Skip to content
2000
image of Review of Nanomedicine Research Proposals Received at ICMR: Gaps in Research and Further Opportunities

Abstract

Introduction

Nanomedicine integrates nanotechnology with healthcare, offering targeted diagnostics, therapeutic solutions, and preventive applications. India, through agencies such as the Indian Council of Medical Research (ICMR), the Department of Biotechnology (DBT), and the Department of Science & Technology (DST), has prioritized nanomedicine to address public health challenges. Despite significant progress, gaps persist in clinical translation and interdisciplinary applications.

Objective

To analyze the scope, gaps, and opportunities in nanomedicine research in India, focusing on ICMR-funded projects.

Methods

Data on nanomedicine proposals submitted to ICMR (2018–2022) were reviewed using keyword-based searches from databases and survey responses from principal investigators. Metrics included funding trends, research objectives, and outcomes. Quantitative and qualitative analyses assessed scientific progress and translational potential.

Results

Over the past five years, the ICMR has funded over 250 projects, with a focus on cancer therapy, infectious diseases, and diagnostics. Achievements include nanoparticle-based drug delivery systems and diagnostics, with notable innovations like Albupax® and gold nanoparticle-based sensors. Research activity increased over the years, with a slight slowdown during the COVID-19 period. Funding was primarily allocated to states with established research infrastructures, underscoring the need for more equitable support nationwide.

Discussion

Nanomedicine research in India has made significant progress, primarily in cancer; however, limited research has been observed in non-cancer applications and long-term safety studies. Differences in funding across various regions and difficulties in turning ideas into marketable products were major problems. Integrating nanomedicine with genetic tools offers promise for more targeted treatments.

Conclusion

The ICMR's support has advanced nanomedicine research in India, particularly in the field of oncology. To strengthen India's position in the field, future efforts must address unmet needs, including non-cancer applications, clinical translation, and regulatory harmonization. Collaborative initiatives and equitable funding distribution can accelerate advancements and strengthen the implementation of nanomedicine research.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073375405250702114943
2025-07-17
2025-10-30
Loading full text...

Full text loading...

References

  1. Peng Q. Zeng Q. Wang F. Wu X. Zhang R. Shi G. Zhang M. Multi-engineered graphene extended-gate field-effect transistor for peroxynitrite sensing in Alzheimer’s disease. ACS Nano 2023 17 21 21984 21992 10.1021/acsnano.3c08499 37874899
    [Google Scholar]
  2. Akhavan O. Saadati M. Jannesari M. Graphene jet nanomotors in remote controllable self-propulsion swimmers in pure water. Nano Lett. 2016 16 9 5619 5630 10.1021/acs.nanolett.6b02175 27483134
    [Google Scholar]
  3. Wang C. Zhang S. Advantages of nanomedicine in cancer therapy: A review. ACS Appl. Nano Mater. 2023 6 24 22594 22610 10.1021/acsanm.3c04487
    [Google Scholar]
  4. Bhatia P. Vasaikar S. Wali A. A landscape of nanomedicine innovations in India. Nanotechnol. Rev. 2018 7 2 131 148 10.1515/ntrev‑2017‑0196
    [Google Scholar]
  5. Phogat N. Kohl M. Uddin I. Jahan A. Interaction of nanoparticles with biomolecules, proteins, enzymes, and its applications. Precision Medicine. Deigner H-P. Kohl M. Academic Press 2018 253 276 10.1016/B978‑0‑12‑805364‑5.00011‑1
    [Google Scholar]
  6. Patel B. Darji P. Fnu P.I.J. Nalla S. Khatri V. Parikh S. A comprehensive review and insight into the latest advancements in nanotechnology. Biosci. Biotechnol. Res. Asia 2024 21 3 985 1000 10.13005/bbra/3279
    [Google Scholar]
  7. Chenthamara D. Subramaniam S. Ramakrishnan S.G. Krishnaswamy S. Essa M.M. Lin F.H. Qoronfleh M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 2019 23 1 20 10.1186/s40824‑019‑0166‑x 31832232
    [Google Scholar]
  8. Singh R. Lillard J.W. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009 86 3 215 223 10.1016/j.yexmp.2008.12.004 19186176
    [Google Scholar]
  9. Ferreira A.L. Paris G.C. Azevedo A.D.A. Cortez E.A.C. Carvalho S.N. Mesenchymal stem cell secretome and nanotechnology: Combining therapeutic strategies. Biocell 2022 46 8 1807 1813 10.32604/biocell.2022.019363
    [Google Scholar]
  10. Hsu C.Y. Rheima A.M. Kadhim M.M. Ahmed N.N. Mohammed S.H. Abbas F.H. Abed Z.T. Mahdi Z.M. Abbas Z.S. Hachim S.K. Ali F.K. Mahmoud Z.H. Kianfar E. An overview of nanoparticles in drug delivery: Properties and applications. S. Afr. J. Chem. Eng. 2023 46 233 270 10.1016/j.sajce.2023.08.009
    [Google Scholar]
  11. Tenchov R. Hughes K.J. Ganesan M. Iyer K.A. Ralhan K. Lotti Diaz L.M. Bird R.E. Ivanov J.M. Zhou Q.A. Transforming medicine: Cutting-edge applications of nanoscale materials in drug delivery. ACS Nano 2025 19 4 4011 4038 10.1021/acsnano.4c09566 39823199
    [Google Scholar]
  12. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Rodriguez-Torres M.P. Acosta-Torres L.S. Diaz-Torres L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  13. Yusuf A. Almotairy A.R.Z. Henidi H. Alshehri O.Y. Aldughaim M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023 15 7 1596 10.3390/polym15071596 37050210
    [Google Scholar]
  14. Ochubiojo M. Chinwude I. Ibanga E. Ifianyi S. Nanotechnology in drug delivery. InTech 2012 10.5772/51384
    [Google Scholar]
  15. Malhotra B.D. Ali M.A. Nanomaterials in Biosensors. Nanomaterials for Biosensors. 2018 1 74 10.1016/B978‑0‑323‑44923‑6.00001‑7
    [Google Scholar]
  16. Sim S. Wong N. Nanotechnology and its use in imaging and drug delivery (Review). Biomed. Rep. 2021 14 5 42 10.3892/br.2021.1418 33728048
    [Google Scholar]
  17. Khan A.U. Khan M. Cho M.H. Khan M.M. Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure. Bioprocess Biosyst. Eng. 2020 43 8 1339 1357 10.1007/s00449‑020‑02330‑8 32193755
    [Google Scholar]
  18. Rizzello L. De Matteis V. Identification of SARS-CoV-2 by gold nanoparticles. Biocell 2022 46 11 2369 2380 10.32604/biocell.2022.021059
    [Google Scholar]
  19. Yu W. Liu R. Zhou Y. Gao H. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci. 2020 6 2 100 116 10.1021/acscentsci.9b01139 32123729
    [Google Scholar]
  20. Akhavan O. Ghaderi E. Rahighi R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 2012 6 4 2904 2916 10.1021/nn300261t 22385391
    [Google Scholar]
  21. Pelaz B. Alexiou C. Alvarez-Puebla R.A. Alves F. Andrews A.M. Ashraf S. Balogh L.P. Ballerini L. Bestetti A. Brendel C. Bosi S. Carril M. Chan W.C.W. Chen C. Chen X. Chen X. Cheng Z. Cui D. Du J. Dullin C. Escudero A. Feliu N. Gao M. George M. Gogotsi Y. Grünweller A. Gu Z. Halas N.J. Hampp N. Hartmann R.K. Hersam M.C. Hunziker P. Jian J. Jiang X. Jungebluth P. Kadhiresan P. Kataoka K. Khademhosseini A. Kopeček J. Kotov N.A. Krug H.F. Lee D.S. Lehr C.M. Leong K.W. Liang X.J. Ling Lim M. Liz-Marzán L.M. Ma X. Macchiarini P. Meng H. Möhwald H. Mulvaney P. Nel, A.E.; Nie, S.; Nordlander, P.; Okano, T.; Oliveira, J.; Park, T.H.; Penner, R.M.; Prato, M.; Puntes, V.; Rotello, V.M.; Samarakoon, A.; Schaak, R.E.; Shen, Y.; Sjöqvist, S.; Skirtach, A.G.; Soliman, M.G.; Stevens, M.M.; Sung, H.W.; Tang, B.Z.; Tietze, R.; Udugama, B.N.; VanEpps, J.S.; Weil, T.; Weiss, P.S.; Willner, I.; Wu, Y.; Yang, L.; Yue, Z.; Zhang, Q.; Zhang, Q.; Zhang, X.E.; Zhao, Y.; Zhou, X.; Parak, W.J. Diverse applications of nanomedicine. ACS Nano 2017 11 3 2313 2381 10.1021/acsnano.6b06040 28290206
    [Google Scholar]
  22. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  23. Pei Q. Jiang B. Hao D. Xie Z. Self-assembled nanoformulations of paclitaxel for enhanced cancer theranostics. Acta Pharm. Sin. B 2023 13 8 3252 3276 10.1016/j.apsb.2023.02.021 37655323
    [Google Scholar]
  24. Ma P. Mumper R.J. Paclitaxel nano-delivery systems: A comprehensive review. J. Nanomed. Nanotechnol. 2013 4 2 1000164 10.4172/2157‑7439.1000164 24163786
    [Google Scholar]
  25. Bhatia P. Chugh A. A multilevel governance framework for regulation of nanomedicine in India. Nanotechnol. Rev. 2017 6 4 373 382 10.1515/ntrev‑2016‑0083
    [Google Scholar]
  26. Ventola C.L. Progress in nanomedicine: Approved and investigational nanodrugs. P&T 2017 42 12 742 755 29234213
    [Google Scholar]
  27. Global Nanomedicine Market Report. 2024 Available from: https://www.alliedmarketresearch.com/nanomedicine-market
  28. Indian Council of Medical Research 2024 Available from: https://main.icmr.nic.in/
  29. Clinical Trials Registry India 2024 Available from: http://ctri.nic.in/Clinicaltrials/advancesearchmain.php
  30. Rodríguez F. Caruana P. De la Fuente N. Español P. Gámez M. Balart J. Llurba E. Rovira R. Ruiz R. Martín-Lorente C. Corchero J.L. Céspedes M.V. Nano-based approved pharmaceuticals for cancer treatment: Present and future challenges. Biomolecules 2022 12 6 784 10.3390/biom12060784 35740909
    [Google Scholar]
  31. Gandhi M. Amreen K. Emerging trends in nanomaterial-based biomedical aspects. Electrochem 2023 4 3 365 388 10.3390/electrochem4030024
    [Google Scholar]
  32. Thwala L.N. Ndlovu S.C. Mpofu K.T. Lugongolo M.Y. Mthunzi-Kufa P. Nanotechnology-based diagnostics for diseases prevalent in developing countries: Current advances in point-of-care tests. Nanomaterials 2023 13 7 1247 10.3390/nano13071247
    [Google Scholar]
  33. Takallu S. Aiyelabegan H.T. Zomorodi A.R. Alexandrovna K.V. Aflakian F. Asvar Z. Moradi F. Behbahani M.R. Mirzaei E. Sarhadi F. Vakili-Ghartavol R. Nanotechnology improves the detection of bacteria: Recent advances and future perspectives. Heliyon 2024 10 11 e32020 10.1016/j.heliyon.2024.e32020 38868076
    [Google Scholar]
  34. Ghorbian M. Ghobaei-Arani M. Babaei M.R. Ghorbian S. Nanotechnology and nanosensors in personalized healthcare: A comprehensive review. Sens. Biosensing Res. 2025 47 100740 10.1016/j.sbsr.2025.100740
    [Google Scholar]
  35. Singh L. Kruger H.G. Maguire G.E.M. Govender T. Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis. 2017 4 4 105 131 10.1177/2049936117713593 28748089
    [Google Scholar]
  36. Yao Y. Zhou Y. Liu L. Xu Y. Chen Q. Wang Y. Wu S. Deng Y. Zhang J. Shao A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020 7 193 10.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  37. Gao L. Meng F. Yang Z. Lafuente-Merchan M. Fernández L.M. Cao Y. Kusamori K. Nishikawa M. Itakura S. Chen J. Huang X. Ouyang D. Riester O. Deigner H.P. Lai H. Pedraz J.L. Ramalingam M. Cai Y. Nano-drug delivery system for the treatment of multidrug-resistant breast cancer: Current status and future perspectives. Biomed. Pharmacother. 2024 179 117327 10.1016/j.biopha.2024.117327 39216449
    [Google Scholar]
  38. Huang Y. Guo X. Wu Y. Chen X. Feng L. Xie N. Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment. Signal Transduct. Target. Ther. 2024 9 1 34 10.1038/s41392‑024‑01745‑z 38378653
    [Google Scholar]
  39. Joseph T. Kar Mahapatra D. Esmaeili A. Piszczyk Ł. Hasanin M. Kattali M. Haponiuk J. Thomas S. Nanoparticles: Taking a unique position in medicine. Nanomaterials 2023 13 3 574 10.3390/nano13030574 36770535
    [Google Scholar]
  40. Kemp J.A. Kwon Y. J. Cancer nanotechnology: Current status and perspectives. Nano Converg. 2021 8 1 34 10.1186/s40580‑021‑00282‑7 34727233
    [Google Scholar]
  41. Wasti S. Lee I.H. Kim S. Lee J.H. Kim H. Ethical and legal challenges in nanomedical innovations: A scoping review. Front. Genet. 2023 14 1163392 10.3389/fgene.2023.1163392 37252668
    [Google Scholar]
  42. Ma X. Tian Y. Yang R. Wang H. Allahou L.W. Chang J. Williams G. Knowles J.C. Poma A. Nanotechnology in healthcare, and its safety and environmental risks. J. Nanobiotechnology 2024 22 1 715 10.1186/s12951‑024‑02901‑x 39548502
    [Google Scholar]
  43. Igberaese C.F-I. Nwankwo C.O. Adebayo R.A. Olajiga O.K. Nanotechnology in consumer products: A review of applications and safety considerations. WJARR 2024 21 03 2050 2059 10.30574/wjarr.2024.21.3.0923
    [Google Scholar]
  44. Martínez G. Merinero M. Pérez-Aranda M. Pérez-Soriano E. Ortiz T. Villamor E. Begines B. Alcudia A. Environmental impact of nanoparticles’ application as an emerging technology: A review. Materials 2020 14 1 166 10.3390/ma14010166 33396469
    [Google Scholar]
  45. Kumah E.A. Fopa R.D. Harati S. Boadu P. Zohoori F.V. Pak T. Human and environmental impacts of nanoparticles: A scoping review of the current literature. BMC Public Health 2023 23 1 1059 10.1186/s12889‑023‑15958‑4 37268899
    [Google Scholar]
  46. Allan J. Belz S. Hoeveler A. Hugas M. Okuda H. Patri A. Rauscher H. Silva P. Slikker W. Sokull-Kluettgen B. Tong W. Anklam E. Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regul. Toxicol. Pharmacol. 2021 122 104885 10.1016/j.yrtph.2021.104885 33617940
    [Google Scholar]
  47. Guidelines for Evaluation of Nanopharmaceuticals in India 2019 Available from: http://dbtindia.gov.in/
  48. Drug products including biological products that contain nanomaterials: Guidance for industry. 2017 Available from: https://www.fda.gov/
  49. Nano Mission 2020 Available from: https://dst.gov.in/scientific-programmes/mission-nano-science-and-technology-nano-mission
  50. Gupta D.K. Tiwari A. Yadav Y. Soni P. Joshi M. Ensuring safety and efficacy in combination products: Regulatory challenges and best practices. Frontiers in Medical Technology 2024 6 1377443 10.3389/fmedt.2024.1377443 39050909
    [Google Scholar]
  51. Alghamdi M.A. Fallica A.N. Virzì N. Kesharwani P. Pittalà V. Greish K. The promise of nanotechnology in personalized medicine. J. Pers. Med. 2022 12 5 673 10.3390/jpm12050673 35629095
    [Google Scholar]
  52. Elumalai K. Srinivasan S. Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology 2024 5 109 122 10.1016/j.bmt.2023.09.001
    [Google Scholar]
  53. S, M.; D, S.; Ik, P. Nanotechnology Commercialization: Prospects in India. JMSN 2014 1 4 201 10.15744/2348‑9812.1.402
    [Google Scholar]
  54. Liu Y. Zhang Y. Li H. Hu T.Y. Recent advances in the bench-to-bedside translation of cancer nanomedicines. Acta Pharm. Sin. B 2024 10.1016/j.apsb.2024.12.007 40041906
    [Google Scholar]
  55. Maojo V. Martin-Sanchez F. Kulikowski C. Rodriguez-Paton A. Fritts M. Nanoinformatics and DNA-based computing: Catalyzing nanomedicine. Pediatr. Res. 2010 67 5 481 489 10.1203/PDR.0b013e3181d6245e 20118825
    [Google Scholar]
  56. Startups drive commercialization of high-impact innovations. 2023 Available from: https://www.nber.org/be/20231/startups-drive-commercialization-high-impact-innovations
  57. 75 impactful startups: DST incubation program. 2022 Available from: dst.gov.in/sites/default/files/75-Impactful-Startup-DST-Incubation-Program.pdf
  58. Business incubators and accelerators. 2019 Available from: https://academicentrepreneurship.pubpub.org/pub/fqa1v2l5/release/5
  59. Aayog N.I.T.I. State universities and research and development: Strengthening innovation ecosystems in India. 2024 Available from: https://www.niti.gov.in/sites/default/files/2024-06/StateUniRnD_FinalReport-Designedv3%20%281%29.pdf
  60. Thomas J. Kumar V. Sharma N. John N. Umesh M. Kumar Dasarahally Huligowda L. Kaur K. Utreja D. Recent approaches in nanotoxicity assessment for drug delivery applications: Challenges and prospects. Medicine in Drug Discovery 2025 25 100204 10.1016/j.medidd.2025.100204
    [Google Scholar]
  61. De Jong W.H. Geertsma R.E. Borchard G. Regulatory safety evaluation of nanomedical products: Key issues to refine. Drug Deliv. Transl. Res. 2022 12 9 2042 2047 10.1007/s13346‑022‑01208‑4 35908133
    [Google Scholar]
  62. Garg P. Pareek S. Kulkarni P. Salgia R. Singhal S.S. Nanoengineering solutions for cancer therapy: Bridging the gap between clinical practice and translational research. J. Clin. Med. 2024 13 12 3466 10.3390/jcm13123466 38929995
    [Google Scholar]
  63. Kurul F. Turkmen H. Cetin A.E. Topkaya S.N. Nanomedicine: How nanomaterials are transforming drug delivery, bio-imaging, and diagnosis. Next Nanotechnology 2025 7 100129 10.1016/j.nxnano.2024.100129
    [Google Scholar]
  64. Sidhic J. Aswathi M.K. Prasad A. Tom A. Mohan P. Sarbadhikary P. Narayanankutty A. George S. Abrahamse H. George B.P. Advancements in metal and metal oxide nanoparticles for targeted cancer therapy and imaging: Mechanisms, applications, and safety concerns. J. Drug Deliv. Sci. Technol. 2025 105 106622 10.1016/j.jddst.2025.106622
    [Google Scholar]
  65. Chehelgerdi M. Chehelgerdi M. Allela O.Q.B. Pecho R.D.C. Jayasankar N. Rao D.P. Thamaraikani T. Vasanthan M. Viktor P. Lakshmaiya N. Saadh M.J. Amajd A. Abo-Zaid M.A. Castillo-Acobo R.Y. Ismail A.H. Amin A.H. Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023 22 1 169 10.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  66. Jain K. Nanotechnology: Applications and safety in food processing and packaging. Advances in Pharmaceutical Product Development. Singapore Springer 2025
    [Google Scholar]
  67. Hristozov D. Next generation risk assessment approaches for advanced nanomaterials: Current status and future perspectives. NanoImpact 2024 35 100523 10.1016/j.impact.2024.100523 39059749
    [Google Scholar]
  68. Loizou G.D. Animal-free chemical safety assessment. Front. Pharmacol. 2016 7 218 10.3389/fphar.2016.00218 27493630
    [Google Scholar]
  69. Khinvasara T. Tzenios N. Shankar A. Post-market surveillance of medical devices using AI. J. complement altern med 2024 25 7 108 122 10.9734/jocamr/2024/v25i7552
    [Google Scholar]
  70. Lin C. Huang X. Xue Y. Jiang S. Chen C. Liu Y. Chen K. Advances in medical devices using nanomaterials and nanotechnology: Innovation and regulatory science. Bioact. Mater. 2025 48 353 369 10.1016/j.bioactmat.2025.02.017 40060145
    [Google Scholar]
  71. Kasoju N. Remya N.S. Sasi R. Sujesh S. Soman B. Kesavadas C. Muraleedharan C.V. Varma P.R.H. Behari S. Digital health: Trends, opportunities and challenges in medical devices, pharma and bio-technology. CSI Transactions on ICT 2023 11 1 11 30 10.1007/s40012‑023‑00380‑3
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073375405250702114943
Loading
/content/journals/cchts/10.2174/0113862073375405250702114943
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: nanomedicine funding ; Nanomedicine ; ICMR ; clinical translation ; gaps
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test