Skip to content
2000
image of Knockdown of NFS1 and Oxaliplatin Combination Induces Pyroptosis via the Caspase-3/GSDME Pathway in Gastric Cancer Cells

Abstract

Introduction

This study aimed to elucidate the role of NFS1 in gastric cancer (GC) prognosis, pyroptosis, and oxaliplatin chemosensitivity, and to explore its interaction with the MAPK signaling pathway.

Methods

GC mRNA expression and clinical survival data were obtained from The Cancer Genome Atlas Gastric Adenocarcinoma (TCGA-STAD). Kaplan-Meier analysis assessed the prognostic significance of NFS1. R software facilitated NFS1 expression analysis and KEGG pathway enrichment. Pyroptosis was evaluated using Cell Counting Kit-8, flow cytometry, and morphological analysis. Western blotting quantified pyroptosis-related protein expression. RNA sequencing libraries were prepared and sequenced on the Illumina platform.

Results

Oxaliplatin treatment significantly reduced cell viability and induced pyroptosis, which was markedly attenuated by GSDME deficiency. Oxaliplatin activated caspase-3 and cleaved GSDME, effects that were reversed by the caspase-3 inhibitor Z-DEVD. NFS1 knockdown enhanced GSDME and caspase-3 cleavage, increasing pyroptosis (PI and Annexin-V double-positive cells) compared to controls. KEGG analysis of RNA sequencing and TCGA data highlighted the MAPK signaling pathway. Western blotting confirmed that oxaliplatin combined with NFS1 knockdown suppressed MAPK pathway proteins.

Discussion

The caspase-3/GSDME axis mediates oxaliplatin-induced GC pyroptosis. High NFS1 expression inhibits GSDME activation, promotes MAPK protein activation, and reduces oxaliplatin sensitivity. These findings suggest that the caspase-3/GSDME pathway offers a novel mechanism for oxaliplatin's antitumor effects. NFS1 may serve as an independent prognostic biomarker in GC, influencing disease progression through MAPK regulation.

Conclusion

NFS1 is a promising therapeutic target for gastric cancer, especially in the study of oxaliplatin-based chemotherapy in combination with a treatment regimen that triggers pyroptosis.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073386878250801103600
2025-08-06
2025-10-30
Loading full text...

Full text loading...

References

  1. Boku N. Ryu M.H. Kato K. Chung H.C. Minashi K. Lee K.W. Cho H. Kang W.K. Komatsu Y. Tsuda M. Yamaguchi K. Hara H. Fumita S. Azuma M. Chen L.T. Kang Y.K. Safety and efficacy of nivolumab in combination with S-1/capecitabine plus oxaliplatin in patients with previously untreated, unresectable, advanced, or recurrent gastric/gastroesophageal junction cancer: Interim results of a randomized, phase II trial (ATTRACTION-4). Ann. Oncol. 2019 30 2 250 258 10.1093/annonc/mdy540 30566590
    [Google Scholar]
  2. Janjigian Y.Y. Shitara K. Moehler M. Garrido M. Salman P. Shen L. Wyrwicz L. Yamaguchi K. Skoczylas T. Campos Bragagnoli A. Liu T. Schenker M. Yanez P. Tehfe M. Kowalyszyn R. Karamouzis M.V. Bruges R. Zander T. Pazo-Cid R. Hitre E. Feeney K. Cleary J.M. Poulart V. Cullen D. Lei M. Xiao H. Kondo K. Li M. Ajani J.A. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021 398 10294 27 40 10.1016/S0140‑6736(21)00797‑2 34102137
    [Google Scholar]
  3. Feng W. Su Z. Yin Q. Zong W. Shen X. Ju S. ncRNAs associated with drug resistance and the therapy of digestive system neoplasms. J. Cell. Physiol. 2019 234 11 19143 19157 10.1002/jcp.28551 30941775
    [Google Scholar]
  4. Xiao Y.F. Li B.S. Liu J.J. Wang S.M. Liu J. Yang H. Hu Y.Y. Gong C.L. Li J.L. Yang S.M. Role of lncSLCO1C1 in gastric cancer progression and resistance to oxaliplatin therapy. Clin. Transl. Med. 2022 12 4 691 10.1002/ctm2.691 35474446
    [Google Scholar]
  5. Lill R. Freibert S.A. Mechanisms of mitochondrial iron-sulfur protein biogenesis. Annu. Rev. Biochem. 2020 89 1 471 499 10.1146/annurev‑biochem‑013118‑111540 31935115
    [Google Scholar]
  6. Zhang M. Liu Z. Le Y. Gu Z. Zhao H. Iron-sulfur clusters: A key factor of regulated cell death in cancer. Oxid. Med. Cell. Longev. 2022 2022 1 15 10.1155/2022/7449941 36338346
    [Google Scholar]
  7. Pang Y. Wang J. Gao X. Jiang M. Zhu L. Liang F. Liang M. Wu X. Xu X. Ren X. Xie T. Wang W. Sun Q. Xiong X. Lyu J. Li J. Tan G. Roles of conserved active site residues in the IscS cysteine desulfurase reaction. Front. Microbiol. 2023 14 1084205 10.3389/fmicb.2023.1084205 36876095
    [Google Scholar]
  8. Jiang Y. Li L. Li W. Liu K. Wu Y. Wang Z. NFS1 inhibits ferroptosis in gastric cancer by regulating the STAT3 pathway. J. Bioenerg. Biomembr. 2024 56 5 573 587 10.1007/s10863‑024‑10038‑7 39254861
    [Google Scholar]
  9. Fujihara K.M. Zhang B.Z. Jackson T.D. Ogunkola M.O. Nijagal B. Milne J.V. Sallman D.A. Ang C.S. Nikolic I. Kearney C.J. Hogg S.J. Cabalag C.S. Sutton V.R. Watt S. Fujihara A.T. Trapani J.A. Simpson K.J. Stojanovski D. Leimkühler S. Haupt S. Phillips W.A. Clemons N.J. Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction. Sci. Adv. 2022 8 37 eabm9427 10.1126/sciadv.abm9427 36103522
    [Google Scholar]
  10. Loveless R. Bloomquist R. Teng Y. Pyroptosis at the forefront of anticancer immunity. J. Exp. Clin. Cancer Res. 2021 40 1 264 10.1186/s13046‑021‑02065‑8 34429144
    [Google Scholar]
  11. Wei X. Xie F. Zhou X. Wu Y. Yan H. Liu T. Huang J. Wang F. Zhou F. Zhang L. Role of pyroptosis in inflammation and cancer. Cell. Mol. Immunol. 2022 19 9 971 992 10.1038/s41423‑022‑00905‑x 35970871
    [Google Scholar]
  12. Zou J. Zheng Y. Huang Y. Tang D. Kang R. Chen R. The versatile gasdermin family: Their function and roles in diseases. Front. Immunol. 2021 12 751533 10.3389/fimmu.2021.751533 34858408
    [Google Scholar]
  13. Hu Y. Liu Y. Zong L. The multifaceted roles of GSDME-mediated pyroptosis in cancer: Therapeutic strategies and persisting obstacles. Cell Death Dis. 2023 14 12 836 10.1038/s41419‑023‑06382‑y
    [Google Scholar]
  14. De Schutter E. Croes L. Ibrahim J. Pauwels P. Op de Beeck K. Vandenabeele P. Van Camp G. GSDME and its role in cancer: From behind the scenes to the front of the stage. Int. J. Cancer 2021 148 12 2872 2883 10.1002/ijc.33390 33186472
    [Google Scholar]
  15. Hu L. Chen M. Chen X. Zhao C. Fang Z. Wang H. Dai H. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis. 2020 11 4 281 10.1038/s41419‑020‑2476‑2 32332857
    [Google Scholar]
  16. Fu C. Ji W. Cui Q. Chen A. Weng H. Lu N. Yang W. GSDME-mediated pyroptosis promotes anti-tumor immunity of neoadjuvant chemotherapy in breast cancer. Cancer Immunol. Immunother. 2024 73 9 177 10.1007/s00262‑024‑03752‑z 38954046
    [Google Scholar]
  17. Wang Y. Gao W. Shi X. Ding J. Liu W. He H. Wang K. Shao F. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 2017 547 7661 99 103 10.1038/nature22393 28459430
    [Google Scholar]
  18. Alvarez S.W. Sviderskiy V.O. Terzi E.M. Papagiannakopoulos T. Moreira A.L. Adams S. Sabatini D.M. Birsoy K. Possemato R. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 2017 551 7682 639 643 10.1038/nature24637 29168506
    [Google Scholar]
  19. Jiang Y. Li W. Zhang J. Liu K. Wu Y. Wang Z. NFS1 as a candidate prognostic biomarker for gastric cancer correlated with immune infiltrates. Int. J. Gen. Med. 2024 17 3855 3868 10.2147/IJGM.S444443 39253726
    [Google Scholar]
  20. Lin J.F. Hu P.S. Wang Y.Y. Tan Y.T. Yu K. Liao K. Wu Q.N. Li T. Meng Q. Lin J.Z. Liu Z.X. Pu H.Y. Ju H.Q. Xu R.H. Qiu M.Z. Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis. Signal Transduct. Target. Ther. 2022 7 1 54 10.1038/s41392‑022‑00889‑0 35221331
    [Google Scholar]
  21. Hao Y. Xie F. He J. Gu C. Zhao Y. Luo W. Song X. Shen J. Yu L. Han Z. He J. PLA inhibits TNF-α-induced PANoptosis of prostate cancer cells through metabolic reprogramming. Int. J. Biochem. Cell Biol. 2024 169 106554 10.1016/j.biocel.2024.106554 38408537
    [Google Scholar]
  22. Lin J. Lyu Z. Feng H. Xie H. Peng J. Zhang W. Zheng J. Zheng J. Pan Z. Li Y. CircPDIA3/miR-449a/XBP1 feedback loop curbs pyroptosis by inhibiting palmitoylation of the GSDME-C domain to induce chemoresistance of colorectal cancer. Drug Resist. Updat. 2024 76 101097 10.1016/j.drup.2024.101097 38861804
    [Google Scholar]
  23. Yu J. Li S. Qi J. Chen Z. Wu Y. Guo J. Wang K. Sun X. Zheng J. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death Dis. 2019 10 3 193 10.1038/s41419‑019‑1441‑4 30804337
    [Google Scholar]
  24. Deng B.B. Jiao B.P. Liu Y.J. Li Y.R. Wang G.J. BIX-01294 enhanced chemotherapy effect in gastric cancer by inducing GSDME‐mediated pyroptosis. Cell Biol. Int. 2020 44 9 1890 1899 10.1002/cbin.11395 32437063
    [Google Scholar]
  25. Sviderskiy V.O. Blumenberg L. Gorodetsky E. Karakousi T.R. Hirsh N. Alvarez S.W. Terzi E.M. Kaparos E. Whiten G.C. Ssebyala S. Tonzi P. Mir H. Neel B.G. Huang T.T. Adams S. Ruggles K.V. Possemato R. Hyperactive CDK2 activity in basal-like breast cancer imposes a genome integrity liability that can be exploited by targeting DNA polymerase ε. Mol. Cell 2020 80 4 682 698.e7 10.1016/j.molcel.2020.10.016 33152268
    [Google Scholar]
  26. Jiang M. Qi L. Li L. Li Y. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov. 2020 6 1 112 10.1038/s41420‑020‑00349‑0 33133646
    [Google Scholar]
  27. Liu J. Wei Gao; Yong Sheng; Jiafeng Sun; Donghu Wen, Resveratrol drives ferroptosis of acute myeloid leukemia cells through Hsa-miR-335-5p/NFS1/GPX4 pathway in a ROS-dependent manner. Cell. Mol. Biol. 2023 69 7 131 137 10.14715/cmb/2023.69.7.21 37715395
    [Google Scholar]
  28. Chen W. Yang K.B. Zhang Y.Z. Synthetic lethality of combined ULK1 defection and p53 restoration induce pyroptosis by directly upregulating GSDME transcription and cleavage activation through ROS/NLRP3 signaling. J. Exp. Clin. Cancer Res. 2024 43 1 248 10.1186/s13046‑024‑03168‑8
    [Google Scholar]
  29. Deng M. Zhao R. Zou H. Guan R. Wang J. Lee C. He B. Zhou J. Li S. Wei W. Cai H. Guo R. Oxaliplatin induces pyroptosis in hepatoma cells and enhances antitumor immunity against hepatocellular carcinoma. Br. J. Cancer 2025 132 4 371 383 10.1038/s41416‑024‑02908‑z 39748129
    [Google Scholar]
  30. Guo J. Zheng J. Mu M. Chen Z. Xu Z. Zhao C. Yang K. Qin X. Sun X. Yu J. GW4064 enhances the chemosensitivity of colorectal cancer to oxaliplatin by inducing pyroptosis. Biochem. Biophys. Res. Commun. 2021 548 60 66 10.1016/j.bbrc.2021.02.043 33631675
    [Google Scholar]
  31. Zhang Z. Zhang Y. Xia S. Kong Q. Li S. Liu X. Junqueira C. Meza-Sosa K.F. Mok T.M.Y. Ansara J. Sengupta S. Yao Y. Wu H. Lieberman J. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 2020 579 7799 415 420 10.1038/s41586‑020‑2071‑9 32188940
    [Google Scholar]
  32. Du L. Ming H. Yan Z. Chen J. Song W. Dai H. Decitabine combined with cold atmospheric plasma induces pyroptosis via the ROS/Caspase-3/GSDME signaling pathway in Ovcar5 cells. Biochim. Biophys. Acta, Gen. Subj. 2024 1868 6 130602 10.1016/j.bbagen.2024.130602 38513927
    [Google Scholar]
  33. Sun S.J. Jiao X.D. Chen Z.G. Cao Q. Zhu J.H. Shen Q.R. Liu Y. Zhang Z. Xu F.F. Shi Y. Tong J. Ouyang S.X. Fu J.T. Zhao Y. Ren J. Li D.J. Shen F.M. Wang P. Gasdermin-E-mediated pyroptosis drives immune checkpoint inhibitor-associated myocarditis via cGAS-STING activation. Nat. Commun. 2024 15 1 6640 10.1038/s41467‑024‑50996‑5 39103324
    [Google Scholar]
  34. Fang J.Y. Richardson B.C. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005 6 5 322 327 10.1016/S1470‑2045(05)70168‑6 15863380
    [Google Scholar]
  35. Yuan W. Shi Y. Dai S. The role of MAPK pathway in gastric cancer: Unveiling molecular crosstalk and therapeutic prospects. J. Transl. Med. 2024 22 1 1142 10.1186/s12967‑024‑05998‑8
    [Google Scholar]
  36. Polak R. Zhang E.T. Kuo C. J. Cancer organoids 2.0: Modelling the complexity of the tumour immune microenvironment. Nat. Rev. Cancer 2024 24 8 523 539 10.1038/s41568‑024‑00706‑6 38977835
    [Google Scholar]
  37. Lv J. Du X. Wang M. Su J. Wei Y. Xu C. Construction of tumor organoids and their application to cancer research and therapy. Theranostics 2024 14 3 1101 1125 10.7150/thno.91362
    [Google Scholar]
  38. Yoshida G.J. Applications of patient-derived tumor xenograft models and tumor organoids. J. Hematol. Oncol. 2020 13 1 4 10.1186/s13045‑019‑0829‑z
    [Google Scholar]
  39. Won Y. Choi E. Mouse models of Kras activation in gastric cancer. Exp. Mol. Med. 2022 54 11 1793 1798 10.1038/S12276‑022‑00882‑1 36369466
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073386878250801103600
Loading
/content/journals/cchts/10.2174/0113862073386878250801103600
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Pyroptosis ; gastric cancer ; NFS1 ; oxaliplatin ; MAPK ; GSDME
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test