Skip to content
2000
image of Eco-friendly Advancements through Fish Waste: A Review of Therapeutic and Industrial Innovations

Abstract

Fish waste, a significant by-product of the fisheries industry, presents both an environmental challenge and a valuable resource. This review delves into the innovative approaches to harness the potential of fish waste for various applications, particularly in the biomedical and industrial sectors. Therapeutically, fish waste yields valuable bioactive compounds such as omega-3 fatty acids, collagen peptides, and gelatine, which are known to benefit cardiovascular, skin, and immune health. Fish-derived collagen, for instance, is employed in wound healing, bone regeneration, and cosmetic applications due to its biocompatibility and lower infection risk compared to land-animal sources. Omega-3 fatty acids from fish waste exhibit anti-inflammatory, anticancer adding value to pharmaceutical industries. Industrially, fish waste can be transformed into eco-friendly materials like bioplastics, biofuels, and biofertilizers, contributing to environmental sustainability. Bioplastics synthesized from fish scales and biotextiles developed from collagen-modified polyester exemplify sustainable alternatives to synthetic materials. Additionally, fish-based biofertilizers enhance soil fertility, promoting greener agriculture. Innovations also include the production of fish-based leather, low-cost fish peptones for microbial culture, and fish oil-based biofuel with diesel-like properties, showcasing versatile applications. This review explores the untapped potential of fish waste, emphasizing its underutilized yet high-value therapeutic and industrial applications. Unlike existing studies, it focuses on lesser-explored areas such as fish-derived biofertilizers for precision agriculture and fish-based bioplastics for sustainable packaging. These applications can significantly reduce pollution, promote non-toxic alternatives, and contribute to sustainable industries. By leveraging fish waste, this review aims to address environmental challenges, support global health initiatives, and highlight innovative solutions for a circular economy.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073372954250408181058
2025-04-24
2025-10-14
Loading full text...

Full text loading...

References

  1. Russ W. Meyer-Pittroff R. Utilizing waste products from the food production and processing industries. Crit. Rev. Food Sci. Nutr. 2004 44 1 57 62 10.1080/10408690490263783 15077881
    [Google Scholar]
  2. “FAO Report: Global fisheries and aquaculture production reaches a new record high.” Available from: https://www.fao.org/newsroom/detail/fao-report-global-fisheries-and-aquaculture-production-reaches-a-new-record-high/en [Accessed: Oct. 28, 2024].
  3. Jasrotia R. Langer S. Dhar M. Fish Waste and By-Product Utilization: A Circular Economy. Fish Waste to Valuable Products. Cham Springer 2024 461 477 10.1007/978‑981‑99‑8593‑7_22
    [Google Scholar]
  4. “Fish Oil Market Size to Expand at US$4.24 billion by 2033.” Available from: https://straitsresearch.com/report/fish-oil-market [Accessed: Oct. 26, 2024].
  5. “Collagen Market Size, Demand, Forecast to 2030.” Available from: https://straitsresearch.com/report/collagen-market [Accessed: Oct. 28, 2024].
  6. “Global Food Grade Gelatin Market Size, Share, Forecast to 2030.” Available from: https://straitsresearch.com/report/food-grade-gelatin-market [Accessed: Oct. 28, 2024].
  7. Maqsood S. Naseer M.N. Benjakul S. Zaidi A.A. Fish Waste to Valuable Products. Cham Springer 2024 10.1007/978‑981‑99‑8593‑7
    [Google Scholar]
  8. Hosomi R. Yoshida M. Fukunaga K. Seafood consumption and components for health. Glob. J. Health Sci. 2012 4 3 72 86 10.5539/gjhs.v4n3p72 22980234
    [Google Scholar]
  9. Mohanty B.P. Ganguly S. Mahanty A. Sankar T.V. Anandan R. Chakraborty K. Paul B.N. Sarma D. Dayal S.J. Venkateshwarlu G. Mathew S. Asha K.K. Karunakaran D. Mitra T. Chanda S. Shahi N. Das P. Das P. Akhtar M.S. Vijayagopal P. Sridhar N. DHA and EPA content and fatty acid profile of 39 food fishes from India. BioMed Res. Int. 2016 2016 1 1 14 10.1155/2016/4027437 27579313
    [Google Scholar]
  10. Ikoma T. Kobayashi H. Tanaka J. Walsh D. Mann S. Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. Int. J. Biol. Macromol. 2003 32 3-5 199 204 10.1016/S0141‑8130(03)00054‑0 12957317
    [Google Scholar]
  11. Ogawa M. Portier R.J. Moody M.W. Bell J. Schexnayder M.A. Losso J.N. Biochemical properties of bone and scale collagens isolated from the subtropical fish black drum (Pogonia cromis) and sheepshead seabream (Archosargus probatocephalus). Food Chem. 2004 88 4 495 501 10.1016/j.foodchem.2004.02.006
    [Google Scholar]
  12. Huda N. Seow E.K. Normawati M.N. Aisyah N.M.N. Fazilah A. Easa A.M. Effect of duck feet collagen addition on physicochemical properties of surimi. Int. Food Res. J. 2013 20 2 537 544
    [Google Scholar]
  13. Parenteau-Bareil R. Gauvin R. Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials 2010 3 3 1863 1887 10.3390/ma3031863
    [Google Scholar]
  14. Żelechowska E. Sadowska M. Turk M. Isolation and some properties of collagen from the backbone of Baltic cod (Gadus morhua). Food Hydrocoll. 2010 24 4 325 329 10.1016/j.foodhyd.2009.10.010
    [Google Scholar]
  15. Lin Z. Solomon K.L. Zhang X. Pavlos N.J. Abel T. Willers C. Dai K. Xu J. Zheng Q. Zheng M. In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int. J. Biol. Sci. 2011 7 7 968 977 10.7150/ijbs.7.968 21850206
    [Google Scholar]
  16. Zhang M. Liu W. Li G. Isolation and characterisation of collagens from the skin of largefin longbarbel catfish (Mystus macropterus). Food Chem. 2009 115 3 826 831 10.1016/j.foodchem.2009.01.006
    [Google Scholar]
  17. Hou N.T. Chen B.H. Extraction, purification and characterization of collagen peptide prepared from skin hydrolysate of sturgeon fish. Food Qual. Saf. 2023 7 fyad033 10.1093/fqsafe/fyad033
    [Google Scholar]
  18. Ahmed R. Haq M. Chun B.S. Characterization of marine derived collagen extracted from the by-products of bigeye tuna (Thunnus obesus). Int. J. Biol. Macromol. 2019 135 668 676 10.1016/j.ijbiomac.2019.05.213 31154039
    [Google Scholar]
  19. Blanco M. Vázquez J.A. Pérez-Martín R.I. Sotelo G.C. Collagen extraction optimization from the skin of the small-spotted catshark (S. canicula) by response surface methodology. Mar. Drugs 2019 17 1 40 10.3390/md17010040 30634550
    [Google Scholar]
  20. Gaikwad S. Kim M.J. Fish by-product collagen extraction using different methods and their application. Mar. Drugs 2024 22 2 60 10.3390/md22020060 38393031
    [Google Scholar]
  21. Sousa R.O. Martins E. Carvalho D.N. Alves A.L. Oliveira C. Duarte A.R.C. Silva T.H. Reis R.L. Collagen from Atlantic cod Gadus morhua skins extracted using CO2 acidified water with potential application in healthcare. J. Polym. Res. 2020 27 3 73 10.1007/s10965‑020‑02048‑x
    [Google Scholar]
  22. Batista M.P. Fernández N. Gaspar F.B. Bronze M.R. Duarte A.R.C. Extraction of biocompatible collagen from blue shark skins through the conventional extraction process intensification using natural deep eutectic solvents. Front Chem. 2022 10 937036 10.3389/fchem.2022.937036 35783202
    [Google Scholar]
  23. Kim H.K. Kim Y.H. Park H.J. Lee N.H. Application of ultrasonic treatment to extraction of collagen from the skins of sea bass Lateolabrax japonicus. Fish. Sci. 2013 79 5 849 856 10.1007/s12562‑013‑0648‑z
    [Google Scholar]
  24. Vallejos N. González G. Troncoso E. Zúñiga R.N. Acid and enzyme-aided collagen extraction from the byssus of Chilean mussels Mytilus Chilensis: Effect of process parameters on extraction performance. Food Biophys. 2014 9 4 322 331 10.1007/s11483‑014‑9339‑2
    [Google Scholar]
  25. Seo J.K. Lee M.J. Go H.J. Kim Y.J. Park N.G. Antimicrobial function of the GAPDH-related antimicrobial peptide in the skin of skipjack tuna, Katsuwonus pelamis. Fish Shellfish Immunol. 2014 36 2 571 581 10.1016/j.fsi.2014.01.003 24412436
    [Google Scholar]
  26. Coppola D. Lauritano C. Esposito P.F. Riccio G. Rizzo C. Pascale D.D. Fish waste: From problem to valuable resource. Mar. Drugs 2021 19 2 116 10.3390/md19020116 33669858
    [Google Scholar]
  27. Cashman-Kadri S. Lagüe P. Fliss I. Beaulieu L. Determination of the relationships between the chemical structure and antimicrobial activity of a GAPDH-related fish antimicrobial peptide and analogs thereof. Antibiotics 2022 11 3 297 10.3390/antibiotics11030297 35326761
    [Google Scholar]
  28. Su Y. Isolation and identification of pelteobagrin, a novel antimicrobial peptide from the skin mucus of yellow catfish Pelteobagrus fulvidraco. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011 158 2 149 154 10.1016/j.cbpb.2010.11.002 21073979
    [Google Scholar]
  29. Seo J.K. Lee M.J. Go H.J. Park T.H. Park N.G. Purification and characterization of YFGAP, a GAPDH-related novel antimicrobial peptide, from the skin of yellowfin tuna, Thunnus albacares. Fish Shellfish Immunol. 2012 33 4 743 752 10.1016/j.fsi.2012.06.023 22771964
    [Google Scholar]
  30. Broekman D.C. Zenz A. Gudmundsdottir B.K. Lohner K. Maier V.H. Gudmundsson G.H. Functional characterization of codCath, the mature cathelicidin antimicrobial peptide from Atlantic cod Gadus morhua. Peptides 2011 32 10 2044 2051 10.1016/j.peptides.2011.09.012 21945422
    [Google Scholar]
  31. Ramanathan B. Davis E.G. Ross C.R. Blecha F. Cathelicidins: Microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect. 2002 4 3 361 372 10.1016/S1286‑4579(02)01549‑6 11909747
    [Google Scholar]
  32. Li H. Zhang F. Guo H. Zhu Y. Yuan J. Yang G. An L. Molecular characterization of hepcidin gene in common carp Cyprinus carpio L. and its expression pattern responding to bacterial challenge. Fish Shellf. Immunol. 2013 35 3 1030 1038 10.1016/j.fsi.2013.07.001 23851290
    [Google Scholar]
  33. Jiang X. Liu Z. Lin A. Xiang L. Shao J. Coordination of bactericidal and iron regulatory functions of hepcidin in innate antimicrobial immunity in a zebrafish model. Sci. Rep. 2017 7 1 4265 10.1038/s41598‑017‑04069‑x 28655927
    [Google Scholar]
  34. Richards R.C. O’Neil D.B. Thibault P. Ewart K.V. Histone H1: An antimicrobial protein of Atlantic salmon (Salmo salar). Biochem. Biophys. Res. Commun. 2001 284 3 549 555 10.1006/bbrc.2001.5020 11396934
    [Google Scholar]
  35. Muñoz-Camargo C. Cruz J.C. From inside to outside: Exploring extracellular antimicrobial histone-derived peptides as multi-talented molecules. J. Antibiot. 2024 77 9 553 568 10.1038/s41429‑024‑00744‑0 38871806
    [Google Scholar]
  36. Zhang Y. Duan X. Zhuang Y. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides 2012 38 1 13 21 10.1016/j.peptides.2012.08.014 22955032
    [Google Scholar]
  37. Ma Y. Zhang D. Liu M. Li Y. Lv R. Li X. Wang Q. Ren D. Wu L. Zhou H. Identification of antioxidant peptides derived from tilapia (Oreochromis niloticus) skin and their mechanism of action by molecular docking. Foods 2022 11 17 2576 10.3390/foods11172576 36076761
    [Google Scholar]
  38. Guo L. Harnedy P.A. Zhang L. Li B. Zhang Z. Hou H. Zhao X. FitzGerald R.J. In vitro assessment of the multifunctional bioactive potential of Alaska pollock skin collagen following simulated gastrointestinal digestion. J. Sci. Food Agric. 2015 95 7 1514 1520 10.1002/jsfa.6854 25082083
    [Google Scholar]
  39. Zhuang Y. Sun L. Zhang Y. Liu G. Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides on renovascular hypertension. Mar. Drugs 2012 10 2 417 426 10.3390/md10020417 22412809
    [Google Scholar]
  40. Kumar L.V. Shakila R.J. Jeyasekaran G. In vitro anti-cancer, anti-diabetic, anti-inflammation and wound healing properties of collagen peptides derived from unicorn leatherjacket (Aluterus Monoceros) at different hydrolysis. Turk. J. Fish. Aquat. Sci. 2019 19 7 551 560 10.4194/1303‑2712‑v19_7_02
    [Google Scholar]
  41. Wang J. Tian J. Ping H. Sun H.E. Zhang B. Guo Y. Peptides from bovine bone gelatin hydrolysate with anticancer activity against the human ovary carcinoma cell line and its possible mechanism. J. Funct. Foods 2024 114 106061 10.1016/j.jff.2024.106061
    [Google Scholar]
  42. Pei X. Yang R. Zhang Z. Gao L. Wang J. Xu Y. Zhao M. Han X. Liu Z. Li Y. Marine collagen peptide isolated from Chum Salmon (Oncorhynchus keta) skin facilitates learning and memory in aged C57BL/6J mice. Food Chem. 2010 118 2 333 340 10.1016/j.foodchem.2009.04.120
    [Google Scholar]
  43. Lee S.Y. Hur S.J. Mechanisms of neuroprotective effects of peptides derived from natural materials and their production and assessment. Compr. Rev. Food Sci. Food Saf. 2019 18 4 923 935 10.1111/1541‑4337.12451 33336993
    [Google Scholar]
  44. Oesser S. Schunk M. Proksch E. Positive effect of fish-derived Bioactive Collagen Peptides on skin health. Inter. J. Nutraceut. Funct. Foods Nov. Foods. 2020 1 9
    [Google Scholar]
  45. Li C. Fu Y. Dai H. Wang Q. Gao R. Zhang Y. Recent progress in preventive effect of collagen peptides on photoaging skin and action mechanism. Food Sci. Hum. Wellness 2022 11 2 218 229 10.1016/j.fshw.2021.11.003
    [Google Scholar]
  46. Zhou T. Wang N. Xue Y. Ding T. Liu X. Mo X. Sun J. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf. B Biointerf. 2016 143 415 422 10.1016/j.colsurfb.2016.03.052 27037778
    [Google Scholar]
  47. Ouyang Q.Q. Hu Z. Lin Z.P. Quan W.Y. Deng Y.F. Li S.D. Li P.W. Chen Y. Chitosan hydrogel in combination with marine peptides from tilapia for burns healing. Int. J. Biol. Macromol. 2018 112 1191 1198 10.1016/j.ijbiomac.2018.01.217 29408210
    [Google Scholar]
  48. Mbese Z. Alven S. Aderibigbe B.A. Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers (Basel) 2021 13 24 4368 10.3390/polym13244368 34960918
    [Google Scholar]
  49. Shalaby M. Agwa M. Saeed H. Khedr S.M. Morsy O. El-Demellawy M.A. Fish scale collagen preparation, characterization and its application in wound healing. J. Polym. Environ. 2020 28 1 166 178 10.1007/s10924‑019‑01594‑w
    [Google Scholar]
  50. Fleck C.A. Simman R. Modern collagen wound dressings: Function and purpose. J. Am. Col. Certif. Wound Spec. 2010 2 3 50 54 10.1016/j.jcws.2010.12.003 24527149
    [Google Scholar]
  51. Xiao L. Sun Y. Wang Z. Wang F. Sun J. Zhang H. Liu K. A new type of biological glue derived from fish swim bladder: Outstanding adhesion and surgical applications. Adv. Mater. Technol. 2021 6 7 2100303 10.1002/admt.202100303
    [Google Scholar]
  52. Lai Y. Gallo R.L. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009 30 3 131 141 10.1016/j.it.2008.12.003 19217824
    [Google Scholar]
  53. Lopez L.B. Kritz-Silverstein D. Barrett-Connor E. HIgh dietary and plasma levels of the omega-3 fatty acid docosahexaenoic acid are associated with decreased dementia risk: The rancho bernardo study. J. Nutr. Health Aging 2011 15 1 25 31 10.1007/s12603‑011‑0009‑5 21267518
    [Google Scholar]
  54. Finley J. W. Shahidi F. The chemistry, processing, and health benefits of highly unsaturated fatty acids: An overview. ACS Sympos. Ser. 2001 788 2 11 10.1021/bk‑2001‑0788.ch001
    [Google Scholar]
  55. Odenthal J. Heumen V.B.W.H. Roelofs H.M.J. Morsche T.R.H.M. Marian B. Nagengast F.M. Peters W.H.M. The influence of curcumin, quercetin, and eicosapentaenoic acid on the expression of phase II detoxification enzymes in the intestinal cell lines HT-29, Caco-2, HuTu 80, and LT97. Nutr. Cancer 2012 64 6 856 863 10.1080/01635581.2012.700994 22830632
    [Google Scholar]
  56. Sun H. Meng X. Han J. Zhang Z. Wang B. Bai X. Zhang X. Anti-cancer activity of DHA on gastric cancer—an in vitro and in vivo study. Tumour Biol. 2013 34 6 3791 3800 10.1007/s13277‑013‑0963‑0 23907579
    [Google Scholar]
  57. Zhang G. Panigrahy D. Mahakian L.M. Yang J. Liu J.Y. Lee S.K.S. Wettersten H.I. Ulu A. Hu X. Tam S. Hwang S.H. Ingham E.S. Kieran M.W. Weiss R.H. Ferrara K.W. Hammock B.D. Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. Proc. Natl. Acad. Sci. USA 2013 110 16 6530 6535 10.1073/pnas.1304321110 23553837
    [Google Scholar]
  58. Ling Wen Xia F. Supri S. Djamaludin H. Nurdiani R. Seng L.L. Yin W.K. Rovina K. Turning waste into value: Extraction and effective valorization strategies of seafood by-products. Waste Manag. Bull. 2024 2 3 84 100 10.1016/j.wmb.2024.06.008
    [Google Scholar]
  59. Alfio V.G. Manzo C. Micillo R. From fish waste to value: An overview of the sustainable recovery of omega-3 for food supplements. Molecules 2021 26 4 1002 10.3390/molecules26041002 33668684
    [Google Scholar]
  60. Adeoti I.A. Hawboldt K. A review of lipid extraction from fish processing by-product for use as a biofuel. Biom. Bioen. 2014 63 330 340 10.1016/j.biombioe.2014.02.011
    [Google Scholar]
  61. Jayasinghe P. Hawboldt K. A review of bio-oils from waste biomass: Focus on fish processing waste. Renew. Sustain. Energy Rev. 2012 16 1 798 821 10.1016/j.rser.2011.09.005
    [Google Scholar]
  62. Aursand M. Description of the processes in the value chain and risk assessment of decomposition substances and oxidation products in fish Oils. 2011 Available from: https://vkm.no/download/18.a665c1015c865cc85bab6ba/1501505618692/4be9bee090.pdf
  63. Norziah M. H. Nuraini J. Lee K. Y. Studies on the extraction and characterization of fish oil from wastes of seafood processing industry. Asian J. Food Agro Ind. 2009 2 959 973
    [Google Scholar]
  64. Luque de Castro M.D. Priego-Capote F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 2010 1217 16 2383 2389 10.1016/j.chroma.2009.11.027 19945707
    [Google Scholar]
  65. Thiex N.J. Anderson S. Gildemeister B. Crude fat, diethyl ether extraction, in feed, cereal grain, and forage (Randall/Soxtec/submersion method): Collaborative study. J. AOAC Int. 2003 86 5 888 898 10.1093/jaoac/86.5.888 14632388
    [Google Scholar]
  66. Moffat C.F. McGill A.S. Hardy R. Anderson R.S. The production of fish oils enriched in polyunsaturated fatty acid‐containing triglycerides. J. Am. Oil Chem. Soc. 1993 70 2 133 138 10.1007/BF02542615
    [Google Scholar]
  67. D’Eliseo D. Manzi L. Merendino N. Velotti F. Docosahexaenoic acid inhibits invasion of human RT112 urinary bladder and PT45 pancreatic carcinoma cells via down-modulation of granzyme B expression. J. Nutr. Biochem. 2012 23 5 452 457 10.1016/j.jnutbio.2011.01.010 21684140
    [Google Scholar]
  68. Hawkins R.A. Sangster K. Arends M. J. Apoptotic death of pancreatic cancer cells induced by polyunsaturated fatty acids varies with double bond number and involves an oxidative mechanism. J. Pathol. 1998 185 1 61 70 10.1002/(SICI)1096‑9896(199805)185:1<61::AID‑PATH49>3.0.CO;2‑8
    [Google Scholar]
  69. Lai P.B.S. Ross J.A. Fearon K.C.H. Anderson J.D. Carter D.C. Cell cycle arrest and induction of apoptosis in pancreatic cancer cells exposed to eicosapentaenoic acid in vitro. Br. J. Cancer 1996 74 9 1375 1383 10.1038/bjc.1996.552 8912532
    [Google Scholar]
  70. Benolken R.M. Anderson R.E. Wheeler T.G. Membrane fatty acids associated with the electrical response in visual excitation. Science 1979 182 4118 1253 1254 10.1126/science.182.4118.1253
    [Google Scholar]
  71. Swinkels D. Baes M. The essential role of docosahexaenoic acid and its derivatives for retinal integrity. Pharmacol. Ther. 2023 247 108440 10.1016/j.pharmthera.2023.108440 37201739
    [Google Scholar]
  72. Eslamloo K. Xue X. Hall J.R. Smith N.C. Caballero-Solares A. Parrish C.C. Taylor R.G. Rise M.L. Transcriptome profiling of antiviral immune and dietary fatty acid dependent responses of Atlantic salmon macrophage-like cells. BMC Genomics 2017 18 1 706 10.1186/s12864‑017‑4099‑2 28886690
    [Google Scholar]
  73. Suo X. Wang J. Wang D. Fan G. Zhu M. Fan B. Yang X. Li B. DHA and EPA inhibit porcine coronavirus replication by alleviating ER stress. J. Virol. 2023 97 11 e01209-23 10.1128/jvi.01209‑23 37843366
    [Google Scholar]
  74. Streppel M.T. Ocké M.C. Boshuizen H.C. Kok F.J. Kromhout D. Long-term fish consumption and n-3 fatty acid intake in relation to (sudden) coronary heart disease death: The Zutphen study. Eur. Heart J. 2008 29 16 2024 2030 10.1093/eurheartj/ehn294 18641046
    [Google Scholar]
  75. Oscarsson J. Hurt-Camejo E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: A review. Lipids Health Dis. 2017 16 1 149 10.1186/s12944‑017‑0541‑3 28797250
    [Google Scholar]
  76. Cole G.M. Frautschy S.A. DHA may prevent age-related dementia. J. Nutr. 2010 140 4 869 874 10.3945/jn.109.113910 20181786
    [Google Scholar]
  77. Mamalakis G. Tornaritis M. Kafatos A. Depression and adipose essential polyunsaturated fatty acids. Prostaglandins Leukot. Essent. Fatty Acids 2002 67 5 311 318 10.1054/plef.2002.0435 12445491
    [Google Scholar]
  78. Liao Y. Xie B. Zhang H. He Q. Guo L. Subramanieapillai M. Fan B. Lu C. McIntyre R.S. Efficacy of omega-3 PUFAs in depression: A meta-analysis. Transl. Psychiatry 2019 9 1 190 10.1038/s41398‑019‑0515‑5 31383846
    [Google Scholar]
  79. Judge M.P. Harel O. Lammi-Keefe C.J. A docosahexaenoic acid-functional food during pregnancy benefits infant visual acuity at four but not six months of age. Lipids 2007 42 2 117 122 10.1007/s11745‑006‑3007‑3 17393217
    [Google Scholar]
  80. Kuratko C. Barrett E. Nelson E. Salem N. Jr The relationship of docosahexaenoic acid (DHA) with learning and behavior in healthy children: A review. Nutrients 2013 5 7 2777 2810 10.3390/nu5072777 23877090
    [Google Scholar]
  81. Courville A.B. Harel O. Lammi-Keefe C.J. Consumption of a DHA-containing functional food during pregnancy is associated with lower infant ponderal index and cord plasma insulin concentration. Br. J. Nutr. 2011 106 2 208 212 10.1017/S0007114511000961 21521543
    [Google Scholar]
  82. Hull H.R. Gajewski B.J. Sullivan D.K. Carson S.E. Growth and adiposity in newborns study (GAINS): The influence of prenatal DHA supplementation protocol. Contemp. Clin. Trials 2023 132 107279 10.1016/j.cct.2023.107279 37406769
    [Google Scholar]
  83. Shingel K.I. Faure M.P. Azoulay L. Roberge C. Deckelbaum R.J. Solid emulsion gel as a vehicle for delivery of polyunsaturated fatty acids: Implications for tissue repair, dermal angiogenesis and wound healing. J. Tissue Eng. Regen. Med. 2008 2 7 383 393 10.1002/term.101 18642392
    [Google Scholar]
  84. Pacifico L. Bonci E. Martino D.M. Versacci P. Andreoli G. Silvestri L.M. Chiesa C. A double-blind, placebo-controlled randomized trial to evaluate the efficacy of docosahexaenoic acid supplementation on hepatic fat and associated cardiovascular risk factors in overweight children with nonalcoholic fatty liver disease. Nutr. Metab. Cardiovasc. Dis. 2015 25 8 734 741 10.1016/j.numecd.2015.04.003 26026214
    [Google Scholar]
  85. Hathaway D. III Pandav K. Patel M. Riva-Moscoso A. Singh B.M. Patel A. Min Z.C. Singh-Makkar S. Sana M.K. Sanchez-Dopazo R. Desir R. Fahem M.M.M. Manella S. Rodriguez I. Alvarez A. Abreu R. Omega 3 fatty acids and COVID-19: A comprehensive review. Infect. Chemother. 2020 52 4 478 495 10.3947/ic.2020.52.4.478 33377319
    [Google Scholar]
  86. Li M. Zheng C. Wu B. Ding K. Zhang S. Huang X. Lei Y. Wang Y. Glycidyl methacrylate-crosslinked fish swim bladder as a novel cardiovascular biomaterial with improved antithrombotic and anticalcification properties. J. Biomater. Appl. 2022 36 7 1188 1200 10.1177/08853282211054205 34719293
    [Google Scholar]
  87. Zhao X. Cai B. Chen H. Wan P. Chen D. Ye Z. Duan A. Chen X. Sun H. Pan J. Tuna trimmings (Thunnas albacares) hydrolysate alleviates immune stress and intestinal mucosal injury during chemotherapy on mice and identification of potentially active peptides. Curr. Res. Food Sci. 2023 7 100547 10.1016/j.crfs.2023.100547 37522134
    [Google Scholar]
  88. Parthsarathy V. McLaughlin C.M. Harnedy P.A. Allsopp P.J. Crowe W. McSorley E.M. FitzGerald R.J. O’Harte F.P.M. Boarfish ( Capros aper ) protein hydrolysate has potent insulinotropic and GLP ‐1 secretory activity in vitro and acute glucose lowering effects in mice. Int. J. Food Sci. Technol. 2019 54 1 271 281 10.1111/ijfs.13975
    [Google Scholar]
  89. Tilami K.S. Sampels S. Nutritional value of fish: Lipids, proteins, vitamins, and minerals. Rev. Fish. Sci. Aquacult. 2018 26 2 243 253 10.1080/23308249.2017.1399104
    [Google Scholar]
  90. Dowling J.E. Wald G. The biological function of vitamin A acid. Proc. Natl. Acad. Sci. USA 1960 46 5 587 608 10.1073/pnas.46.5.587 16590647
    [Google Scholar]
  91. Holick M.F. Diabetes and the vitamin D connection. Curr. Diab. Rep. 2008 8 5 393 398 10.1007/s11892‑008‑0068‑0 18778589
    [Google Scholar]
  92. Laird E. Ward M. McSorley E. Strain J.J. Wallace J. Vitamin D and bone health: Potential mechanisms. Nutrients 2010 2 7 693 724 10.3390/nu2070693 22254049
    [Google Scholar]
  93. Abdullah H.Z. Idris M.I. Chuan T.L. Dermawan S.K. Jaffri M.Z. Natural Hydroxyapatite from Black Tilapia Fish Bones and Scales for Biomedical Applications. Sustainable Material for Biomedical Engineering Application. Cham Springer 2023 107 124 10.1007/978‑981‑99‑2267‑3_6
    [Google Scholar]
  94. Iba Y. Yokoi K. Eitoku I. Goto M. Koizumi S. Sugihara F. Oyama H. Yoshimoto T. Oral administration of collagen hydrolysates improves glucose tolerance in normal mice through GLP-1-dependent and GLP-1-independent mechanisms. J. Med. Food 2016 19 9 836 843 10.1089/jmf.2016.3711 27540823
    [Google Scholar]
  95. Surya P. Arumugam S. Nithin A. Iswarya P. Eco-friendly preparation and characterization of bioplastic films from marine fish wastes. Environ. Sci. Pollut. Res. Int. 2021 30 12 34174 34187 10.21203/rs.3.rs‑982850/v1
    [Google Scholar]
  96. Noorjahan C. Synthesis of bio fertilizer using fish waste and its utilization-an eco-friendly approach. Webology 2021 18 3 1 6
    [Google Scholar]
  97. Kato S. Kunisawa K. Kojima T. Murakami S. Evaluation of ozone treated fish waste oil as a fuel for transportation. J. Chem. Eng. Jpn. 2004 37 7 863 870 10.1252/jcej.37.863
    [Google Scholar]
  98. Hou E.J. Huang C.S. Lee Y.C. Chu H.T. Upcycled aquaculture waste as textile ingredient for promoting circular economy. Sustainab. Mat. Tech. 2022 31 e00336 10.1016/j.susmat.2021.e00336
    [Google Scholar]
  99. Sasidharan A. Murthi M.K. Sabu S. Sunooj K.V. Valorisation of basa (Pangasianodon hypophthalmus) skin waste into quality leather using a non chrome treatment method. J. Aquat. Food Prod. Technol. 2020 29 10 1041 1053 10.1080/10498850.2020.1829767
    [Google Scholar]
  100. Vázquez J.A. Durán A. Nogueira M. Menduíña A. Antunes J. Freitas A.C. Gomes A.M. Production of marine probiotic bacteria in a cost-effective marine media based on peptones obtained from discarded fish by-products. Microorganisms 2020 8 8 1121 10.3390/microorganisms8081121 32722528
    [Google Scholar]
  101. Yusoff M.A. Mohammadi P. Ahmad F. Sanusi N.A. Hosseinzadeh-Bandbafha H. Vatanparast H. Aghbashlo M. Tabatabaei M. Valorization of seafood waste: A review of life cycle assessment studies in biorefinery applications. Sci. Total Environ. 2024 952 175810 10.1016/j.scitotenv.2024.175810 39197788
    [Google Scholar]
  102. Rigueto C.V.T. Oliveira D.R. Gomes K.S. Alessandretti I. Nazari M.T. Rosseto M. Krein D.D.C. Loss R.A. Dettmer A. From waste to value‐added products: A review of opportunities for fish waste valorization. Environ. Qual. Manage. 2023 33 1 203 221 10.1002/tqem.22040
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073372954250408181058
Loading
/content/journals/cchts/10.2174/0113862073372954250408181058
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: bioplastics ; Anti-cancer ; leather ; collagen ; waste utilization
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test