Skip to content
2000
image of Expression, Prognostic Significance, and Immune-Related Roles of ABCA Family Genes in Gastric Cancer: A Comprehensive Analysis

Abstract

Background

ABCA family proteins regulate cholesterol transport, which affects cancer-related processes such as membrane dynamics and tumor progression. However, their roles in gastric cancer (GC) remain unclear.

Methods

This study systematically investigated the expression profiles, prognostic significance, and immune-related roles of ABCA family genes in GC using data from The Cancer Genome Atlas (TCGA). Kaplan-Meier and Cox regression analyses assessed survival relevance, while logistic regression and ROC curves evaluated clinical associations and diagnostic value. Immune infiltration and gene correlation were analyzed via ssGSEA and Pearson correlation. TIDE and “oncoPredict” were used to estimate immunotherapy response and chemotherapy resistance. Gene Set Enrichment Analysis (GSEA) identified related signaling pathways. Quantitative PCR validated ABCA expression in cell lines.

Results

Several ABCA genes (e.g., ABCA1, ABCA2, ABCA7, ABCA13) were upregulated, while others (e.g., ABCA8, ABCA9) were downregulated in GC tissues. Expression levels correlated with pathological stage, grade, and lymph node metastasis. ABCA1, ABCA3, ABCA4, ABCA6, ABCA8, and ABCA9 were identified as independent prognostic factors. Nomogram models showed good predictive performance. High ABCA expression was associated with increased infiltration of multiple immune cells and co-expression with immune checkpoint genes. TIDE analysis indicated lower predicted ICI response, and ABCA levels correlated with resistance to cisplatin, 5-FU, and paclitaxel. GSEA revealed enrichment in ECM-receptor interaction, cell adhesion, autophagy, and PI3K-Akt pathways.

Conclusion

ABCA genes exhibit distinct expression and prognostic patterns in GC and are closely linked to tumor immunity and drug resistance, supporting their potential as biomarkers and therapeutic targets.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073356415250423045501
2025-05-13
2025-10-31
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Lordick F. Carneiro F. Cascinu S. Fleitas T. Haustermans K. Piessen G. Vogel A. Smyth E.C. Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022 33 10 1005 1020 10.1016/j.annonc.2022.07.004 35914639
    [Google Scholar]
  3. Sonkin D. Thomas A. Teicher B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024 286-287 18 24 10.1016/j.cancergen.2024.06.002 38909530
    [Google Scholar]
  4. Smyth E.C. Nilsson M. Grabsch H.I. van Grieken N.C.T. Lordick F. Gastric cancer. Lancet 2020 396 10251 635 648 10.1016/S0140‑6736(20)31288‑5 32861308
    [Google Scholar]
  5. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  6. Eom S.S. Choi W. Eom B.W. Park S.H. Kim S.J. Kim Y.I. Man Yoon H. Lee J.Y. Kim C.G. Kim H.K. Kook M.C. Choi I.J. Kim Y.W. Park Y.I. Ryu K.W. A comprehensive and comparative review of global gastric cancer treatment guidelines. J. Gastric Cancer 2022 22 1 3 23 10.5230/jgc.2022.22.e10 35425651
    [Google Scholar]
  7. Kim W.H. Gomez-Izquierdo L. Vilardell F. Chu K.M. Soucy G. dos Santos L.V. Monges G. Viale G. Brito M.J. Osborne S. Noé J. Du X. HER2 Status in Gastric and Gastroesophageal Junction Cancer: Results of the Large, Multinational HER-EAGLE Study. Appl. Immunohistochem. Mol. Morphol. 2018 26 4 239 245 10.1097/PAI.0000000000000423 27490762
    [Google Scholar]
  8. Marusyk A. Janiszewska M. Polyak K. Intratumor heterogeneity: The rosetta stone of therapy resistance. Cancer Cell 2020 37 4 471 484 10.1016/j.ccell.2020.03.007 32289271
    [Google Scholar]
  9. Marra A. Chandarlapaty S. Modi S. Management of patients with advanced-stage HER2-positive breast cancer: Current evidence and future perspectives. Nat. Rev. Clin. Oncol. 2024 21 3 185 202 10.1038/s41571‑023‑00849‑9 38191924
    [Google Scholar]
  10. Joshi S.S. Badgwell B.D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin. 2021 71 3 264 279 10.3322/caac.21657 33592120
    [Google Scholar]
  11. de Miguel M. Calvo E. Clinical challenges of immune checkpoint inhibitors. Cancer Cell 2020 38 3 326 333 10.1016/j.ccell.2020.07.004 32750319
    [Google Scholar]
  12. Xie T. Zhang Z. Fang Q. Du B. Gong X. Structural basis of substrate recognition and translocation by human ABCA4. Nat. Commun. 2021 12 1 3853 10.1038/s41467‑021‑24194‑6 34158497
    [Google Scholar]
  13. Domenichini A. Adamska A. Falasca M. ABC transporters as cancer drivers: Potential functions in cancer development. Biochim. Biophys. Acta, Gen. Subj. 2019 1863 1 52 60 10.1016/j.bbagen.2018.09.019 30268729
    [Google Scholar]
  14. Ford R.C. Beis K. Learning the ABCs one at a time: Structure and mechanism of ABC transporters. Biochem. Soc. Trans. 2019 47 1 23 36 10.1042/BST20180147 30626703
    [Google Scholar]
  15. Pasello M. Giudice A.M. Scotlandi K. The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin. Cancer Biol. 2020 60 57 71 10.1016/j.semcancer.2019.10.004 31605751
    [Google Scholar]
  16. Dvorak P. Hlavac V. Soucek P. 5′ untranslated region elements show high abundance and great variability in homologous ABCA subfamily genes. Int. J. Mol. Sci. 2020 21 22 8878 10.3390/ijms21228878 33238634
    [Google Scholar]
  17. Lee P. Ulatowski L.M. Vitamin E. Vitamin E. Mechanism of transport and regulation in the CNS. IUBMB Life 2019 71 4 424 429 10.1002/iub.1993 30556640
    [Google Scholar]
  18. Liu X. ABC family transporters. Adv. Exp. Med. Biol. 2019 1141 13 100 10.1007/978‑981‑13‑7647‑4_2 31571164
    [Google Scholar]
  19. Hooper A.J. Hegele R.A. Burnett J.R. Tangier disease: Update for 2020. Curr. Opin. Lipidol. 2020 31 2 80 84 10.1097/MOL.0000000000000669 32022754
    [Google Scholar]
  20. Kaminski W.E. Piehler A. Wenzel J.J. ABC A-subfamily transporters: Structure, function and disease. Biochim. Biophys. Acta Mol. Basis Dis. 2006 1762 5 510 524 10.1016/j.bbadis.2006.01.011 16540294
    [Google Scholar]
  21. Overbeck T.R. Hupfeld T. Krause D. Waldmann-Beushausen R. Chapuy B. Güldenzoph B. Aung T. Inagaki N. Schöndube F.A. Danner B.C. Truemper L. Wulf G.G. Intracellular ATP-binding cassette transporter A3 is expressed in lung cancer cells and modulates susceptibility to cisplatin and paclitaxel. Oncology 2013 84 6 362 370 10.1159/000348884 23689165
    [Google Scholar]
  22. Yang C. Yuan H. Gu J. Xu D. Wang M. Qiao J. Yang X. Zhang J. Yao M. Gu J. Tu H. Gan Y. ABCA8-mediated efflux of taurocholic acid contributes to gemcitabine insensitivity in human pancreatic cancer via the S1PR2-ERK pathway. Cell Death Discov. 2021 7 1 6 10.1038/s41420‑020‑00390‑z 33431858
    [Google Scholar]
  23. Hedditch E.L. Gao B. Russell A.J. Lu Y. Emmanuel C. Beesley J. Johnatty S.E. Chen X. Harnett P. George J. Williams R.T. Flemming C. Lambrechts D. Despierre E. Lambrechts S. Vergote I. Karlan B. Lester J. Orsulic S. Walsh C. Fasching P. Beckmann M.W. Ekici A.B. Hein A. Matsuo K. Hosono S. Nakanishi T. Yatabe Y. Pejovic T. Bean Y. Heitz F. Harter P. du Bois A. Schwaab I. Hogdall E. Kjaer S.K. Jensen A. Hogdall C. Lundvall L. Engelholm S.A. Brown B. Flanagan J. Metcalf M.D. Siddiqui N. Sellers T. Fridley B. Cunningham J. Schildkraut J. Iversen E. Weber R.P. Berchuck A. Goode E. Bowtell D.D. Chenevix-Trench G. deFazio A. Norris M.D. MacGregor S. Haber M. Henderson M.J. ABCA transporter gene expression and poor outcome in epithelial ovarian cancer. J. Natl. Cancer Inst. 2014 106 7 dju149 10.1093/jnci/dju149 24957074
    [Google Scholar]
  24. Aguirre-Portolés C. Feliu J. Reglero G. Ramírez de Molina A. ABCA1 overexpression worsens colorectal cancer prognosis by facilitating tumour growth and caveolin‐1‐dependent invasiveness, and these effects can be ameliorated using the BET inhibitor apabetalone. Mol. Oncol. 2018 12 10 1735 1752 10.1002/1878‑0261.12367 30098223
    [Google Scholar]
  25. Pasello M. Giudice A.M. Cristalli C. Manara M.C. Mancarella C. Parra A. Serra M. Magagnoli G. Cidre-Aranaz F. Grünewald T.G.P. Bini C. Lollini P.L. Longhi A. Donati D.M. Scotlandi K. ABCA6 affects the malignancy of Ewing sarcoma cells via cholesterol-guided inhibition of the IGF1R/AKT/MDM2 axis. Cell Oncol. (Dordr.) 2022 45 6 1237 1251 10.1007/s13402‑022‑00713‑5 36149602
    [Google Scholar]
  26. Cui J. Christin J.R. Reisz J.A. Cendali F.I. Sanawar R. Coutinho De Miranda M. D'Alessandro A. Guo W. Targeting ABCA12-controlled ceramide homeostasis inhibits breast cancer stem cell function and chemoresistance. Sci. Adv. 2023 9 48 eahd1891 10.1126/sciadv.adh1891 38039374
    [Google Scholar]
  27. Nymoen D.A. Holth A. Hetland Falkenthal T.E. Tropé C.G. Davidson B. CIAPIN1 and ABCA13 are markers of poor survival in metastatic ovarian serous carcinoma. Mol. Cancer 2015 14 1 44 10.1186/s12943‑015‑0317‑1 25889687
    [Google Scholar]
  28. Du X.M. Kim M.J. Hou L. Le Goff W. Chapman M.J. Van Eck M. Curtiss L.K. Burnett J.R. Cartland S.P. Quinn C.M. Kockx M. Kontush A. Rye K.A. Kritharides L. Jessup W. HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ. Res. 2015 116 7 1133 1142 10.1161/CIRCRESAHA.116.305485 25589556
    [Google Scholar]
  29. Manogaran M. Vuanghao L. Mohamed R. Gynura procumbens ethanol extract and its fractions inhibit macrophage derived foam cell formation. J. Ethnopharmacol. 2020 249 112410 10.1016/j.jep.2019.112410 31747560
    [Google Scholar]
  30. Liu M. Fang X. Wang H. Ji R. Guo Q. Chen Z. Ren Q. Wang Y. Zhou Y. Characterization of lipid droplet metabolism patterns identified prognosis and tumor microenvironment infiltration in gastric cancer. Front. Oncol. 2023 12 1038932 10.3389/fonc.2022.1038932 36713557
    [Google Scholar]
  31. Tang W. Li G. Lin Q. Zhu Z. Wang Z. Wang Z. Multiplex immunohistochemistry defines two cholesterol metabolism patterns predicting immunotherapeutic outcomes in gastric cancer. J. Transl. Med. 2023 21 1 887 10.1186/s12967‑023‑04758‑4 38062450
    [Google Scholar]
  32. Xue S. Zheng T. Yan J. Ma J. Lin C. Dong S. Wei C. Li T. Zhang X. Li G. Identification of a 3-gene model as prognostic biomarker in patients with gastric cancer. Front. Oncol. 2022 12 930586 10.3389/fonc.2022.930586 35912206
    [Google Scholar]
  33. Xie R. Liu L. Lu X. He C. Li G. Identification of the diagnostic genes and immune cell infiltration characteristics of gastric cancer using bioinformatics analysis and machine learning. Front. Genet. 2023 13 1067524 10.3389/fgene.2022.1067524 36685898
    [Google Scholar]
  34. Zhu C. Xiao H. Jiang X. Tong R. Guan J. Prognostic biomarker ddost and its correlation with immune infiltrates in hepatocellular carcinoma. Front. Genet. 2022 12 819520 10.3389/fgene.2021.819520 35173766
    [Google Scholar]
  35. Wang Y. Fang Y. Zhao F. Gu J. Lv X. Xu R. Zhang B. Fang Z. Li Y. Identification of GGT5 as a novel prognostic biomarker for gastric cancer and its correlation with immune cell infiltration. Front. Genet. 2022 13 810292 10.3389/fgene.2022.810292 35368661
    [Google Scholar]
  36. Liu Q. Luo D. Cai S. Li Q. Li X. Circulating basophil count as a prognostic marker of tumor aggressiveness and survival outcomes in colorectal cancer. Clin. Transl. Med. 2020 9 1 e6 10.1186/s40169‑019‑0255‑4 32037496
    [Google Scholar]
  37. Liu H. Weng J. Huang C.L.H. Jackson A.P. Is the voltage-gated sodium channel β3 subunit (SCN3B) a biomarker for glioma? Funct. Integr. Genomics 2024 24 5 162 10.1007/s10142‑024‑01443‑7 39289188
    [Google Scholar]
  38. Lischka A. Doberstein N. Freitag-Wolf S. Koçak A. Gemoll T. Heselmeyer-Haddad K. Ried T. Auer G. Habermann J.K. Genome instability profiles predict disease outcome in a cohort of 4,003 patients with breast cancer. Clin. Cancer Res. 2020 26 17 4606 4615 10.1158/1078‑0432.CCR‑20‑0566 32522886
    [Google Scholar]
  39. Shen C. Han C. Li Z. Yan Y. Li C. Chen H. Fan Z. Hu H. Construction and validation of a prognostic model based on pyroptosis-related genes in bladder cancer. Comb. Chem. High Throu. Screen. 2024 27 16 2335 2349 10.2174/0113862073256363230929200157 37849225
    [Google Scholar]
  40. Yu M. Yu S. Zhou W. Yi B. Liu Y. HOXC6/8/10/13 predict poor prognosis and associate with immune infiltrations in glioblastoma. Int. Immunopharmacol. 2021 101 Pt A 108293 10.1016/j.intimp.2021.108293 34763232
    [Google Scholar]
  41. Huang D. Shen J. Zhai L. Chen H. Fei J. Zhu X. Zhou J. Insights into the prognostic value and immunological role of NAAA in pan-cancer. Front. Immunol. 2022 12 812713 10.3389/fimmu.2021.812713 35069601
    [Google Scholar]
  42. Huang X. Tang T. Wang X. Bai X. Liang T. Calreticulin couples with immune checkpoints in pancreatic cancer. Clin. Transl. Med. 2020 10 1 36 44 10.1002/ctm2.10 32508042
    [Google Scholar]
  43. Zhang C. Zhang G. Sun N. Zhang Z. Zhang Z. Luo Y. Che Y. Xue Q. He J. Comprehensive molecular analyses of a TNF family-based signature with regard to prognosis, immune features, and biomarkers for immunotherapy in lung adenocarcinoma. EBioMedicine 2020 59 102959 10.1016/j.ebiom.2020.102959 32853987
    [Google Scholar]
  44. Deng H. Lin Y. Gan F. Li B. Mou Z. Qin X. He X. Meng Y. Prognostic model and immune infiltration of ferroptosis subcluster-related modular genes in gastric cancer. J. Oncol. 2022 2022 1 20 10.1155/2022/5813522 36276279
    [Google Scholar]
  45. Cui Y. Liang S. Zhang S. Zhang C. Zhao Y. Wu D. Wang J. Song R. Wang J. Yin D. Liu Y. Pan S. Liu X. Wang Y. Han J. Meng F. Zhang B. Guo H. Lu Z. Liu L. ABCA8 is regulated by miR-374b-5p and inhibits proliferation and metastasis of hepatocellular carcinoma through the ERK/ZEB1 pathway. J. Exp. Clin. Cancer Res. 2020 39 1 90 10.1186/s13046‑020‑01591‑1 32430024
    [Google Scholar]
  46. Wang J.Q. Yang Y. Cai C.Y. Teng Q.X. Cui Q. Lin J. Assaraf Y.G. Chen Z.S. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist. Updat. 2021 54 100743 10.1016/j.drup.2021.100743 33513557
    [Google Scholar]
  47. Katzeff J.S. Lok H.C. Bhatia S. Fu Y. Halliday G.M. Kim W.S. ATP-binding cassette transporter expression is widely dysregulated in frontotemporal dementia with TDP-43 inclusions. Front. Mol. Neurosci. 2022 15 1043127 10.3389/fnmol.2022.1043127 36385764
    [Google Scholar]
  48. Park J.H. Myung J.K. Lee S.J. Kim H. Kim S. Lee S.B. Jang H. Jang W.I. Park S. Yang H. Shim S. Kim M.J. ABCA1-mediated EMT promotes papillary thyroid cancer malignancy through the ERK/Fra-1/ZEB1 pathway. Cells 2023 12 2 274 10.3390/cells12020274 36672209
    [Google Scholar]
  49. Ceraulo A. Lapillonne H. Cheok M.H. Preudhomme C. Dombret H. Terré C. Lambert J. Leverger G. Bertrand Y. Mortreux F. Wattel E. Prognostic impact of ABCA3 expression in adult and pediatric acute myeloid leukemia: An ALFA-ELAM02 joint study. Blood Adv. 2022 6 9 2773 2777 10.1182/bloodadvances.2021006040 35008099
    [Google Scholar]
  50. Lv C. Yang H. Yu J. Dai X. ABCA8 inhibits breast cancer cell proliferation by regulating the AMP activated protein kinase/mammalian target of rapamycin signaling pathway. Environ. Toxicol. 2022 37 6 1423 1431 10.1002/tox.23495 35191604
    [Google Scholar]
  51. Goossens P. Rodriguez-Vita J. Etzerodt A. Masse M. Rastoin O. Gouirand V. Ulas T. Papantonopoulou O. Van Eck M. Auphan-Anezin N. Bebien M. Verthuy C. Vu Manh T.P. Turner M. Dalod M. Schultze J.L. Lawrence T. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab. 2019 29 6 1376 1389.e4 10.1016/j.cmet.2019.02.016 30930171
    [Google Scholar]
  52. Syed R. Rengasamy P. Rajagopalan S. Deiuliis J.A. Maiseyeu A. MicroRNA 223 enhances ABCA1 protein stability and supports efflux in cholesterol-burdened macrophages. Cell Biochem. Biophys. 2025 83 2 1943 1954 10.1007/s12013‑024‑01603‑3 39541001
    [Google Scholar]
  53. Yan Y. Liu Y. Liang Q. Xu Z. Drug metabolism-related gene ABCA1 augments temozolomide chemoresistance and immune infiltration abundance of M2 macrophages in glioma. Eur. J. Med. Res. 2023 28 1 373 10.1186/s40001‑023‑01370‑6 37749600
    [Google Scholar]
  54. Pang L. Zhou F. Chen P. Lipid-laden macrophages recycle myelin to feed glioblastoma. Cancer Res. 2024 84 22 3712 3714 10.1158/0008‑5472.CAN‑24‑3362 39292810
    [Google Scholar]
  55. Kloosterman D.J. Erbani J. Boon M. Farber M. Handgraaf S.M. Ando-Kuri M. Sánchez-López E. Fontein B. Mertz M. Nieuwland M. Liu N.Q. Forn-Cuni G. van der Wel N.N. Grootemaat A.E. Reinalda L. van Kasteren S.I. de Wit E. Ruffell B. Snaar-Jagalska E. Petrecca K. Brandsma D. Kros A. Giera M. Akkari L. Macrophage-mediated myelin recycling fuels brain cancer malignancy. Cell 2024 187 19 5336 5356.e30 10.1016/j.cell.2024.07.030 39137777
    [Google Scholar]
  56. Fan J. To K.K.W. Chen Z.S. Fu L. ABC transporters affects tumor immune microenvironment to regulate cancer immunotherapy and multidrug resistance. Drug Resist. Updat. 2023 66 100905 10.1016/j.drup.2022.100905 36463807
    [Google Scholar]
  57. Li J. Liu J. Yu Y. Liu Y. Guan X. NF-κB/ABCA1 pathway aggravates ox-LDL-induced cell pyroptosis by activation of NLRP3 inflammasomes in THP-1-derived macrophages. Mol. Biol. Rep. 2022 49 7 6161 6171 10.1007/s11033‑022‑07408‑y 35579737
    [Google Scholar]
  58. Wang L. Sun X. He J. Liu Z. Identification and validation of prognostic related hallmark atp-binding cassette transporters associated with immune cell infiltration patterns in thyroid carcinoma. Front. Oncol. 2022 12 781686 10.3389/fonc.2022.781686 35837087
    [Google Scholar]
  59. Demidenko R. Razanauskas D. Daniunaite K. Lazutka J.R. Jankevicius F. Jarmalaite S. Frequent down-regulation of ABC transporter genes in prostate cancer. BMC Cancer 2015 15 1 683 10.1186/s12885‑015‑1689‑8 26459268
    [Google Scholar]
  60. Ding C. Wang J. Wang J. Niu J. Xiahou Z. Sun Z. Zhao Z. Zeng D. Heterogeneity of cancer-associated fibroblast subpopulations in prostate cancer: Implications for prognosis and immunotherapy. Transl. Oncol. 2025 52 102255 10.1016/j.tranon.2024.102255 39721245
    [Google Scholar]
  61. Wang S. Zhang W. Wu X. Zhu Z. Chen Y. Liu W. Xu J. Chen L. Zhuang C. Comprehensive analysis of T-cell regulatory factors and tumor immune microenvironment in stomach adenocarcinoma. BMC Cancer 2024 24 1 570 10.1186/s12885‑024‑12302‑w 38714987
    [Google Scholar]
  62. Shi R. Zhao K. Wang T. Yuan J. Zhang D. Xiang W. Qian J. Luo N. Zhou Y. Tang B. Li C. Miao H. 5-aza-2′-deoxycytidine potentiates anti-tumor immunity in colorectal peritoneal metastasis by modulating ABC A9-mediated cholesterol accumulation in macrophages. Theranostics 2022 12 2 875 890 10.7150/thno.66420 34976218
    [Google Scholar]
  63. Thurm C. Schraven B. Kahlfuss S. ABC transporters in T cell-mediated physiological and pathological immune responses. Int. J. Mol. Sci. 2021 22 17 9186 10.3390/ijms22179186 34502100
    [Google Scholar]
  64. Gou Q. Dong C. Xu H. Khan B. Jin J. Liu Q. Shi J. Hou Y. PD-L1 degradation pathway and immunotherapy for cancer. Cell Death Dis. 2020 11 11 955 10.1038/s41419‑020‑03140‑2 33159034
    [Google Scholar]
  65. Fu J. Li K. Zhang W. Wan C. Zhang J. Jiang P. Liu X.S. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med. 2020 12 1 21 10.1186/s13073‑020‑0721‑z 32102694
    [Google Scholar]
  66. Yadav P. Ambudkar S.V. Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J. Nanobiotechnology 2022 20 1 423 10.1186/s12951‑022‑01626‑z 36153528
    [Google Scholar]
  67. Pickup M.W. Mouw J.K. Weaver V.M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014 15 12 1243 1253 10.15252/embr.201439246 25381661
    [Google Scholar]
  68. Xu M. Zhang T. Xia R. Wei Y. Wei X. Targeting the tumor stroma for cancer therapy. Mol. Cancer 2022 21 1 208 10.1186/s12943‑022‑01670‑1 36324128
    [Google Scholar]
  69. Yuan J. Khan S.U. Luo J. Jiang Y. Yang Y. Yan J. Tong Q. Biosynthetic silver nanoparticles inhibit the malignant behavior of gastric cancer cells and enhance the therapeutic effect of 5-fluorouracil by promoting intracellular ros generation and apoptosis. Pharmaceutics 2022 14 10 2109 10.3390/pharmaceutics14102109 36297544
    [Google Scholar]
  70. Ren J. Hu Z. Niu G. Xia J. Wang X. Hong R. Gu J. Wang D. Ke C. Annexin A1 induces oxaliplatin resistance of gastric cancer through autophagy by targeting PI3K/AKT/mTOR. FASEB J. 2023 37 3 e22790 10.1096/fj.202200400RR 36786694
    [Google Scholar]
  71. Xiang T. Yuan C. Guo X. Wang H. Cai Q. Xiang Y. Luo W. Liu G. The novel ZEB1-upregulated protein PRTG induced by Helicobacter pylori infection promotes gastric carcinogenesis through the cGMP/PKG signaling pathway. Cell Death Dis. 2021 12 2 150 10.1038/s41419‑021‑03440‑1 33542225
    [Google Scholar]
  72. Xu G. Liu W. Wang Y. Wei X. Liu F. He Y. Zhang L. Song Q. Li Z. Wang C. Xu R. Chen B. CMG901, a Claudin18.2-specific antibody-drug conjugate, for the treatment of solid tumors. Cell Rep. Med. 2024 5 9 101710 10.1016/j.xcrm.2024.101710 39232496
    [Google Scholar]
  73. Li R. Huang Y. Liu H. Dilger J.P. Lin J. Abstract 2162: Comparing volatile and intravenous anesthetics in a mouse model of breast cancer metastasis. Cancer Res. 2018 78 (13_Supplement) 2162 2162 10.1158/1538‑7445.AM2018‑2162
    [Google Scholar]
  74. Liu H. Dong A. Rasteh A.M. Wang P. Weng J. Identification of the novel exhausted T cell CD8 + markers in breast cancer. Sci. Rep. 2024 14 1 19142 10.1038/s41598‑024‑70184‑1 39160211
    [Google Scholar]
  75. Liu H. Dilger J.P. Lin J. A pan-cancer-bioinformatic-based literature review of TRPM7 in cancers. Pharmacol. Ther. 2022 240 108302 10.1016/j.pharmthera.2022.108302 36332746
    [Google Scholar]
  76. Agarwal K. Liu H. Potential cancer biomarkers: Mitotic intra-S DNA damage checkpoint genes. bioRxiv 2024 19 613851 10.1101/2024.09.19.613851
    [Google Scholar]
  77. Liu H. Tang T. Pan-cancer genetic analysis of disulfidptosis-related gene set. Cancer Genet. 2023 278-279 91 103 10.1016/j.cancergen.2023.10.001 37879141
    [Google Scholar]
  78. Liu H. Weng J. Huang C.L.H. Jackson A.P. Voltage-gated sodium channels in cancers. Biomark. Res. 2024 12 1 70 10.1186/s40364‑024‑00620‑x 39060933
    [Google Scholar]
  79. Dong A. Rasteh A.M. Liu H. Pan-cancer genetic analysis of mitochondrial dna repair gene set. bioRxiv 2024 14 613048 10.1101/2024.09.14.613048
    [Google Scholar]
  80. Liu H. Guo Z. Wang P. Genetic expression in cancer research: Challenges and complexity. Gene Rep. 2024 37 102042 10.1016/j.genrep.2024.102042
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073356415250423045501
Loading
/content/journals/cchts/10.2174/0113862073356415250423045501
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article. Attached to the supplementary material document


  • Article Type:
    Research Article
Keywords: transcriptional analysis ; ABCA family ; immune system ; prognostic value ; Gastric cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test