Skip to content
2000
image of The Potential Mechanisms of Banxia Xiexin Decoction in Treating Chronic Colitis: Insights from UPLC-Q-TOF-MS/MS and Network Pharmacology Studies

Abstract

Introduction

Banxia Xiexin Decoction (BXD), traditionally used for gastrointestinal disorders like Chronic Colitis (CC), exerts anti-inflammatory, antibacterial, and intestinal flora-regulating effects. However, CC’s pathogenesis remains unclear, necessitating further research into BXD’s machanism.

Methods

Active BXD components were identified UPLC-Q-TOF-MS/MS. Databases (TCMSP, HERB, GeneCards,DisGeNET,STRING) were used to identify compound/disease targets. Cytoscape 3.9.1 constructed protein-protein interaction networks, and DAVID database was used for GO and KEGG enrichment analysis of core genes. Finally, PyRx, AutoDockTools and PyMol were used for molecular docking, virtual computation, and visualization analyses of core components and key targets.

Results

UPLC-Q-TOF-MS/MS detected 482 BXD components, with 165 active ingredients, including quercetin, kaempferol, baicalein, etc. There were 283 targets related to BXD's treatment of CC, of which the core targets included AKT1, IL-6, TP53, ALB, etc. GO enrichment analysis yielded relevant entries including molecular function 60 entries, 257 entries of biological processes, and 31 entries of cellular composition, and KEGG enrichment analysis identified 150 entries involving IL-17, TNF, PI3K-Akt, and other pathways. The molecular docking results demonstrated that the core components exhibited better binding activities with the key targets.

Discussion

Quercetin, kaempferol, baicalein, and naringenin, the main active ingredients in BXD, may play roles in anti-inflammatory, antimicrobial, and regulating intestinal microbiota to achieve the therapeutic purpose of CC treatment by mediating the targets of AKTl, IL-6, TP53, and ALB, and regulating the signaling pathways of IL-17, TNF, and PI3K-Akt.

Conclusion

BXD’s active components alleviate CC through multi-target and multi-pathway regulation, providing a mechanistic foundation for clinical application.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073350796250305225907
2025-07-14
2025-09-14
Loading full text...

Full text loading...

References

  1. Yang Z.H. Dang Y.Q. Ji G. Role of epigenetics in transformation of inflammation into colorectal cancer. World J. Gastroenterol. 2019 25 23 2863 2877 10.3748/wjg.v25.i23.2863 31249445
    [Google Scholar]
  2. Sohrab S.S. Raj R. Nagar A. Hawthorne S. Paiva-Santos A.C. Kamal M.A. El-Daly M.M. Azhar E.I. Sharma A. Chronic inflammation’s transformation to cancer: A nanotherapeutic paradigm. Molecules 2023 28 11 4413 10.3390/molecules28114413 37298889
    [Google Scholar]
  3. Ferris A. Gaisinskaya P. Nandi N. Approach to diarrhea. Prim. Care 2023 50 3 447 459 10.1016/j.pop.2023.03.010 37516513
    [Google Scholar]
  4. Han D.W. Liu X.S. A case of chronic colitis with pus and blood stools treated by Liu Xingshan's integrated Chinese medicine therapy. J. Pract. Chin. Med., 2023 37 (6) 76 78+151 10.13729/j.issn.1671‑7813.Z20220409
    [Google Scholar]
  5. Ordás I. Eckmann L. Talamini M. Baumgart D.C. Sandborn W.J. Ulcerative colitis. Lancet 2012 380 9853 1606 1619 10.1016/S0140‑6736(12)60150‑0 22914296
    [Google Scholar]
  6. Zhou Z. An R. You L. Liang K. Wang X. Banxia Xiexin decoction: A review on phytochemical, pharmacological, clinical and pharmacokinetic investigations. Medicine (Baltimore) 2023 102 35 e34891 10.1097/MD.0000000000034891 37657053
    [Google Scholar]
  7. Ji Q. Yang Y. Song X. Han X. Wang W. Banxia Xiexin Decoction in the treatment of chronic atrophic gastritis. Medicine (Baltimore) 2020 99 42 e22110 10.1097/MD.0000000000022110 33080670
    [Google Scholar]
  8. Li Y. Wang X. Su Y. Wang Q. Huang S. Pan Z. Chen Y. Liang J. Zhang M. Xie X. Wu Z. Chen J. Zhou L. Luo X. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s. Acta Pharmacol. Sin. 2022 43 6 1495 1507 10.1038/s41401‑021‑00781‑7 34671110
    [Google Scholar]
  9. Xu Y. Zhang S. Yuan S. Su Y. Jia Y. Zhang Y. Duan X. Study of active phytochemicals and mechanisms of Cnidii fructus in treating osteoporosis based on HPLC-Q-TOF-MS/MS and network pharmacology. Comb. Chem. High Throughput Screen. 2024 27 2 317 334 10.2174/1386207326666230622163202 37350000
    [Google Scholar]
  10. Zhang L.Q. Wang J. Li T. Li P.Y. Wang Y.H. Yang M. Liu J.P. Liu J.H. Determination of the chemical components and phospholipids of velvet antler using UPLC/QTOF MS coupled with UNIFI software. Exp. Ther. Med. 2019 17 5 3789 3799 10.3892/etm.2019.7372 30988765
    [Google Scholar]
  11. Li X. Sun H. Zhang A. Liu Z. Zou D. Song Y. Liu L. Wang X. High‐throughput LC–MS method for the rapid characterization of multiple chemical constituents and metabolites of Da‐Bu‐Yin‐Wan. J. Sep. Sci. 2017 40 21 4102 4112 10.1002/jssc.201700568 28841261
    [Google Scholar]
  12. Xu L. Liu Y. Wu H. Wu H. Liu X. Zhou A. Rapid identification of chemical profile in Gandou decoction by UPLC-Q-TOF-MSE coupled with novel informatics UNIFI platform. J. Pharm. Anal. 2020 10 1 35 48 10.1016/j.jpha.2019.05.003 32123598
    [Google Scholar]
  13. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  14. Fang S. Dong L. Liu L. Guo J. Zhao L. Zhang J. Bu D. Liu X. Huo P. Cao W. Dong Q. Wu J. Zeng X. Wu Y. Zhao Y. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021 49 D1 D1197 D1206 10.1093/nar/gkaa1063 33264402
    [Google Scholar]
  15. Szklarczyk D. Gable A.L. Nastou K.C. Lyon D. Kirsch R. Pyysalo S. Doncheva N.T. Legeay M. Fang T. Bork P. Jensen L.J. von Mering C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 49 D1 D605 D612 10.1093/nar/gkaa1074 33237311
    [Google Scholar]
  16. Apweiler R. Bairoch A. Wu C.H. Barker W.C. Boeckmann B. Ferro S. Gasteiger E. Huang H. Lopez R. Magrane M. Martin M.J. Natale D.A. O’Donovan C. Redaschi N. Yeh L.S. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2004 32 90001 115D 119 10.1093/nar/gkh131 14681372
    [Google Scholar]
  17. Piñero J. Bravo À. Queralt-Rosinach N. Gutiérrez-Sacristán A. Deu-Pons J. Centeno E. García-García J. Sanz F. Furlong L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017 45 D1 D833 D839 10.1093/nar/gkw943 27924018
    [Google Scholar]
  18. Stelzer G. Rosen N. Plaschkes I. Zimmerman S. Twik M. Fishilevich S. Stein T.I. Nudel R. Lieder I. Mazor Y. The GeneCards Suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics, 2016 54 1.30.1- 1.30.33. 10.1002/cpbi.5 27322403
    [Google Scholar]
  19. Che K.M. Li D.B. Yang Q. Wang H.F. Liu X. Li Z.D. Xu X.Y. Zhi Z. Sun S.J. Exploring the molecular mechanism of Banxia Xiexin Decoction in the treatment of kidney stones based on network pharmacology and molecular docking. Lishizhen Medicine and Materia Medica Research 2022 33 12 3061 3065 10.3969/j.issn.1008‑0805.2022.12.72
    [Google Scholar]
  20. Wang Y. Yuan Y. Wang W. He Y. Zhong H. Zhou X. Chen Y. Cai X.J. Liu L. Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking. Comput. Biol. Med. 2022 145 105454 10.1016/j.compbiomed.2022.105454 35367781
    [Google Scholar]
  21. Tang D. Chen M. Huang X. Zhang G. Zeng L. Zhang G. Wu S. Wang Y. SRplot: A free online platform for data visualization and graphing. PLoS One 2023 18 11 e0294236 10.1371/journal.pone.0294236 37943830
    [Google Scholar]
  22. Zeng Y. Xiao S. Yang L. Ma K. Shang H. Gao Y. Wang Y. Zhai F. Xiang R. Systematic analysis of the mechanism of Xiaochaihu decoction in hepatitis B treatment via network pharmacology and molecular docking. Comput. Biol. Med. 2021 138 104894 10.1016/j.compbiomed.2021.104894 34607274
    [Google Scholar]
  23. Huang D.W. Sherman B.T. Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009 4 1 44 57 10.1038/nprot.2008.211 19131956
    [Google Scholar]
  24. Li X. Wei S. Niu S. Ma X. Li H. Jing M. Zhao Y. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med. 2022 144 105389 10.1016/j.compbiomed.2022.105389 35303581
    [Google Scholar]
  25. Yang Y. Zhou X. Jia G. Li T. Li Y. Zhao R. Wang Y. Network pharmacology based research into the effect and potential mechanism of Portulaca oleracea L. polysaccharide against ulcerative colitis. Comput. Biol. Med. 2023 161 106999 10.1016/j.compbiomed.2023.106999 37216777
    [Google Scholar]
  26. Mudunuri U. Che A. Yi M. Stephens R.M. bioDBnet: The biological database network. Bioinformatics 2009 25 4 555 556 10.1093/bioinformatics/btn654 19129209
    [Google Scholar]
  27. Bu H. Li X. Hu L. Wang J. Li Y. Zhao T. Wang H. Wang S. The anti-inflammatory mechanism of the medicinal fungus puffball analysis based on network pharmacology. Inform. Med. Unlocked 2021 23 100549 10.1016/j.imu.2021.100549
    [Google Scholar]
  28. Zhang W. Tian W. Wang Y. Jin X. Guo H. Wang Y. Tang Y. Yao X. Explore the mechanism and substance basis of Mahuang FuziXixin Decoction for the treatment of lung cancer based on network pharmacology and molecular docking. Comput Biol Med. 2022 151 (Pt A) 106293 10.1016/j.compbiomed.2022.106293 36399857
    [Google Scholar]
  29. Wang X. Zhang X. Li J. Fu J. Zhao M. Zhang W. Weng W. Li Q. Network pharmacology and LC-MS approachs to explore the active compounds and mechanisms of Yuanjiang decoction for treating bradyarrhythmia. Comput. Biol. Med. 2023 152 106435 10.1016/j.compbiomed.2022.106435 36535207
    [Google Scholar]
  30. Burley S.K. Bhikadiya C. Bi C. Bittrich S. Chen L. Crichlow G.V. Christie C.H. Dalenberg K. Di Costanzo L. Duarte J.M. Dutta S. Feng Z. Ganesan S. Goodsell D.S. Ghosh S. Green R.K. Guranović V. Guzenko D. Hudson B.P. Lawson C.L. Liang Y. Lowe R. Namkoong H. Peisach E. Persikova I. Randle C. Rose A. Rose Y. Sali A. Segura J. Sekharan M. Shao C. Tao Y.P. Voigt M. Westbrook J.D. Young J.Y. Zardecki C. Zhuravleva M. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021 49 D1 D437 D451 10.1093/nar/gkaa1038 33211854
    [Google Scholar]
  31. Ko M. Kim Y. Kim H.H. Jeong S. Ahn D. Chung S.J. Kim H. Network pharmacology and molecular docking approaches to elucidate the potential compounds and targets of Saeng-Ji-Hwang-Ko for treatment of type 2 diabetes mellitus. Comput. Biol. Med. 2022 149 106041 10.1016/j.compbiomed.2022.106041 36049411
    [Google Scholar]
  32. Seeliger D. de Groot B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010 24 5 417 422 10.1007/s10822‑010‑9352‑6 20401516
    [Google Scholar]
  33. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019 47 D1 D1102 D1109 10.1093/nar/gky1033 30371825
    [Google Scholar]
  34. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  35. Dallakyan S. Olson A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015 1263 243 250 10.1007/978‑1‑4939‑2269‑7_19 25618350
    [Google Scholar]
  36. Li J. Huang Z. Lu S. Luo H. Tan Y. Ye P. Liu X. Wu Z. Wu C. Stalin A. Wang H. Liu Y. Shen L. Fan X. Zhang B. Yi J. Yao L. Xu Y. Wu J. Duan X. Exploring potential mechanisms of Suhexiang Pill against COVID-19 based on network pharmacology and molecular docking. Medicine (Baltimore) 2021 100 51 e27112 10.1097/MD.0000000000027112 34941025
    [Google Scholar]
  37. Adasme M.F. Linnemann K.L. Bolz S.N. Kaiser F. Salentin S. Haupt V.J. Schroeder M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021 49 W1 W530 W534 10.1093/nar/gkab294 33950214
    [Google Scholar]
  38. Liu J. Wang Y. Zou Y. Li C. Impact of vitamin D on the occurrence and development of intestinal diseases: A systematic review and meta-analysis of randomized controlled trials. Comb. Chem. High Throughput Screen. 2023 26 12 2247 2258 10.2174/1386207326666230123151617 36694316
    [Google Scholar]
  39. Gu S. Xue Y. Zhang Y. Chen K. Xue S. Pan J. Tang Y. Zhu H. Wu H. Dou D. An investigation of the mechanism of rapid relief of ulcerative colitis induced by five-flavor sophora flavescens enteric-coated capsules based on network pharmacology. Comb. Chem. High Throughput Screen. 2020 23 3 239 252 10.2174/1386207323666200302121711 32116186
    [Google Scholar]
  40. Zhong X. Surh Y.J. Do S.G. Shin E. Shim K.S. Lee C.K. Na H.K. Baicalein inhibits dextran sulfate sodium-induced mouse colitis. J. Cancer Prev. 2019 24 2 129 138 10.15430/JCP.2019.24.2.129 31360692
    [Google Scholar]
  41. Kim S.J. Kim H.J. Kim H.R. Lee S.H. Cho S.D. Choi C.S. Nam J.S. Jung J.Y. Antitumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. Mol. Med. Rep. 2012 6 6 1443 1449 10.3892/mmr.2012.1085 22992837
    [Google Scholar]
  42. Luo X. Yu Z. Deng C. Zhang J. Ren G. Sun A. Mani S. Wang Z. Dou W. Baicalein ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice. Sci. Rep. 2017 7 1 16374 10.1038/s41598‑017‑12562‑6 29180692
    [Google Scholar]
  43. Rui X. Yan X. Zhang K. Baicalein inhibits the migration and invasion of colorectal cancer cells via suppression of the AKT signaling pathway. Oncol. Lett. 2016 11 1 685 688 10.3892/ol.2015.3935 26870267
    [Google Scholar]
  44. Lin R. Piao M. Song Y. Liu C. Quercetin suppresses AOM/DSS-induced colon carcinogenesis through its anti-inflammation effects in mice. J. Immunol. Res. 2020 2020 1 10 10.1155/2020/9242601 32537472
    [Google Scholar]
  45. Wang J. Hua D. Li M. Liu N. Zhang Y. Zhao Y. Jiang S. Hu X. Wang Y. Zhu H. The role of Zuo Jin Wan in modulating the tumor microenvironment of colorectal cancer. Comb. Chem. High Throughput Screen. 2024 27 10.2174/0113862073281374231228041841 38284730
    [Google Scholar]
  46. Pan L. Ye H. Pi X. Liu W. Wang Z. Zhang Y. Zheng J. Effects of several flavonoids on human gut microbiota and its metabolism by in vitro simulated fermentation. Front. Microbiol. 2023 14 1092729 10.3389/fmicb.2023.1092729 36819019
    [Google Scholar]
  47. Lee S.H. Seo D. Lee K.H. Park S.J. Park S. Kim H. Kim T. Joo I.H. Park J.M. Kang Y.H. Lim G.H. Kim D.H. Yang J.Y. Biometabolites of Citrus unshiu Peel Enhance Intestinal Permeability and Alter Gut Commensal Bacteria. Nutrients 2023 15 2 319 10.3390/nu15020319 36678190
    [Google Scholar]
  48. Karimi A. Naeini F. Asghari Azar V. Hasanzadeh M. Ostadrahimi A. Niazkar H.R. Mobasseri M. Tutunchi H. A comprehensive systematic review of the therapeutic effects and mechanisms of action of quercetin in sepsis. Phytomedicine 2021 86 153567 10.1016/j.phymed.2021.153567 33940332
    [Google Scholar]
  49. Saeid Seyedian S. Nokhostin F. Dargahi Malamir M. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J. Med. Life 2019 12 2 113 122 10.25122/jml‑2018‑0075 31406511
    [Google Scholar]
  50. Rehman M.U. Rahman Mir M.U. Farooq A. Rashid S.M. Ahmad B. Bilal Ahmad S. Ali R. Hussain I. Masoodi M. Muzamil S. Madkhali H. Ahmad Ganaie M. Naringenin (4,5,7‐trihydroxyflavanone) suppresses the development of precancerous lesions via controlling hyperproliferation and inflammation in the colon of Wistar rats. Environ. Toxicol. 2018 33 4 422 435 10.1002/tox.22528 29345053
    [Google Scholar]
  51. Bakrim S. Benkhaira N. Bourais I. Benali T. Lee L.H. El Omari N. Sheikh R.A. Goh K.W. Ming L.C. Bouyahya A. Health benefits and pharmacological properties of stigmasterol. Antioxidants 2022 11 10 1912 10.3390/antiox11101912 36290632
    [Google Scholar]
  52. Banik K. Khatoon E. Harsha C. Rana V. Parama D. Thakur K.K. Bishayee A. Kunnumakkara A.B. Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytother. Res. 2022 36 5 1854 1883 10.1002/ptr.7386 35102626
    [Google Scholar]
  53. Shi W. Men L. Pi X. Jiang T. Peng D. Huo S. Luo P. Wang M. Guo J. Jiang Y. Peng L. Lin L. Li S. Lv J. Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL 6/STAT3 signaling pathway. Int. J. Oncol. 2021 59 6 99 10.3892/ijo.2021.5279 34726248
    [Google Scholar]
  54. Wang S.W. Sun Y.M. The IL-6/JAK/STAT3 pathway: Potential therapeutic strategies in treating colorectal cancer. Int. J. Oncol. 2014 44 4 1032 1040 10.3892/ijo.2014.2259 24430672
    [Google Scholar]
  55. Pujada A. Walter L. Patel A. Bui T.A. Zhang Z. Zhang Y. Denning T.L. Garg P. Matrix metalloproteinase MMP9 maintains epithelial barrier function and preserves mucosal lining in colitis associated cancer. Oncotarget 2017 8 55 94650 94665 10.18632/oncotarget.21841 29212256
    [Google Scholar]
  56. Walter L. Pujada A. Bhatnagar N. Bialkowska A.B. Yang V.W. Laroui H. Garg P. Epithelial derived-matrix metalloproteinase (MMP9) exhibits a novel defensive role of tumor suppressor in colitis associated cancer by activating MMP9-Notch1-ARF-p53 axis. Oncotarget 2017 8 1 364 378 10.18632/oncotarget.13406 27861153
    [Google Scholar]
  57. Wang W. Song X. Ding S. Chen C. Ma H. Identifying the mechanisms and molecular targets of Guchang Zhixie Pills on Ulcerative Colitis: Coupling network pharmacology with GEO database and experiment verification. Comb. Chem. High Throughput Screen. 2023 26 11 2039 2056 10.2174/1386207326666230103160151 36597607
    [Google Scholar]
  58. Hong X.C. Liang Q.L. Chen M. Yang H.X. Huang J. Yi S.L. Wang Z.W. Liang H.Y. Zhang D.Y. Huang Z.Y. PRL-3 and MMP9 expression and epithelial-mesenchymal transition markers in circulating tumor cells from patients with colorectal cancer: Potential value in clinical practice. Front. Oncol. 2022 12 878639 10.3389/fonc.2022.878639 35574414
    [Google Scholar]
  59. Ding Z. Ding Q. Li H. The prognostic biomarker TPGS2 is correlated with immune infiltrates in pan-cancer: A bioinformatics analysis. Transl. Cancer Res. 2024 13 3 1458 1478 10.21037/tcr‑23‑113 38617524
    [Google Scholar]
  60. Cătană C.S. Neagoe I.B. Cozma V. Magdaş C. Tăbăran F. Dumitraşcu D.L. Contribution of the IL-17/IL-23 axis to the pathogenesis of inflammatory bowel disease. World J. Gastroenterol. 2015 21 19 5823 5830 10.3748/wjg.v21.i19.5823 26019446
    [Google Scholar]
  61. Zhang X.Q. Duan L.F. Dang L. Xu X.F. Zhang H. Expression and significance of IL-6 and STAT3 in colon cancer tissues. Hainan Medicine 2017 28 02 185 187
    [Google Scholar]
  62. Sul O.J. Ra S.W. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules 2021 26 22 6949 10.3390/molecules26226949 34834040
    [Google Scholar]
  63. Tiemin P. Fanzheng M. Peng X. Jihua H. Ruipeng S. Yaliang L. Yan W. Junlin X. Qingfu L. Zhefeng H. Jian L. Zihao G. Guoxing L. Boshi S. Ming Z. Qinghui M. Desen L. Lianxin L. MUC13 promotes intrahepatic cholangiocarcinoma progression via EGFR/PI3K/AKT pathways. J. Hepatol. 2020 72 4 761 773 10.1016/j.jhep.2019.11.021 31837357
    [Google Scholar]
  64. Sizemore N. Leung S. Stark G.R. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol. Cell. Biol. 1999 19 7 4798 4805 10.1128/MCB.19.7.4798 10373529
    [Google Scholar]
  65. Gustin J.A. Ozes O.N. Akca H. Pincheira R. Mayo L.D. Li Q. Guzman J.R. Korgaonkar C.K. Donner D.B. Cell type-specific expression of the IkappaB kinases determines the significance of phosphatidylinositol 3-kinase/Akt signaling to NF-kappa B activation. J. Biol. Chem. 2004 279 3 1615 1620 10.1074/jbc.M306976200 14585846
    [Google Scholar]
  66. Yu L. Wei J. Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin. Cancer Biol. 2022 85 69 94 10.1016/j.semcancer.2021.06.019 34175443
    [Google Scholar]
  67. Sun K. Lin W. Hong Q. Chen S. Li J. Qiu S. Matrine: A promising treatment for ulcerative colitis by targeting the HMGB1/NLRP3/Caspase-1 pathway. Comb. Chem. High Throughput Screen. 2024 27 10.2174/0113862073292384240209095838 38347801
    [Google Scholar]
  68. Jiang W. Han Y.P. Hu M. Bao X.Q. Yan Y. Chen G. A study on regulatory mechanism of miR-223 in ulcerative colitis through PI3K/Akt-mTOR signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019 23 11 4865 4872 10.26355/eurrev_201906_18074 31210320
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073350796250305225907
Loading
/content/journals/cchts/10.2174/0113862073350796250305225907
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test