyang R. Zeng Z. Zhan Z. Lu H. Cui Y. Dai Z. Luo L. He C. Li H. Zong D. Chen Y. The relationship between inflammation and neurocognitive dysfunction in obstructive sleep apnea syndrome. J. Neuroinflamm. 2020 17 1 229 10.1186/s12974‑020‑01905‑2 32738920
    [Google Scholar]
  63. Wang L. Wang P. Chen Y. Li C. Wang X. Zhang Y. Li S. Yang M. Utilizing network pharmacology and experimental validation to explore the potential molecular mechanisms of BanXia-YiYiRen in treating insomnia. Bioengineered 2022 13 2 3148 3170 10.1080/21655979.2022.2026862 35067174
    [Google Scholar]
  64. Tao Q. Zhang J. liang Q. Song S. Wang S. Yao X. Gao Q. Wang L. Puerarin alleviates sleep disorders in aged mice related to repairing intestinal mucosal barrier. Nat. Prod. Bioprospect. 2023 13 1 29 10.1007/s13659‑023‑00390‑3 37698689
    [Google Scholar]
  65. Kuthati Y. Goutham Davuluri V.N. Yang C.P. Chang H.C. Chang C.P. Wong C.S. Melatonin MT2 receptor agonist IIK-7 produces antinociception by modulation of ROS and suppression of spinal microglial activation in neuropathic pain rats. J. Pain Res. 2019 12 2473 2485 10.2147/JPR.S214671 31496789
    [Google Scholar]
  66. Stanojlović M. Guševac I. Grković I. Zlatković J. Mitrović N. Zarić M. Horvat A. Drakulić D. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus. Neuroscience 2015 311 308 321 10.1016/j.neuroscience.2015.10.040 26518459
    [Google Scholar]
  67. Liang Y. Huang R. Chen Y. Zhong J. Deng J. Wang Z. Wu Z. Li M. Wang H. Sun Y. Study on the sleep-improvement effects of Hemerocallis citrina Baroni in Drosophila melanogaster and targeted screening to identify its active components and mechanism. Foods 2021 10 4 883 10.3390/foods10040883 33920660
    [Google Scholar]
  68. Liu Y. Yu L. Zhang J. Xie D. Zhang X. Yu J. Network pharmacology-based and molecular docking-based analysis of suanzaoren decoction for the treatment of Parkinson’s disease with sleep disorder. BioMed Res. Int. 2021 2021 1 1752570 10.1155/2021/1752570 34660782
    [Google Scholar]
  69. Hou C.W. Chen Y.L. Chuang S.H. Wang J.S. Jeng K.C. Protective effect of a sesamin derivative, 3-bis (3-methoxybenzyl) butane-1, 4-diol on ischemic and hypoxic neuronal injury. J. Biomed. Sci. 2014 21 1 15 10.1186/1423‑0127‑21‑15 24548760
    [Google Scholar]
  70. Xiong Y. Liang W. Wang X. Zhu H. Yi P. Wei G. Liu H. Lin Y. Zhang L. Ying J. Hua F. S100A8 knockdown activates the PI3K/AKT signaling pathway to inhibit microglial autophagy and improve cognitive impairment mediated by chronic sleep deprivation. Int. Immunopharmacol. 2024 143 Pt 2 113375 10.1016/j.intimp.2024.113375 39418730
    [Google Scholar]
  71. Lin F. Zhang G. Yang X. Wang M. Wang R. Wan M. Wang J. Wu B. Yan T. Jia Y. A network pharmacology approach and experimental validation to investigate the anticancer mechanism and potential active targets of ethanol extract of Wei-Tong-Xin against colorectal cancer through induction of apoptosis via PI3K/AKT signaling pathway. J. Ethnopharmacol. 2023 303 115933 10.1016/j.jep.2022.115933 36403742
    [Google Scholar]
  72. Zheng K. Lv B. Wu L. Wang C. Xu H. Li X. Wu Z. Zhao Y. Zheng Z. Protecting effect of emodin in experimental autoimmune encephalomyelitis mice by inhibiting microglia activation and inflammation via Myd88/PI3K/Akt/NF-κB signalling pathway. Bioengineered 2022 13 4 9322 9344 10.1080/21655979.2022.2052671 35287559
    [Google Scholar]
  73. Picard K. Dolhan K. Watters J.J. Tremblay M.È. Microglia and sleep disorders. Adv. Neurobiol. 2024 37 357 377 10.1007/978‑3‑031‑55529‑9_20 39207702
    [Google Scholar]
  74. Wang X. Wang Z. Cao J. Dong Y. Chen Y. Gut microbiota-derived metabolites mediate the neuroprotective effect of melatonin in cognitive impairment induced by sleep deprivation. Microbiome 2023 11 1 17 10.1186/s40168‑022‑01452‑3 36721179
    [Google Scholar]
  75. Yang L. Zhou R. Tong Y. Chen P. Shen Y. Miao S. Liu X. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol. Dis. 2020 140 104814 10.1016/j.nbd.2020.104814 32087283
    [Google Scholar]
  76. Lin S.P. Zhu L. Shi H. Ye S. Li Q. Yin X. Xie Q. Xu Q. Wei J.X. Mei F. Zhu Y. Lin P.Y. Chen X.H. Puerarin prevents sepsis-associated encephalopathy by regulating the AKT1 pathway in microglia. Phytomedicine 2023 121 155119 10.1016/j.phymed.2023.155119 37801894
    [Google Scholar]
  77. de Sousa Abreu R. Penalva L.O. Marcotte E.M. Vogel C. Global signatures of protein and mRNA expression levels. Mol. Biosyst. 2009 5 12 1512 1526 10.1039/b908315d 20023718
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073348555250320035548
Loading
/content/journals/cchts/10.2174/0113862073348555250320035548
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test