Skip to content
2000
image of Qilianshupi Decoction Alleviate Epithelial-mesenchymal Transition to Treat Chronic Atrophic Gastritis

Abstract

Introduction

Chronic atrophic gastritis (CAG) is an important stage in the occurrence and development of gastric cancer, and the morbidity of CAG is increasing year by year. Qilianshupi Decoction (QLSP) is a Chinese herbal compound which has been proved to reverse CAG, but its mechanism remains unknown. We wanted to identify the main components of QLSP by mass spectrometry and liquid phase analysis, and investigate their potential pathways for CAG treatment in combination with network pharmacology.

Methods

The main active components of QLSP were identified by liquid chromatography and mass spectrometry. Combined with network pharmacology, the targets where the drugs may act were identified and verified by animal experiments. Rats were randomly divided into control group, model group, QLSP low-dose group, QLSP medium-dose group, QLSP high-dose group and Weifuchun group. Rat CAG model was prepared by “N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) + ethanol intragastric + ranitidine feed”. After the test, gastric tissues were taken for pathological staining and immunohistochemistry.

Results

We identified 51 prototype components of QLSP and found that QLSP treatment of CAG was closely related to p53. In animal experiments, CAG results in the decrease of E-cadherin and the increase of N-cadherin, Vimentin, p53, SMAD2 and TGF-β (<0.05). Both QLSP and Weifuchun can increase E-cadherin and decrease N-cadherin, Vimentin, p53, SMAD2 and TGF-β (<0.05).

Discussion

QLSP, a traditional Chinese medicine formula with multi-component and multi-target characteristics, has been shown in our study to effectively regulate key EMT (epithelial-mesenchymal transition) markers and their upstream/downstream regulators. In animal experiments, QLSP successfully reversed the EMT process in CAG model rats. This finding provides new therapeutic targets for CAG treatment, though several challenges remain in clinical translation: First, rat CAG models differ from human CAG in pathological features and disease progression, and species-specific physiological and metabolic variations may limit the extrapolation of these findings. Second, network pharmacology analysis identified IL-6, alongside TP53, as another critical target of QLSP in CAG intervention. Therefore, future studies should further clarify the molecular mechanisms by which QLSP modulates EMT IL-6-related pathways and validate its efficacy through well-designed clinical trials, ultimately providing a comprehensive understanding of QLSP's therapeutic potential in CAG.

Conclusion

QLSP inhibits epithelial-mesenchymal transition (EMT) in gastric mucosal epithelial cells and prevents CAG, possibly by regulating p53/TGF-β signaling pathway.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073377282250716063813
2025-08-04
2025-09-14
Loading full text...

Full text loading...

References

  1. Smyth E.C. Nilsson M. Grabsch H.I. van Grieken N.C.T. Lordick F. Gastric cancer. Lancet 2020 396 10251 635 648 10.1016/S0140‑6736(20)31288‑5 32861308
    [Google Scholar]
  2. Karimi P. Islami F. Anandasabapathy S. Freedman N.D. Kamangar F. Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol. Biomarkers Prev. 2014 23 5 700 713 10.1158/1055‑9965.EPI‑13‑1057 24618998
    [Google Scholar]
  3. Correa P. A human model of gastric carcinogenesis. Cancer Res. 1988 48 13 3554 3560 3288329
    [Google Scholar]
  4. Xu W. Li B. Xu M. Yang T. Hao X. Traditional Chinese medicine for precancerous lesions of gastric cancer: A review. Biomed. Pharmacother. 2022 146 112542 10.1016/j.biopha.2021.112542 34929576
    [Google Scholar]
  5. Zappavigna S. Cossu A.M. Grimaldi A. Bocchetti M. Ferraro G.A. Nicoletti G.F. Filosa R. Caraglia M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci. 2020 21 7 2605 10.3390/ijms21072605 32283655
    [Google Scholar]
  6. Luo H. Vong C.T. Chen H. Gao Y. Lyu P. Qiu L. Zhao M. Liu Q. Cheng Z. Zou J. Yao P. Gao C. Wei J. Ung C.O.L. Wang S. Zhong Z. Wang Y. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. Chin. Med. 2019 14 1 48 10.1186/s13020‑019‑0270‑9 31719837
    [Google Scholar]
  7. Zhong Z. Zhang Q. Tao H. Sang W. Cui L. Qiang W. Cheang W.S. Hu Y. Yu H. Wang Y. Anti-inflammatory activities of Sigesbeckia glabrescens Makino: Combined in vitro and in silico investigations. Chin. Med. 2019 14 1 35 10.1186/s13020‑019‑0260‑y 31572487
    [Google Scholar]
  8. Sang W. Zhong Z. Linghu K. Xiong W. Tse A.K.W. Cheang W.S. Yu H. Wang Y. Siegesbeckia pubescens Makino inhibits Pam3CSK4-induced inflammation in RAW 264.7 macrophages through suppressing TLR1/TLR2-mediated NF-B activation. Chin. Med. 2018 13 1 37 10.1186/s13020‑018‑0193‑x 30002726
    [Google Scholar]
  9. Zhong Z. Yu H. Wang S. Wang Y. Cui L. Anti-cancer effects of Rhizoma Curcumae against doxorubicin-resistant breast cancer cells. Chin. Med. 2018 13 1 44 10.1186/s13020‑018‑0203‑z 30181769
    [Google Scholar]
  10. Wang S. Wu X. Tan M. Gong J. Tan W. Bian B. Chen M. Wang Y. Fighting fire with fire: Poisonous Chinese herbal medicine for cancer therapy. J. Ethnopharmacol. 2012 140 1 33 45 10.1016/j.jep.2011.12.041 22265747
    [Google Scholar]
  11. Hu Q. Zeng J. Zhang X. He T. Zhang A. Li J. Wei S. Jing M. Li H. Wang X. Chang L. Ma X. Zhao Y. Metabolomics profiles reveal the efficacy of wuzhuyu decoction on patients with chronic non-atrophic gastritis. Drug Des. Devel. Ther. 2023 17 3269 3280 10.2147/DDDT.S428783 37954485
    [Google Scholar]
  12. Ma Z. Chen X. Xiong M. Wang H. Sun C. Tang W. Li J. Li X. Ma H. Ye X. Cyberpharmacology uncover the mechanism of the total Rhizoma Coptidis extracts ameliorate chronic atrophic gastritis. J. Ethnopharmacol. 2024 335 118644 10.1016/j.jep.2024.118644 39094758
    [Google Scholar]
  13. Zhou W. Zhang H. Wang X. Kang J. Guo W. Zhou L. Liu H. Wang M. Jia R. Du X. Wang W. Zhang B. Li S. Network pharmacology to unveil the mechanism of Moluodan in the treatment of chronic atrophic gastritis. Phytomedicine 2022 95 153837 10.1016/j.phymed.2021.153837 34883416
    [Google Scholar]
  14. Liu Y. Zhang H. Lu W. Jiang T. Integrating metabolomics, 16S rRNA sequencing, network pharmacology, and metorigin to explore the mechanism of Cinnamomi Cortex in treating chronic atrophic gastritis rats. Phytomedicine 2023 121 155084 10.1016/j.phymed.2023.155084 37722245
    [Google Scholar]
  15. Yi T. Zhao Z.Z. Yu Z.L. Chen H.B. Comparison of the anti-inflammatory and anti-nociceptive effects of three medicinal plants known as “Snow Lotus” herb in traditional Uighur and Tibetan medicines. J. Ethnopharmacol. 2010 128 2 405 411 10.1016/j.jep.2010.01.037 20083181
    [Google Scholar]
  16. Chik W.I. Zhu L. Fan L.L. Yi T. Zhu G.Y. Gou X.J. Tang Y.N. Xu J. Yeung W.P. Zhao Z.Z. Yu Z.L. Chen H.B. Saussurea involucrata: A review of the botany, phytochemistry and ethnopharmacology of a rare traditional herbal medicine. J. Ethnopharmacol. 2015 172 44 60 10.1016/j.jep.2015.06.033 26113182
    [Google Scholar]
  17. Ji Q. Yang Y. Song X. Han X. Wang W. Banxia Xiexin Decoction in the treatment of chronic atrophic gastritis. Medicine 2020 99 42 e22110 10.1097/MD.0000000000022110 33080670
    [Google Scholar]
  18. Zhang T. Zhang B. Xu J. Ren S. Huang S. Shi Z. Guo S. Bian L. Wang P. Wang F. Cai Y. Tang X. Chinese herbal compound prescriptions combined with Chinese medicine powder based on traditional Chinese medicine syndrome differentiation for treatment of chronic atrophic gastritis with erosion: A multi-center, randomized, positive-controlled clinical trial. Chin. Med. 2022 17 1 142 10.1186/s13020‑022‑00692‑7 36550503
    [Google Scholar]
  19. Li Y. Zhang Y. Meng H. Liao M. Su Z. Zhai M. Jiang L. Li P. Ding X. Efficacy and safety of acupuncture therapy for chronic atrophic gastritis. Medicine 2019 98 35 e17003 10.1097/MD.0000000000017003 31464956
    [Google Scholar]
  20. Huo Z. Li J. Li X. Xiao H. Lin Y. Ma Y. Li J. Yang H. Zhang C. Functional fractions of Astragalus polysaccharides as a potential prebiotic to alleviate ulcerative colitis. Int. J. Biol. Macromol. 2024 271 Pt 1 132580 10.1016/j.ijbiomac.2024.132580 38788871
    [Google Scholar]
  21. Zhang Y. Ji W. Qin H. Chen Z. Zhou Y. Zhou Z. Wang J. Wang K. Astragalus polysaccharides alleviate DSS-induced ulcerative colitis in mice by restoring SCFA production and regulating Th17/Treg cell homeostasis in a microbiota-dependent manner. Carbohydr. Polym. 2025 349 Pt A 122829 10.1016/j.carbpol.2024.122829 39643403
    [Google Scholar]
  22. Li K. Ran X. Han J. Ding H. Wang X. Li Y. Guo W. Li X. Guo W. Fu S. Bi J. Astragalus polysaccharide alleviates mastitis disrupted by Staphylococcus aureus infection by regulating gut microbiota and SCFAs metabolism. Int. J. Biol. Macromol. 2025 286 138422 10.1016/j.ijbiomac.2024.138422 39647752
    [Google Scholar]
  23. Kim Y.J. Park S.Y. Koh Y.J. Lee J.H. Anti-neuroinflammatory effects and mechanism of action of Fructus ligustri lucidi extract in BV2 Microglia. Plants 2021 10 4 688 10.3390/plants10040688 33918375
    [Google Scholar]
  24. Yu W. Sun S. Zhang K. Li H. Xin M. Liu Y. Yan J. Fructus ligustri lucidi suppresses inflammation and restores the microbiome profile in murine colitis models. Phytomedicine 2022 106 154438 10.1016/j.phymed.2022.154438 36108373
    [Google Scholar]
  25. Xi Y. Hu L. Chen X. Zuo L. Bai X. Du W. Xu N. Antibacterial and anti-inflammatory polysaccharide from Fructus Ligustri Lucidi incorporated in pva/pectin hydrogels accelerate wound healing. Molecules 2024 29 7 1423 10.3390/molecules29071423 38611703
    [Google Scholar]
  26. Cao M. Wu J. Peng Y. Dong B. Jiang Y. Hu C. Yu L. Chen Z. Ligustri Lucidi Fructus, a traditional Chinese Medicine: Comprehensive review of botany, traditional uses, chemical composition, pharmacology, and toxicity. J. Ethnopharmacol. 2023 301 115789 10.1016/j.jep.2022.115789 36208822
    [Google Scholar]
  27. Sun R. Sun C. Yue Z. Yin G. Zhou L. Zhang S. Zhang Y. Tang D. Tan X. Astragali Radix-Curcumae Rhizoma herb pair reduces the stemness of colorectal cancer cells through HIF-2-catenin pathway. Phytomedicine 2024 132 155824 10.1016/j.phymed.2024.155824 38941816
    [Google Scholar]
  28. Li Y. Li M. Mao J. Guo Q. Zhu W. Fu R. Wan X. Dong W. Li L. Mao C. Ji D. Zhang K. Lu T. The processing mechanism of vinegar-processed Curcumae Rhizome enhances anti hepatic fibrotic effects through regulation of PI3K/Akt/mTOR signaling pathway. Phytomedicine 2024 135 156098 10.1016/j.phymed.2024.156098 39395324
    [Google Scholar]
  29. Lee E.S. Kim Y.I. Lee J.H. Kim J.H. Kim Y.G. Han K.S. Yoon Y.H. Cho B.O. Cho J.S. Anti-pruritic and immunomodulatory effects of coix [Coix lacryma-jobi L. var. ma-yuen (Rom. Caill.) Stapf. sprouts extract. Int. J. Mol. Sci. 2024 25 21 11828 10.3390/ijms252111828 39519379
    [Google Scholar]
  30. Zhang T. Chen M. Li D. Sun Y. Liu R. Sun T. Wang L. Extraction, purification, structural characteristics, bioactivity and potential applications of polysaccharides from Semen Coicis: A review. Int. J. Biol. Macromol. 2024 272 Pt 1 132861 10.1016/j.ijbiomac.2024.132861 38838884
    [Google Scholar]
  31. Ge Q. Hou C. Rao X. Zhang A. Xiao G. Wang L. Jin K. Sun P. Chen L.C. In vitro fermentation characteristics of polysaccharides from coix seed and its effects on the gut microbiota. Int. J. Biol. Macromol. 2024 262 Pt 2 129994 10.1016/j.ijbiomac.2024.129994 38325690
    [Google Scholar]
  32. Hassin O. Oren M. Drugging p53 in cancer: One protein, many targets. Nat. Rev. Drug Discov. 2023 22 2 127 144 10.1038/s41573‑022‑00571‑8 36216888
    [Google Scholar]
  33. Zhang Y. Li C. Sun S. Cao Z. Chen J. Xiang H. Song L. Screening and identification of molecular targets involved in preventing gastric precancerous lesions in chronic atrophic gastritis by qilianshupi decoction. Evid. Based Complement. Alternat. Med. 2019 2019 1 13 10.1155/2019/5804710 31929816
    [Google Scholar]
  34. Kim N.H. Kim H.S. Li X.Y. Lee I. Choi H.S. Kang S.E. Cha S.Y. Ryu J.K. Yoon D. Fearon E.R. Rowe R.G. Lee S. Maher C.A. Weiss S.J. Yook J.I.A. p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J. Cell Biol. 2011 195 3 417 433 10.1083/jcb.201103097 22024162
    [Google Scholar]
  35. Dongre A. Weinberg R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019 20 2 69 84 10.1038/s41580‑018‑0080‑4 30459476
    [Google Scholar]
  36. Thiery J.P. Acloque H. Huang R.Y.J. Nieto M.A. Epithelial-mesenchymal transitions in development and disease. Cell 2009 139 5 871 890 10.1016/j.cell.2009.11.007 19945376
    [Google Scholar]
  37. Lee J.H. Massagué J. TGF- in developmental and fibrogenic EMTs. Semin. Cancer Biol. 2022 86 Pt 2 136 145 36183999
    [Google Scholar]
  38. Shi X. Yang J. Deng S. Xu H. Wu D. Zeng Q. Wang S. Hu T. Wu F. Zhou H. TGF- signaling in the tumor metabolic microenvironment and targeted therapies. J. Hematol. Oncol. 2022 15 1 135 10.1186/s13045‑022‑01349‑6 36115986
    [Google Scholar]
  39. Peng D. Fu M. Wang M. Wei Y. Wei X. Targeting TGF- signal transduction for fibrosis and cancer therapy. Mol. Cancer 2022 21 1 104 10.1186/s12943‑022‑01569‑x 35461253
    [Google Scholar]
  40. Yang J. Wahdan-Alaswad R. Danielpour D. Critical role of Smad2 in tumor suppression and transforming growth factor--induced apoptosis of prostate epithelial cells. Cancer Res. 2009 69 6 2185 2190 10.1158/0008‑5472.CAN‑08‑3961 19276350
    [Google Scholar]
  41. Gallardo M. Calaf G.M. Curcumin and epithelial-mesenchymal transition in breast cancer cells transformed by low doses of radiation and estrogen. Int. J. Oncol. 2016 48 6 2534 2542 10.3892/ijo.2016.3477 27082017
    [Google Scholar]
  42. Gallardo M. Kemmerling U. Aguayo F. Bleak T.C. Muñoz J.P. Calaf G.M. Curcumin rescues breast cells from epithelial mesenchymal transition and invasion induced by anti miR 34a. Int. J. Oncol. 2020 56 2 480 493 31894298
    [Google Scholar]
  43. Shi Y. Xu L. Wang X. Zhang K. Zhang C. Liu H. Ding P. Shi W. Liu Z. Paris polyphylla ethanol extract and polyphyllin I ameliorate adenomyosis by inhibiting epithelial-mesenchymal transition. Phytomedicine 2024 127 155461 10.1016/j.phymed.2024.155461 38452697
    [Google Scholar]
  44. Chen Y. Chen L. Zhang J.Y. Chen Z.Y. Ting-ting L. Zhang Y.Y. Fu L.Y. Fan S.Q. Zhang M.Q. Gan S. Zhang N. Shen X.C. Oxymatrine reverses epithelial-mesenchymal transition in breast cancer cells by depressing 3 integrin/FAK/PI3K/Akt signaling activation. OncoTargets Ther. 2019 12 6253 6265 10.2147/OTT.S209056 31496729
    [Google Scholar]
  45. Cline M.S. Smoot M. Cerami E. Kuchinsky A. Landys N. Workman C. Christmas R. Avila-Campilo I. Creech M. Gross B. Hanspers K. Isserlin R. Kelley R. Killcoyne S. Lotia S. Maere S. Morris J. Ono K. Pavlovic V. Pico A.R. Vailaya A. Wang P.L. Adler A. Conklin B.R. Hood L. Kuiper M. Sander C. Schmulevich I. Schwikowski B. Warner G.J. Ideker T. Bader G.D. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2007 2 10 2366 2382 10.1038/nprot.2007.324 17947979
    [Google Scholar]
  46. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  47. Liu J. Li M. Chen G. Yang J. Jiang Y. Li F. Hua H. Jianwei Xiaoyan granule ameliorates chronic atrophic gastritis by regulating HIF-1-VEGF pathway. J. Ethnopharmacol. 2024 334 118591 10.1016/j.jep.2024.118591 39025161
    [Google Scholar]
  48. He Y. Liu H.H. Zhou X.L. He T.T. Zhang A.Z. Wang X. Wei S.Z. Li H.T. Chen L.S. Chang L. Zhao Y.L. Jing M.Y. Rutaecarpine ameliorates Murine N-Methyl-N’-Nitro-N-nitrosoguanidine-induced chronic atrophic gastritis by sonic hedgehog pathway. Molecules 2023 28 17 6294 10.3390/molecules28176294 37687125
    [Google Scholar]
  49. Guo Y. Jia X. Du P. Wang J. Du Y. Li B. Xue Y. Jiang J. Cai Y. Yang Q. Mechanistic insights into the ameliorative effects of Xianglianhuazhuo formula on chronic atrophic gastritis through ferroptosis mediated by YY1/miR-320a/TFRC signal pathway. J. Ethnopharmacol. 2024 323 117608 10.1016/j.jep.2023.117608 38158098
    [Google Scholar]
  50. Chen L. He T. Wang R. Liu H. Wang X. Li H. Jing M. Zhou X. Wei S. Zou W. Zhao Y. Integrated approaches revealed the therapeutic mechanisms of zuojin pill against gastric mucosa injury in a rat model with chronic atrophic gastritis. Drug Des. Devel. Ther. 2024 18 1651 1672 10.2147/DDDT.S454758 38774485
    [Google Scholar]
  51. Gunes-Bayir A. Guler E.M. Bilgin M.G. Ergun I.S. Kocyigit A. Dadak A. Anti-inflammatory and antioxidant effects of carvacrol on N-Methyl-N-Nitro-N-Nitrosoguanidine (MNNG) induced gastric carcinogenesis in wistar rats. Nutrients 2022 14 14 2848 10.3390/nu14142848 35889805
    [Google Scholar]
  52. Yu C. Su Z. Li Y. Li Y. Liu K. Chu F. Liu T. Chen R. Ding X. Dysbiosis of gut microbiota is associated with gastric carcinogenesis in rats. Biomed. Pharmacother. 2020 126 110036 10.1016/j.biopha.2020.110036 32172061
    [Google Scholar]
  53. Chen L. Wei S. He Y. Wang X. He T. Zhang A. Jing M. Li H. Wang R. Zhao Y. Treatment of chronic gastritis with traditional Chinese medicine: Pharmacological activities and mechanisms. Pharmaceuticals 2023 16 9 1308 10.3390/ph16091308 37765116
    [Google Scholar]
  54. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol. 2018 13 1 395 412 10.1146/annurev‑pathol‑020117‑043854 29414248
    [Google Scholar]
  55. Shibue T. Weinberg R.A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 2017 14 10 611 629 10.1038/nrclinonc.2017.44 28397828
    [Google Scholar]
  56. Mani S.A. Guo W. Liao M.J. Eaton E.N. Ayyanan A. Zhou A.Y. Brooks M. Reinhard F. Zhang C.C. Shipitsin M. Campbell L.L. Polyak K. Brisken C. Yang J. Weinberg R.A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008 133 4 704 715 10.1016/j.cell.2008.03.027 18485877
    [Google Scholar]
  57. Zhang J. Chen X. p53 tumor suppressor and iron homeostasis. FEBS J. 2019 286 4 620 629 10.1111/febs.14638 30133149
    [Google Scholar]
  58. Cheok C.F. Lane D.P. Exploiting the p53 Pathway for Therapy. Cold Spring Harb. Perspect. Med. 2017 7 3 a026310 10.1101/cshperspect.a026310 28193768
    [Google Scholar]
  59. Sullivan K.D. Galbraith M.D. Andrysik Z. Espinosa J.M. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 2018 25 1 133 143 10.1038/cdd.2017.174 29125602
    [Google Scholar]
  60. Zhou X. Hao Q. Lu H. Mutant p53 in cancer therapy—The barrier or the path. J. Mol. Cell Biol. 2019 11 4 293 305 10.1093/jmcb/mjy072 30508182
    [Google Scholar]
  61. Dragomirescu M. Stepan A.E. M ritescu, C.; Simionescu, C.E. The immunoexpression of p53 and Snail in endometrioid endometrial carcinomas. Rom. J. Morphol. Embryol. 2018 59 1 131 137 29940620
    [Google Scholar]
  62. Alam F. Mezhal F. EL Hasasna H.; Nair, V.A.; Aravind, S.R.; Saber Ayad, M.; El-Serafi, A.; Abdel-Rahman, W.M. The role of p53-microRNA 200-Moesin axis in invasion and drug resistance of breast cancer cells. Tumour Biol. 2017 39 9 10.1177/1010428317714634 28933253
    [Google Scholar]
  63. Termén S. Tan E.J. Heldin C.H. Moustakas A. p53 regulates epithelial-mesenchymal transition induced by transforming growth factor . J. Cell. Physiol. 2013 228 4 801 813 10.1002/jcp.24229 23018556
    [Google Scholar]
  64. Bierie B. Moses H.L. Transforming growth factor beta (TGF-;) and inflammation in cancer. Cytokine Growth Factor Rev. 2010 21 1 49 59 10.1016/j.cytogfr.2009.11.008 20018551
    [Google Scholar]
  65. Massagué J. TGF. Cancer Cell 2008 134 2 215 230 10.1016/j.cell.2008.07.001 18662538
    [Google Scholar]
  66. Hao Y. Baker D. ten Dijke P. TGF-;-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci. 2019 20 11 2767 10.3390/ijms20112767 31195692
    [Google Scholar]
  67. Shah S.C. Piazuelo M.B. Kuipers E.J. Li D. AGA clinical practice update on the diagnosis and management of atrophic gastritis: Expert review. Gastroenterology 2021 161 4 1325 1332.e7 10.1053/j.gastro.2021.06.078 34454714
    [Google Scholar]
  68. Lahner E. Zagari R.M. Zullo A. Di Sabatino A. Meggio A. Cesaro P. Lenti M.V. Annibale B. Corazza G.R. Chronic atrophic gastritis: Natural history, diagnosis and therapeutic management. A position paper by the Italian Society of Hospital Gastroenterologists and Digestive Endoscopists [AIGO], the Italian Society of Digestive Endoscopy [SIED], the Italian Society of Gastroenterology [SIGE], and the Italian Society of Internal Medicine. Dig. Liver Dis. 2019 51 12 1621 1632 SIMI 10.1016/j.dld.2019.09.016 31635944
    [Google Scholar]
  69. Jia J. Zhao H. Li F. Zheng Q. Wang G. Li D. Liu Y. Research on drug treatment and the novel signaling pathway of chronic atrophic gastritis. Biomed. Pharmacother. 2024 176 116912 10.1016/j.biopha.2024.116912 38850667
    [Google Scholar]
  70. Wang B. Zhou W. Zhang H. Wang W. Zhang B. Li S. Exploring the effect of Weifuchun capsule on the toll-like receptor pathway mediated HES6 and immune regulation against chronic atrophic gastritis. J. Ethnopharmacol. 2023 303 115930 10.1016/j.jep.2022.115930 36403744
    [Google Scholar]
  71. Vezzani B. Carinci M. Previati M. Giacovazzi S. Della Sala M. Gafà R. Lanza G. Wieckowski M.R. Pinton P. Giorgi C. Epigenetic regulation: A link between inflammation and carcinogenesis. Cancers 2022 14 5 1221 10.3390/cancers14051221 35267528
    [Google Scholar]
  72. Yang S. Huang Y. Zhao Q. Epigenetic alterations and inflammation as emerging use for the advancement of treatment in non-small cell lung cancer. Front. Immunol. 2022 13 878740 10.3389/fimmu.2022.878740 35514980
    [Google Scholar]
  73. Chen Y. Long W. Yang L. Zhao Y. Wu X. Li M. Du F. Chen Y. Yang Z. Wen Q. Yi T. Xiao Z. Shen J. Functional peptides encoded by long non-coding rnas in gastrointestinal cancer. Front. Oncol. 2021 11 777374 10.3389/fonc.2021.777374 34888249
    [Google Scholar]
  74. Khajehdehi M. Khalaj-Kondori M. Ghasemi T. Jahanghiri B. Damaghi M. Long noncoding RNAs in gastrointestinal cancer: Tumor suppression versus tumor promotion. Dig. Dis. Sci. 2021 66 2 381 397 10.1007/s10620‑020‑06200‑x 32185664
    [Google Scholar]
  75. Zhang H. Li M. Kaboli P.J. Ji H. Du F. Wu X. Zhao Y. Shen J. Wan L. Yi T. Wen Q. Li X. Cho C.H. Li J. Xiao Z. Identification of cluster of differentiation molecule-associated microRNAs as potential therapeutic targets for gastrointestinal cancer immunotherapy. Int. J. Biol. Markers 2021 36 2 22 32 10.1177/17246008211005473 33788641
    [Google Scholar]
  76. Xu Z. Xia Y. Xiao Z. Jia Y. Li L. Jin Y. Zhao Q. Wan L. Yi T. Yu Y. Wen Q. Zhu Y. Qin B. Zhang F. Shen J. Comprehensive profiling of JMJD3 in gastric cancer and its influence on patient survival. Sci. Rep. 2019 9 1 868 10.1038/s41598‑018‑37340‑w 30696880
    [Google Scholar]
  77. Tong Y. Wang R. Liu X. Tian M. Wang Y. Cui Y. Zou W. Zhao Y. Zuojin Pill ameliorates chronic atrophic gastritis induced by MNNG through TGF1/PI3K/Akt axis. J. Ethnopharmacol. 2021 271 113893 10.1016/j.jep.2021.113893 33524511
    [Google Scholar]
  78. Zhou Q. Qi F. Zhou C. Ji J. Jiang J. Wang C. Zhao Q. Jin Y. Wu J. Cai Q. Tian H. Zhang J. VPS35 promotes gastric cancer progression through integrin/FAK/SRC signalling-mediated IL-6/STAT3 pathway activation in a YAP-dependent manner. Oncogene 2024 43 2 106 122 10.1038/s41388‑023‑02885‑2 37950040
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073377282250716063813
Loading
/content/journals/cchts/10.2174/0113862073377282250716063813
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test