Full text loading...
This study aimed to elucidate the role of NFS1 in gastric cancer (GC) prognosis, pyroptosis, and oxaliplatin chemosensitivity, and to explore its interaction with the MAPK signaling pathway.
GC mRNA expression and clinical survival data were obtained from The Cancer Genome Atlas Gastric Adenocarcinoma (TCGA-STAD). Kaplan-Meier analysis assessed the prognostic significance of NFS1. R software facilitated NFS1 expression analysis and KEGG pathway enrichment. Pyroptosis was evaluated using Cell Counting Kit-8, flow cytometry, and morphological analysis. Western blotting quantified pyroptosis-related protein expression. RNA sequencing libraries were prepared and sequenced on the Illumina platform.
Oxaliplatin treatment significantly reduced cell viability and induced pyroptosis, which was markedly attenuated by GSDME deficiency. Oxaliplatin activated caspase-3 and cleaved GSDME, effects that were reversed by the caspase-3 inhibitor Z-DEVD. NFS1 knockdown enhanced GSDME and caspase-3 cleavage, increasing pyroptosis (PI and Annexin-V double-positive cells) compared to controls. KEGG analysis of RNA sequencing and TCGA data highlighted the MAPK signaling pathway. Western blotting confirmed that oxaliplatin combined with NFS1 knockdown suppressed MAPK pathway proteins.
The caspase-3/GSDME axis mediates oxaliplatin-induced GC pyroptosis. High NFS1 expression inhibits GSDME activation, promotes MAPK protein activation, and reduces oxaliplatin sensitivity. These findings suggest that the caspase-3/GSDME pathway offers a novel mechanism for oxaliplatin's antitumor effects. NFS1 may serve as an independent prognostic biomarker in GC, influencing disease progression through MAPK regulation.
NFS1 is a promising therapeutic target for gastric cancer, especially in the study of oxaliplatin-based chemotherapy in combination with a treatment regimen that triggers pyroptosis.
Article metrics loading...
Full text loading...
References
Data & Media loading...