Skip to content
2000
Volume 28, Issue 17
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

In recent years, there has been a rise in the incidence of renal cell carcinoma (RCC), with metastatic RCC being a prevalent and significant contributor to mortality. While a regulatory role for microRNAs (miRNAs) in the development and progression of RCC has been recognized, their precise functions, molecular mechanisms, and potential clinical implications remain inadequately elucidated. Hence, this study aimed to explore the role of miR-507 in RCC and identify STEAP3 as a downstream target of miR-507.

Methods

Bioinformatics analysis was used to analyze the expression of miR-507 and STEAP3 in RCC specimens. CCK-8, Transwell, and flow cytometry assays were used to assess the function of miR-507 in RCC cells. The connection between miR-507 and STEAP3 was confirmed through a luciferase reporter assay. The expression level of STEAP3, p53, and xCT was analyzed by western blotting.

Results

Bioinformatics analysis showed that miR-507 was expressed at low levels in RCC tissues and was linked to poor overall survival. STEAP3 was found to be significantly upregulated in RCC. Further, STEAP3 was shown to be targeted by miR-507. High levels of miR-507 reduced the expression of STEAP3, leading to stagnant cell viability, apoptosis, and migrative capacity. Whereas miR-507 knockdown reverted such a tendency. The study also discovered that miR-507 exerted its inhibitory effect through the op53/xCT pathway.

Conclusion

Within RCC, miR-507 modulates the expression of SETAP3/p53/xCT axis, exhibiting a tumor suppressive effect. These discoveries offer present prospective biomarkers for both surveillance and treatment of RCC.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073353340241108053733
2025-01-09
2025-12-23
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.21590
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660
    [Google Scholar]
  3. RassyE. ParentP. LefortF. BoussiosS. BaciarelloG. PavlidisN. New rising entities in cancer of unknown primary: Is there a real therapeutic benefit?Crit. Rev. Oncol. Hematol.202014710288210.1016/j.critrevonc.2020.102882
    [Google Scholar]
  4. GillI.S. CacciamaniG.E. DuddalwarV. ThangathuraiD. CunninghamM. Renal cancer with extensive level IV intracardiac tumour thrombus removed by robot.Lancet202039610262e8810.1016/S0140‑6736(20)32291‑1
    [Google Scholar]
  5. HsiehJ.J. PurdueM.P. SignorettiS. SwantonC. AlbigesL. SchmidingerM. HengD.Y. LarkinJ. FicarraV. Renal cell carcinoma.Nat. Rev. Dis. Primers2017311700910.1038/nrdp.2017.9
    [Google Scholar]
  6. BlickC. RitchieA.W.S. EisenT. StewartG.D. Improving outcomes in high-risk, nonmetastatic renal cancer: New data and ongoing trials.Nat. Rev. Urol.2017141275375910.1038/nrurol.2017.123
    [Google Scholar]
  7. MarchioniM. RivasJ.G. AutranA. SocarrasM. AlbisinniS. FerroM. SchipsL. ScarpaR.M. PapaliaR. EspertoF. Biomarkers for renal cell carcinoma recurrence: State of the art.Curr. Urol. Rep.20212263110.1007/s11934‑021‑01050‑0
    [Google Scholar]
  8. BrownJ.E. RoyleK-L. GregoryW. RalphC. MaraveyasA. DinO. EisenT. NathanP. PowlesT. GriffithsR. JonesR. VasudevN. WheaterM. HamidA. WaddellT. McMeneminR. PatelP. LarkinJ. FaustG. MartinA. SwainJ. BestallJ. McCabeC. MeadsD. GohV. WahM.T. BrownJ. HewisonJ. SelbyP. CollinsonF. CarserJ. SrinivasanG. ThistlewaiteF. AzzabiA. BeresfordM. FarrugiaD. DecatrisM. ThomasC. GaleJ. McAleerJ. ClaytonA. BoletiE. GeldartT. SundarS. LesterJ. PalaniappanN. HingoraniM. RehmanK. KhanM. SarwarN. GrahamJ. ThomsonA. SrihariN. SheehanD. SrinivasanR. KhanO. WorldingJ.A.S. BoussiosS. StuartN. SmithM.C. DanwataF. McLarenD. SundaramurthyA. LydonA. BeesleyS. LeesK. VarugheseM. GrayE. ScottA. BaxterM. MullardA. InnominatoP. KapurG. KumarA. CharnleyN. ManettaC. ChakrabortiP. DasP. RudmanS. TaylorH. MikropoulosC. HighleyM. MuthukumarD. ZarkarA. VergisR. SriprasadS. BrulinskiP. ClarkeA. OsbourneR. HarveyM. DegaR. SparrowG. BarthakurU. BeaumontE. ManettaC. MichaelA. PorfiriE. AzamF. KodavtigantiR. Temporary treatment cessation versus continuation of first-line tyrosine kinase inhibitor in patients with advanced clear cell renal cell carcinoma (STAR): An open-label, non-inferiority, randomised, controlled, phase 2/3 trial.Lancet Oncol.202324321322710.1016/S1470‑2045(22)00793‑8
    [Google Scholar]
  9. CampiR. SessaF. CortiF. CarrionD.M. MariA. AmparoreD. MirM.C. FioriC. PapaliaR. KutikovA. VolpeA. CapitanioU. PierorazioP.M. ScarpaR.M. PorpigliaF. MinerviniA. SerniS. EspertoF. Triggers for delayed intervention in patients with small renal masses undergoing active surveillance: A systematic review.Minerva Urol. Nefrol.202072438940710.23736/S0393‑2249.20.03870‑9
    [Google Scholar]
  10. ChipmanL.B. PasquinelliA.E. miRNA targeting: Growing beyond the seed.Trends Genet.201935321522210.1016/j.tig.2018.12.005
    [Google Scholar]
  11. HillM. TranN. miRNA interplay: Mechanisms and consequences in cancer.Dis. Model. Mech.2021144dmm04766210.1242/dmm.047662
    [Google Scholar]
  12. ZhengZ. ZengX. ZhuY. LengM. ZhangZ. WangQ. LiuX. ZengS. XiaoY. HuC. PangS. WangT. XuB. PengP. LiF. TanW. CircPPAP2B controls metastasis of clear cell renal cell carcinoma via HNRNPC-dependent alternative splicing and targeting the miR-182-5p/CYP1B1 axis.Mol. Cancer2024231410.1186/s12943‑023‑01912‑w
    [Google Scholar]
  13. CenJ. LiangY. FengZ. ChenX. ChenJ. WangY. ZhuJ. XuQ. ShuG. ZhengW. LiangH. WangZ. DengQ. CaoJ. LuoJ. JinX. HuangY. Hsa_circ_0057105 modulates a balance of epithelial‐mesenchymal transition and ferroptosis vulnerability in renal cell carcinoma.Clin. Transl. Med.2023138e133910.1002/ctm2.1339
    [Google Scholar]
  14. ChoiS. KimK. YeoH. LeeG. KimI. OhJ. AnH-J. LeeS. miR-4284 functions as a tumor suppressor in renal cell carcinoma cells by targeting glutamate decarboxylase 1.Cancers20231515388810.3390/cancers15153888
    [Google Scholar]
  15. KalantzakosT. HooperK. DasS. SullivanT. CanesD. MoinzadehA. ChristR.K. MicroRNA-155-5p targets JADE-1, promoting proliferation, migration, and invasion in clear cell renal cell carcinoma cells.Int. J. Mol. Sci.2023249782510.3390/ijms24097825
    [Google Scholar]
  16. PomaM.J. FuertesT.L. CamachoL.E. MorosZ.A. VacasL.R. HerreraL.M.I. FernandezP.A. VaraF.J.Á. ArranzE.E. PozoG.A. MarínP.Á. MiRNAs in renal cell carcinoma.Clin. Transl. Oncol.202224112055206310.1007/s12094‑022‑02866‑z
    [Google Scholar]
  17. FardG.S. FarsaniS.Z. BranickiW. TaheriM. MicroRNA signature in renal cell carcinoma.Front. Oncol.20201059635910.3389/fonc.2020.596359
    [Google Scholar]
  18. LvH.L. LiZ.L. SongY.B. MicroRNA-507 represses the malignant behaviors of non-small cell lung cancer via targeting zinc finger E-box binding homeobox 2.Eur. Rev. Med. Pharmacol. Sci.2019232299559964
    [Google Scholar]
  19. WangS. LiJ. YangX. CodingL.N.R.N.A. Long non-coding RNA LINC00525 promotes the stemness and chemoresistance of colorectal cancer by targeting MIR-507/ELK3 axis.Int. J. Stem Cells201912234735910.15283/ijsc19041
    [Google Scholar]
  20. JiaL. LiuW. CaoB. LiH. YinC. MiR-507 inhibits the migration and invasion of human breastcancer cells through Flt-1 suppression.Oncotarget2016724367433675410.18632/oncotarget.9163
    [Google Scholar]
  21. SunC. LiG. LiuM. A novel circular RNA, circ_0005394, predicts unfavorable prognosis and contributes to hepatocellular carcinoma progression by regulating miR-507/E2F3 and miR-515-5p/CXCL6 signaling pathways.OncoTargets Ther.2020136171618010.2147/OTT.S256238
    [Google Scholar]
  22. XuM. EvansL. BizzaroC.L. QuagliaF. VerrilloC.E. LiL. StieglmaierJ. SchiewerM.J. LanguinoL.R. KellyW.K. STEAP1–4 (Six-Transmembrane Epithelial Antigen of the Prostate 1–4) and their clinical implications for prostate cancer.Cancers20221416403410.3390/cancers14164034
    [Google Scholar]
  23. PasserB.J. PorteboisN.V. AmzallagN. PrieurS. CansC. de ClimensR.A. FiucciG. BouvardV. TuynderM. SusiniL. MorchoisneS. CribleV. LespagnolA. DaussetJ. OrenM. AmsonR. TelermanA. The p53-inducible TSAP6 gene product regulates apoptosis and the cell cycle and interacts with Nix and the Myt1 kinase.Proc. Natl. Acad. Sci.200310052284228910.1073/pnas.0530298100
    [Google Scholar]
  24. WuJ. BiQ. ZhengX. CaoH. HaoC. SunZ. WangW. STEAP3 can predict the prognosis and shape the tumor microenvironment of clear cell renal cell carcinoma.BMC Cancer2022221120410.1186/s12885‑022‑10313‑z
    [Google Scholar]
  25. BoussiosS. DevoP. GoodallI.C.A. SirlantzisK. GhoseA. ShindeS.D. PapadopoulosV. SanchezE. RassyE. OvsepianS.V. Exosomes in the diagnosis and treatment of renal cell cancer.Int. J. Mol. Sci.202324181435610.3390/ijms241814356
    [Google Scholar]
  26. FangX. PanA. MiR-507 inhibits the progression of gastric carcinoma via targeting CBX4-mediated activation of Wnt/β-catenin and HIF-1α pathways.Clin. Transl. Oncol.202224102021202810.1007/s12094‑022‑02862‑3
    [Google Scholar]
  27. ZhouR. XuJ. WangL. LiJ. LncRNA PRRT3-AS1 exerts oncogenic effects on nonsmall cell lung cancer by targeting microRNA-507/homeobox B5 axis.Oncol. Res.202129641142310.32604/or.2022.026236
    [Google Scholar]
  28. WeiY. SunQ. ZhaoL. WuJ. ChenX. WangY. ZangW. ZhaoG. LncRNA UCA1-miR-507-FOXM1 axis is involved in cell proliferation, invasion and G0/G1 cell cycle arrest in melanoma.Med. Oncol.20163388810.1007/s12032‑016‑0804‑2
    [Google Scholar]
  29. AweysH. LewisD. SheriffM. RabbaniR.D. LapitanP. SanchezE. PapadopoulosV. GhoseA. BoussiosS. Renal cell cancer – Insights in drug resistance mechanisms.Anticancer Res.202343114781479210.21873/anticanres.16675
    [Google Scholar]
  30. OhgamiR.S. CampagnaD.R. McDonaldA. FlemingM.D. The Steap proteins are metalloreductases.Blood200610841388139410.1182/blood‑2006‑02‑003681
    [Google Scholar]
  31. DengP. LiJ. LuY. HaoR. HeM. LiM. TanM. GaoP. WangL. HongH. TaoJ. LuM. ChenC. MaQ. YueY. WangH. TianL. XieJ. ChenM. LuoY. YuZ. ZhouZ. PiH. Chronic cadmium exposure triggered ferroptosis by perturbing the STEAP3-mediated glutathione redox balance linked to altered metabolomic signatures in humans.Sci. Total Environ.202390516703910.1016/j.scitotenv.2023.167039
    [Google Scholar]
  32. HuangJ. LiuW. SongS. LiJ.C. GanK. ShenC. HolzbeierleinJ. LiB. The iron-modulating hormone hepcidin is upregulated and associated with poor survival outcomes in renal clear cell carcinoma.Front. Pharmacol.202213108005510.3389/fphar.2022.1080055
    [Google Scholar]
  33. YeC.L. DuY. YuX. ChenZ.Y. WangL. ZhengY.F. LiuX.H. STEAP3 affects ferroptosis and progression of renal cell carcinoma through the p53/xCT pathway.Technol. Cancer Res. Treat.2022211533033822107872810.1177/15330338221078728
    [Google Scholar]
  34. HanY. FuL. KongY. JiangC. HuangL. ZhangH. STEAP3 affects ovarian cancer progression by regulating ferroptosis through the p53/SLC7A11 pathway.Mediators Inflamm.2024202411210.1155/2024/4048527
    [Google Scholar]
  35. WeiH. LiZ. ZhaoY. ZhuS. WenS. QuanC. Six‐transmembrane epithelial antigen of prostate 3 (STEAP3) is a potential prognostic biomarker in clear cell renal cell carcinoma that correlates with M2 macrophage infiltration and epithelial–mesenchymal.Cancer Rep.202368e182410.1002/cnr2.1824
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073353340241108053733
Loading
/content/journals/cchts/10.2174/0113862073353340241108053733
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): invasion; metastasis; MiR-507; proliferation; renal cell carcinoma; STEAP3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test