Skip to content
2000
image of Identification of Shared Gene Signatures Associated with Alzheimer’s Disease and COVID-19 through Bioinformatics Analysis

Abstract

Introduction

Some studies have shown a link between Alzheimer's disease (AD) and COVID-19. This includes a Mendelian randomization study, which suggests that Alzheimer's disease and COVID-19 may be causally linked in terms of pathogenic mechanisms. However, there are fewer studies related to the two in terms of common pathogenic genes and immune infiltration. We conducted this study to identify key genes in COVID-19 linked to Alzheimer's disease, assess their relevance to immune cell profiles, and explore potential novel biomarkers.

Methods

The RNA datasets GSE157103 and GSE125583 for COVID-19 and Alzheimer's disease, respectively, were acquired the GEO database and subsequently processed. Through the utilization of differential expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA), genes associated with Alzheimer's disease and COVID-19 were identified. The immune cell signatures were estimated using the xCell algorithm, and correlation analysis identified links between key genes and significantly different immune cell signatures. Finally, we conducted transcription factor (TF) analysis, mRNA analysis, and sensitivity drug analysis.

Results

Differential analysis identified 3560 (2099 up-regulated and 1461 down-regulated) and 1456 (640 up-regulated and 816 down-regulated) differential genes for COVID-19 and AD compared to normal controls, respectively. WGCNA analysis revealed 254 key module genes for COVID-19 and 791 for AD. We combined the differential genes and WGCNA key module genes for each disease to obtain two gene sets. The intersection of these two gene sets was examined to obtain intersecting genes. Subsequently, PPI network analysis was conducted, leading to the identification of 12 hub genes. Then, 12 immune-related hub genes were further identified. Immune infiltration patterns and the correlation between 12 hub genes and 64 immune cell types were analyzed. The analysis revealed a significant positive correlation between the two diseases under study. The relationship network between Transcription Factors and mRNA, as well as the predictions of drugs, further illustrate the strong association between the two diseases. This provides valuable information for further target exploration and drug screening.

Discussion

This study identified immune-related hub genes and demonstrated their association with natural killer T cell dysfunction in AD and COVID-19, suggesting the existence of common neuroinflammatory pathways. These findings provide molecular evidence for immunological crosstalk between the two diseases.

Conclusion

Our study suggests potential shared genes, signalling pathways, and common drug candidates that may be associated with COVID-19 and AD. This may provide insights for future studies of AD patients infected with SARS-CoV-2 and help improve diagnostic and therapeutic approaches.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073383437250528173103
2025-06-23
2025-09-14
Loading full text...

Full text loading...

References

  1. Scheltens P. Strooper D.B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  2. Wiersinga W.J. Rhodes A. Cheng A.C. Peacock S.J. Prescott H.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19). JAMA 2020 324 8 782 793 10.1001/jama.2020.12839 32648899
    [Google Scholar]
  3. Li C. Liu J. Lin J. Shang H. COVID-19 and risk of neurodegenerative disorders: A Mendelian randomization study. Transl. Psychiatry 2022 12 1 283 10.1038/s41398‑022‑02052‑3 35835752
    [Google Scholar]
  4. Baranova A. Cao H. Zhang F. Causal effect of COVID19 on Alzheimer’s disease: A mendelian randomization study. J. Med. Virol. 2023 95 1 e28107 10.1002/jmv.28107 36039844
    [Google Scholar]
  5. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  6. Querfurth H.W. LaFerla F.M. Alzheimer’s disease. N. Engl. J. Med. 2010 362 4 329 344 10.1056/NEJMra0909142 20107219
    [Google Scholar]
  7. Heneka M.T. Carson M.J. Khoury J.E. Landreth G.E. Brosseron F. Feinstein D.L. Jacobs A.H. Wyss-Coray T. Vitorica J. Ransohoff R.M. Herrup K. Frautschy S.A. Finsen B. Brown G.C. Verkhratsky A. Yamanaka K. Koistinaho J. Latz E. Halle A. Petzold G.C. Town T. Morgan D. Shinohara M.L. Perry V.H. Holmes C. Bazan N.G. Brooks D.J. Hunot S. Joseph B. Deigendesch N. Garaschuk O. Boddeke E. Dinarello C.A. Breitner J.C. Cole G.M. Golenbock D.T. Kummer M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015 14 4 388 405 10.1016/S1474‑4422(15)70016‑5 25792098
    [Google Scholar]
  8. Chiesa P.A. Cavedo E. Lista S. Thompson P.M. Hampel H. Revolution of resting-state functional neuroimaging genetics in alzheimer’s disease. Trends Neurosci. 2017 40 8 469 480 10.1016/j.tins.2017.06.002 28684173
    [Google Scholar]
  9. Zuo Q. Wu H. Chen C.L.P. Lei B. Wang S. Prior-guided adversarial learning with hypergraph for predicting abnormal connections in alzheimer’s disease. IEEE Trans. Cybern. 2024 54 6 3652 3665 10.1109/TCYB.2023.3344641 38236677
    [Google Scholar]
  10. Pawar S. Rauf M.A. Abdelhady H. Iyer A.K. Tautargeting nanoparticles for treatment of Alzheimer’s disease. Exploration 2024 4 20230137 10.1002/EXP.20230137
    [Google Scholar]
  11. Zhu N. Zhang D. Wang W. Li X. Yang B. Song J. Zhao X. Huang B. Shi W. Lu R. Niu P. Zhan F. Ma X. Wang D. Xu W. Wu G. Gao G.F. Tan W. A novel coronavirus from patients with pneumonia in china, 2019. N. Engl. J. Med. 2020 382 8 727 733 10.1056/NEJMoa2001017 31978945
    [Google Scholar]
  12. Lu R. Zhao X. Li J. Niu P. Yang B. Wu H. Wang W. Song H. Huang B. Zhu N. Bi Y. Ma X. Zhan F. Wang L. Hu T. Zhou H. Hu Z. Zhou W. Zhao L. Chen J. Meng Y. Wang J. Lin Y. Yuan J. Xie Z. Ma J. Liu W.J. Wang D. Xu W. Holmes E.C. Gao G.F. Wu G. Chen W. Shi W. Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020 395 10224 565 574 10.1016/S0140‑6736(20)30251‑8 32007145
    [Google Scholar]
  13. Ye Q. Wang B. Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020 80 6 607 613 10.1016/j.jinf.2020.03.037 32283152
    [Google Scholar]
  14. Chen L.Y.C. Quach T.T.T. COVID-19 cytokine storm syndrome: A threshold concept. Lancet Microbe 2021 2 2 e49 e50 10.1016/S2666‑5247(20)30223‑8 33655230
    [Google Scholar]
  15. Desforges M. Coupanec L.A. Dubeau P. Bourgouin A. Lajoie L. Dubé M. Talbot P.J. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses 2019 12 1 14 10.3390/v12010014 31861926
    [Google Scholar]
  16. Mao L. Jin H. Wang M. Hu Y. Chen S. He Q. Chang J. Hong C. Zhou Y. Wang D. Miao X. Li Y. Hu B. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in wuhan, china. JAMA Neurol. 2020 77 6 683 690 10.1001/jamaneurol.2020.1127 32275288
    [Google Scholar]
  17. Helms J. Kremer S. Merdji H. Clere-Jehl R. Schenck M. Kummerlen C. Collange O. Boulay C. Fafi-Kremer S. Ohana M. Anheim M. Meziani F. Neurologic features in severe sars-cov-2 infection. N. Engl. J. Med. 2020 382 23 2268 2270 10.1056/NEJMc2008597 32294339
    [Google Scholar]
  18. Valiuddin H. Kalajdzic A. Rosati J. Boehm K. Hill D. Update on neurological manifestations of SARS-CoV-2. West. J. Emerg. Med. 2020 21 6 45 51 10.5811/westjem.2020.8.48839 33052822
    [Google Scholar]
  19. Alshammary A.F. Al-Sulaiman A.M. The journey of SARS-CoV-2 in human hosts: A review of immune responses, immunosuppression, and their consequences. Virulence 2021 12 1 1771 1794 10.1080/21505594.2021.1929800 34251989
    [Google Scholar]
  20. Calsolaro V. Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 2016 12 6 719 732 10.1016/j.jalz.2016.02.010 27179961
    [Google Scholar]
  21. Ramachandran A.K. Das S. Shenoy G.G. Mudgal J. Joseph A. Relation between apolipoprotein E in Alzheimer’s disease and sars-cov-2 and their treatment strategy: A review. CNS Neurol. Disord. Drug Targets 2024 23 1 9 20 10.2174/1871527322666221226145141 36573058
    [Google Scholar]
  22. Polsinelli A.J. Lane K.A. Manchella M.K. Logan P.E. Gao S. Apostolova L.G. APOE ε4 is associated with earlier symptom onset in LOAD but later symptom onset in EOAD. Alzheimers Dement. 2023 19 5 2212 2217 10.1002/alz.12955 36722399
    [Google Scholar]
  23. Uddin M.S. Hasana S. Hossain M.F. Islam M.S. Behl T. Perveen A. Hafeez A. Ashraf G.M. Molecular genetics of early- and late-onset alzheimer’s disease. Curr. Gene Ther. 2021 21 1 43 52 10.2174/1566523220666201123112822 33231156
    [Google Scholar]
  24. Srinivasan K. Friedman B.A. Etxeberria A. Huntley M.A. van der Brug M.P. Foreman O. Paw J.S. Modrusan Z. Beach T.G. Serrano G.E. Hansen D.V. Alzheimer’s patient microglia exhibit enhanced aging and unique transcriptional activation. Cell Rep. 2020 31 13 107843 10.1016/j.celrep.2020.107843 32610143
    [Google Scholar]
  25. Overmyer K.A. Shishkova E. Miller I.J. Balnis J. Bernstein M.N. Peters-Clarke T.M. Meyer J.G. Quan Q. Muehlbauer L.K. Trujillo E.A. He Y. Chopra A. Chieng H.C. Tiwari A. Judson M.A. Paulson B. Brademan D.R. Zhu Y. Serrano L.R. Linke V. Drake L.A. Adam A.P. Schwartz B.S. Singer H.A. Swanson S. Mosher D.F. Stewart R. Coon J.J. Jaitovich A. Large-scale multi-omic analysis of COVID-19 severity. Cell Syst. 2021 12 1 23 40.e7 10.1016/j.cels.2020.10.003 33096026
    [Google Scholar]
  26. Love M.I. Huber W. Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014 15 12 550 10.1186/s13059‑014‑0550‑8 25516281
    [Google Scholar]
  27. Zhang B. Gaiteri C. Bodea L.G. Wang Z. McElwee J. Podtelezhnikov A.A. Zhang C. Xie T. Tran L. Dobrin R. Fluder E. Clurman B. Melquist S. Narayanan M. Suver C. Shah H. Mahajan M. Gillis T. Mysore J. MacDonald M.E. Lamb J.R. Bennett D.A. Molony C. Stone D.J. Gudnason V. Myers A.J. Schadt E.E. Neumann H. Zhu J. Emilsson V. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 2013 153 3 707 720 10.1016/j.cell.2013.03.030 23622250
    [Google Scholar]
  28. Chen W.T. Lu A. Craessaerts K. Pavie B. Frigerio S.C. Corthout N. Qian X. Laláková J. Kühnemund M. Voytyuk I. Wolfs L. Mancuso R. Salta E. Balusu S. Snellinx A. Munck S. Jurek A. Navarro F.J. Saido T.C. Huitinga I. Lundeberg J. Fiers M. Strooper D.B. Spatial transcriptomics and in situ sequencing to study alzheimer’s disease. Cell 2020 182 4 976 991.e19 10.1016/j.cell.2020.06.038 32702314
    [Google Scholar]
  29. Johnson E.C.B. Dammer E.B. Duong D.M. Ping L. Zhou M. Yin L. Higginbotham L.A. Guajardo A. White B. Troncoso J.C. Thambisetty M. Montine T.J. Lee E.B. Trojanowski J.Q. Beach T.G. Reiman E.M. Haroutunian V. Wang M. Schadt E. Zhang B. Dickson D.W. Ertekin-Taner N. Golde T.E. Petyuk V.A. Jager D.P.L. Bennett D.A. Wingo T.S. Rangaraju S. Hajjar I. Shulman J.M. Lah J.J. Levey A.I. Seyfried N.T. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med. 2020 26 5 769 780 10.1038/s41591‑020‑0815‑6 32284590
    [Google Scholar]
  30. Caldeira C. Cunha C. Vaz A.R. Falcão A.S. Barateiro A. Seixas E. Fernandes A. Brites D. Key aging-associated alterations in primary microglia response to beta-amyloid stimulation. Front. Aging Neurosci. 2017 9 277 10.3389/fnagi.2017.00277 28912710
    [Google Scholar]
  31. Yoo M. Shin J. Kim J. Ryall K.A. Lee K. Lee S. Jeon M. Kang J. Tan A.C. DSigDB: Drug signatures database for gene set analysis. Bioinformatics 2015 31 18 3069 3071 10.1093/bioinformatics/btv313 25990557
    [Google Scholar]
  32. Zingaropoli M.A. Perri V. Pasculli P. Dezza C.F. Nijhawan P. Savelloni G. Torre L.G. D’Agostino C. Mengoni F. Lichtner M. Ciardi M.R. Mastroianni C.M. Major reduction of NKT cells in patients with severe COVID-19 pneumonia. Clin. Immunol. 2021 222 108630 10.1016/j.clim.2020.108630 33189887
    [Google Scholar]
  33. Yang J. Chang T. Tang L. Deng H. Chen D. Luo J. Wu H. Tang T. Zhang C. Li Z. Dong L. Yang X.P. Tang Z.H. Increased expression of tim-3 is associated with depletion of NKT cells in SARS-COV-2 infection. Front. Immunol. 2022 13 796682 10.3389/fimmu.2022.796682 35250975
    [Google Scholar]
  34. Bychinin M.V. Klypa T.V. Mandel I.A. Yusubalieva G.M. Baklaushev V.P. Kolyshkina N.A. Troitsky A.V. Effect of vitamin D3 supplementation on cellular immunity and inflammatory markers in COVID-19 patients admitted to the ICU. Sci. Rep. 2022 12 1 18604 10.1038/s41598‑022‑22045‑y 36329227
    [Google Scholar]
  35. Zhang H. Cao S. Xu Y. Sun X. Fei M. Jing Q. Xu X. Tang J. Niu B. Li C. Landscape of immune infiltration in entorhinal cortex of patients with Alzheimers disease. Front. Pharmacol. 2022 13 941656 10.3389/fphar.2022.941656 36249779
    [Google Scholar]
  36. Bartel D.P. MicroRNAs. Cell 2004 116 2 281 297 10.1016/S0092‑8674(04)00045‑5 14744438
    [Google Scholar]
  37. Zhou Y. Xu J. Hou Y. Leverenz J.B. Kallianpur A. Mehra R. Liu Y. Yu H. Pieper A.A. Jehi L. Cheng F. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimers Res. Ther. 2021 13 1 110 10.1186/s13195‑021‑00850‑3 34108016
    [Google Scholar]
  38. Mohammadi-Pilehdarboni H. Shenagari M. Regarding the article Causal effect of COVID‐19 on Alzheimer’s disease: A mendelian randomization study by baranova et al. J. Med. Virol. 2023 95 10 e29176 10.1002/jmv.29176 37849376
    [Google Scholar]
  39. Magusali N. Graham A.C. Piers T.M. Panichnantakul P. Yaman U. Shoai M. Reynolds R.H. Botia J.A. Brookes K.J. Guetta-Baranes T. Bellou E. Bayram S. Sokolova D. Ryten M. Frigerio S.C. Escott-Price V. Morgan K. Pocock J.M. Hardy J. Salih D.A. A genetic link between risk for Alzheimer’s disease and severe COVID-19 outcomes via the OAS1 gene. Brain 2021 144 12 3727 3741 10.1093/brain/awab337 34619763
    [Google Scholar]
  40. Stadio D.A. Bernitsas E. Ralli M. Severini C. Brenner M.J. Angelini C. OAS1 gene, Spike protein variants and persistent COVID-19-related anosmia: May the olfactory disfunction be a harbinger of future neurodegenerative disease? Eur. Rev. Med. Pharmacol. Sci. 2022 26 2 347 349 10.26355/eurrev_202201_27858 35113409
    [Google Scholar]
  41. Ley K. Laudanna C. Cybulsky M.I. Nourshargh S. Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat. Rev. Immunol. 2007 7 9 678 689 10.1038/nri2156 17717539
    [Google Scholar]
  42. Muller W.A. Mechanisms of leukocyte transendothelial migration. Annu. Rev. Pathol. 2011 6 1 323 344 10.1146/annurev‑pathol‑011110‑130224 21073340
    [Google Scholar]
  43. Nourshargh S. Alon R. Leukocyte migration into inflamed tissues. Immunity 2014 41 5 694 707 10.1016/j.immuni.2014.10.008 25517612
    [Google Scholar]
  44. Luo L. Zhang S. Wang Y. Rahman M. Syk I. Zhang E. Thorlacius H. Proinflammatory role of neutrophil extracellular traps in abdominal sepsis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014 307 7 L586 L596 10.1152/ajplung.00365.2013 25085626
    [Google Scholar]
  45. Hawez A. Ding Z. Taha D. Madhi R. Rahman M. Thorlacius H. c-Abl kinase regulates neutrophil extracellular trap formation and lung injury in abdominal sepsis. Lab. Invest. 2022 102 3 263 271 10.1038/s41374‑021‑00683‑6 34732849
    [Google Scholar]
  46. Wang Y. Luo L. Braun O.Ö. Westman J. Madhi R. Herwald H. Mörgelin M. Thorlacius H. Neutrophil extracellular trap-microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice. Sci. Rep. 2018 8 1 4020 10.1038/s41598‑018‑22156‑5 29507382
    [Google Scholar]
  47. Garcia G. Labrouche-Colomer S. Duvignaud A. Clequin E. Dussiau C. Trégouët D.A. Malvy D. Prevel R. Zouine A. Pellegrin I. Goret J. Mamani-Matsuda M. Dewitte A. James C. Impaired balance between neutrophil extracellular trap formation and degradation by DNases in COVID-19 disease. J. Transl. Med. 2024 22 1 246 10.1186/s12967‑024‑05044‑7 38454482
    [Google Scholar]
  48. Guo Z. Zhang L. Wu Z. Chen Y. Wang F. Chen G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 2014 14 2 188 202 10.1016/j.stem.2013.12.001 24360883
    [Google Scholar]
  49. Pan H. Wang G. Bi Z. Lai C. Wang M. Identification of key neutrophil extracellular trap genes in Alzheimer’s disease. J. Alzheimers Dis. 2024 102 4 1027 1041 10.1177/13872877241295374 39584744
    [Google Scholar]
  50. Colciaghi F. Costanza M. Unveiling leukocyte extracellular traps in inflammatory responses of the central nervous system. Front. Immunol. 2022 13 915392 10.3389/fimmu.2022.915392 35844591
    [Google Scholar]
  51. Pixley F.J. Stanley E.R. CSF-1 regulation of the wandering macrophage: Complexity in action. Trends Cell Biol. 2004 14 11 628 638 10.1016/j.tcb.2004.09.016 15519852
    [Google Scholar]
  52. Hamilton J.A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 2008 8 7 533 544 10.1038/nri2356 18551128
    [Google Scholar]
  53. Kalliolias G.D. Ivashkiv L.B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. 2016 12 1 49 62 10.1038/nrrheum.2015.169 26656660
    [Google Scholar]
  54. Xia X. Wang Y. Zheng J. COVID-19 and Alzheimer’s disease: How one crisis worsens the other. Transl. Neurodegener. 2021 10 1 15 10.1186/s40035‑021‑00237‑2 33941272
    [Google Scholar]
  55. Bettcher B.M. Tansey M.G. Dorothée G. Heneka M.T. Peripheral and central immune system crosstalk in Alzheimer disease — a research prospectus. Nat. Rev. Neurol. 2021 17 11 689 701 10.1038/s41582‑021‑00549‑x 34522039
    [Google Scholar]
  56. Jiang M. Yu H. Luo L. Zhang L. Xiong A. Wang J. Wang Q. Liu Y. Liu S. Xiong Y. Yang P. Chang C. Zhang J. He X. Li G. Single cell characteristics of patients with vaccine-related adverse reactions following inactivated COVID-19 vaccination. Hum. Vaccin. Immunother. 2023 19 2 2246542 10.1080/21645515.2023.2246542 37614152
    [Google Scholar]
  57. Ou H. Fan Y. Guo X. Lao Z. Zhu M. Li G. Zhao L. Identifying key genes related to inflammasome in severe COVID-19 patients based on a joint model with random forest and artificial neural network. Front. Cell. Infect. Microbiol. 2023 13 1139998 10.3389/fcimb.2023.1139998 37113134
    [Google Scholar]
  58. Xu Y. Zhang M. Wang G. Yang J. Identification of six genes associated with COVID-19-related circadian rhythm dysfunction by integrated bioinformatic analysis. Funct. Integr. Genomics 2023 23 3 282 10.1007/s10142‑023‑01198‑7 37624450
    [Google Scholar]
  59. Cury S.S. Oliveira J.S. Biagi-Júnior C.A.O. Silva W.A. Reis P.P. Cabral-Marques O. Hasimoto E.N. Freire P.P. Carvalho R.F. Transcriptional profiles and common genes link lung cancer with the development and severity of COVID-19. Gene 2023 852 147047 10.1016/j.gene.2022.147047 36379381
    [Google Scholar]
  60. Uddin M.A. Akhter M.S. Kubra K.T. Barabutis N. Induction of the NEK family of kinases in the lungs of mice subjected to cecal ligation and puncture model of sepsis. Tissue Barriers 2021 9 4 1929787 10.1080/21688370.2021.1929787 34151722
    [Google Scholar]
  61. Mitra S. Bp K. R, C.S.; Saikumar, N.V.; Philip, P.; Narayanan, M. Alzheimer’s disease rewires gene coexpression networks coupling different brain regions. NPJ Syst. Biol. Appl. 2024 10 1 50 10.1038/s41540‑024‑00376‑y 38724582
    [Google Scholar]
  62. Rao C.V. Farooqui M. Asch A.S. Yamada H.Y. Critical role of mitosis in spontaneous late-onset Alzheimer’s disease; from a Shugoshin 1 cohesinopathy mouse model. Cell Cycle 2018 17 19-20 2321 2334 10.1080/15384101.2018.1515554 30231670
    [Google Scholar]
  63. PerezGrovas Saltijeral A.; Rajkumar, A.P.; Knight, H.M. Differential expression of m5C RNA methyltransferase genes NSUN6 and NSUN7 in Alzheimer’s disease and traumatic brain injury. Mol. Neurobiol. 2023 60 4 2223 2235 10.1007/s12035‑022‑03195‑6 36646969
    [Google Scholar]
  64. Bochman M.L. Schwacha A. The Mcm complex: Unwinding the mechanism of a replicative helicase. Microbiol. Mol. Biol. Rev. 2009 73 4 652 683 10.1128/MMBR.00019‑09 19946136
    [Google Scholar]
  65. Ilves I. Petojevic T. Pesavento J.J. Botchan M.R. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol. Cell 2010 37 2 247 258 10.1016/j.molcel.2009.12.030 20122406
    [Google Scholar]
  66. Lee J. Kumagai A. Dunphy W.G. Claspin, a Chk1-regulatory protein, monitors DNA replication on chromatin independently of RPA, ATR, and Rad17. Mol. Cell 2003 11 2 329 340 10.1016/S1097‑2765(03)00045‑5 12620222
    [Google Scholar]
  67. Copani A. Hoozemans J.J.M. Caraci F. Calafiore M. Haastert V.E.S. Veerhuis R. Rozemuller A.J.M. Aronica E. Sortino M.A. Nicoletti F. DNA polymerase-beta is expressed early in neurons of Alzheimer’s disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid. J. Neurosci. 2006 26 43 10949 10957 10.1523/JNEUROSCI.2793‑06.2006 17065437
    [Google Scholar]
  68. Kumagai A. Dunphy W.G. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol. Cell 2000 6 4 839 849 10.1016/S1097‑2765(05)00092‑4 11090622
    [Google Scholar]
  69. Li Y. Tao X. Ye S. Tai Q. You Y.A. Huang X. Liang M. Wang K. Wen H. You C. Zhang Y. Zhou X. A T-cell-derived 3-gene signature distinguishes SARS-CoV-2 from common respiratory viruses. Viruses 2024 16 7 1029 10.3390/v16071029 39066192
    [Google Scholar]
  70. Zhao Z. Zhou C. Zhang M. Qian L. Xia W. Fan Y. Analysis of the potential relationship between COVID-19 and Behcet’s disease using transcriptome data. Medicine 2023 102 20 e33821 10.1097/MD.0000000000033821 37335738
    [Google Scholar]
  71. Mazzoni A. Salvati L. Maggi L. Capone M. Vanni A. Spinicci M. Mencarini J. Caporale R. Peruzzi B. Antonelli A. Trotta M. Zammarchi L. Ciani L. Gori L. Lazzeri C. Matucci A. Vultaggio A. Rossi O. Almerigogna F. Parronchi P. Fontanari P. Lavorini F. Peris A. Rossolini G.M. Bartoloni A. Romagnani S. Liotta F. Annunziato F. Cosmi L. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J. Clin. Invest. 2020 130 9 4694 4703 10.1172/JCI138554 32463803
    [Google Scholar]
  72. Bendelac A. Savage P.B. Teyton L. The biology of NKT cells. Annu. Rev. Immunol. 2007 25 1 297 336 10.1146/annurev.immunol.25.022106.141711 17150027
    [Google Scholar]
  73. Godfrey D.I. Stankovic S. Baxter A.G. Raising the NKT cell family. Nat. Immunol. 2010 11 3 197 206 10.1038/ni.1841 20139988
    [Google Scholar]
  74. Vankaer L. NKT cells: T lymphocytes with innate effector functions. Curr. Opin. Immunol. 2007 19 3 354 364 10.1016/j.coi.2007.03.001 17428648
    [Google Scholar]
  75. Kim E.Y. Battaile J.T. Patel A.C. You Y. Agapov E. Grayson M.H. Benoit L.A. Byers D.E. Alevy Y. Tucker J. Swanson S. Tidwell R. Tyner J.W. Morton J.D. Castro M. Polineni D. Patterson G.A. Schwendener R.A. Allard J.D. Peltz G. Holtzman M.J. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat. Med. 2008 14 6 633 640 10.1038/nm1770 18488036
    [Google Scholar]
  76. Kronenberg M. Toward an understanding of nkt cell biology: Progress and paradoxes. Annu. Rev. Immunol. 2005 23 1 877 900 10.1146/annurev.immunol.23.021704.115742 15771592
    [Google Scholar]
  77. Wang D. Hu B. Hu C. Zhu F. Liu X. Zhang J. Wang B. Xiang H. Cheng Z. Xiong Y. Zhao Y. Li Y. Wang X. Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in wuhan, china. JAMA 2020 323 11 1061 1069 10.1001/jama.2020.1585 32031570
    [Google Scholar]
  78. Zhang J. Dong X. Cao Y. Yuan Y. Yang Y. Yan Y. Akdis C.A. Gao Y. Clinical characteristics of 140 patients infected with SARS-COVCoV2 in Wuhan, China. Allergy 2020 75 7 1730 1741 10.1111/all.14238 32077115
    [Google Scholar]
  79. Tian S. Hu N. Lou J. Chen K. Kang X. Xiang Z. Chen H. Wang D. Liu N. Liu D. Chen G. Zhang Y. Li D. Li J. Lian H. Niu S. Zhang L. Zhang J. Characteristics of COVID-19 infection in Beijing. J. Infect. 2020 80 4 401 406 10.1016/j.jinf.2020.02.018 32112886
    [Google Scholar]
  80. Tang Y. Li X. Wang M. Zou Q. Zhao S. Sun B. Xu L. Jiang Y. Increased numbers of NK cells, NKT-like cells, and NK inhibitory receptors in peripheral blood of patients with chronic obstructive pulmonary disease. Clin. Dev. Immunol. 2013 2013 1 8 10.1155/2013/721782 24069043
    [Google Scholar]
  81. Urbanowicz R.A. Lamb J.R. Todd I. Corne J.M. Fairclough L.C. Altered effector function of peripheral cytotoxic cells in COPD. Respir. Res. 2009 10 1 53 10.1186/1465‑9921‑10‑53 19545425
    [Google Scholar]
  82. Chen X. Firulyova M. Manis M. Herz J. Smirnov I. Aladyeva E. Wang C. Bao X. Finn M.B. Hu H. Shchukina I. Kim M.W. Yuede C.M. Kipnis J. Artyomov M.N. Ulrich J.D. Holtzman D.M. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 2023 615 7953 668 677 10.1038/s41586‑023‑05788‑0 36890231
    [Google Scholar]
  83. Bendelac A. Rivera M.N. Park S.H. Roark J.H. Mouse CD1-specific NK1 T cells: Development, specificity, and function. Annu. Rev. Immunol. 1997 15 1 535 562 10.1146/annurev.immunol.15.1.535 9143699
    [Google Scholar]
  84. Kawabe S. Abe T. Kawamura H. Gejyo F. Abo T. Generation of B220low B cells and production of autoantibodies in mice with experimental amyloidosis: Association of primordial T cells with this phenomenon. Clin. Exp. Immunol. 2004 135 2 200 208 10.1111/j.1365‑2249.2003.02361.x 14738446
    [Google Scholar]
  85. Hardy J. Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002 297 5580 353 356 10.1126/science.1072994 12130773
    [Google Scholar]
  86. Jucker M. Walker L.C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 2013 501 7465 45 51 10.1038/nature12481 24005412
    [Google Scholar]
  87. Heneka M.T. Sastre M. Dumitrescu-Ozimek L. Hanke A. Dewachter I. Kuiperi C. O’Banion K. Klockgether T. Leuven V.F. Landreth G.E. Acute treatment with the PPA agonist pioglitazone and ibuprofen reduces glial inflammation and A1–42 levels in APPV717I transgenic mice. Brain 2005 128 6 1442 1453 10.1093/brain/awh452 15817521
    [Google Scholar]
  88. Mandrekar-Colucci S. Karlo J.C. Landreth G.E. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. J. Neurosci. 2012 32 30 10117 10128 10.1523/JNEUROSCI.5268‑11.2012 22836247
    [Google Scholar]
  89. Setz C. Große M. Auth J. Fröba M. Rauch P. Bausch A. Wright M. Schubert U. Synergistic antiviral activity of pamapimod and pioglitazone against sars-cov-2 and its variants of concern. Int. J. Mol. Sci. 2022 23 12 6830 10.3390/ijms23126830 35743273
    [Google Scholar]
  90. Zhou H. Shen T. Luo Y. Liu L. Chen W. Xu B. Han X. Pang J. Rivera C.A. Huang S. The antitumor activity of the fungicide ciclopirox. Int. J. Cancer 2010 127 10 2467 2477 10.1002/ijc.25255 20225320
    [Google Scholar]
  91. Smith M.A. Harris P.L.R. Sayre L.M. Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. USA 1997 94 18 9866 9868 10.1073/pnas.94.18.9866 9275217
    [Google Scholar]
  92. Habib H.M. Ibrahim S. Zaim A. Ibrahim W.H. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed. Pharmacother. 2021 136 111228 10.1016/j.biopha.2021.111228 33454595
    [Google Scholar]
  93. Derry P.J. Hegde M.L. Jackson G.R. Kayed R. Tour J.M. Tsai A.L. Kent T.A. Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer’s disease from a ferroptosis perspective. Prog. Neurobiol. 2020 184 101716 10.1016/j.pneurobio.2019.101716 31604111
    [Google Scholar]
  94. Ehsani S. COVID-19 and iron dysregulation: Distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein. Biol. Direct 2020 15 1 19 10.1186/s13062‑020‑00275‑2 33066821
    [Google Scholar]
  95. Yang S. Feng Y. Chen L. Wang Z. Chen J. Ni Q. Guo X. Zhang L. Xue G. Disulfiram accelerates diabetic foot ulcer healing by blocking NET formation via suppressing the NLRP3/Caspase-1/GSDMD pathway. Transl. Res. 2023 254 115 127 10.1016/j.trsl.2022.10.008 36336332
    [Google Scholar]
  96. Silva C.M.S. Wanderley C.W.S. Veras F.P. Sonego F. Nascimento D.C. Gonçalves A.V. Martins T.V. Cólon D.F. Borges V.F. Brauer V.S. Damasceno L.E.A. Silva K.P. Toller-Kawahisa J.E. Batah S.S. Souza A.L.J. Monteiro V.S. Oliveira A.E.R. Donate P.B. Zoppi D. Borges M.C. Almeida F. Nakaya H.I. Fabro A.T. Cunha T.M. Alves-Filho J.C. Zamboni D.S. Cunha F.Q. Gasdermin D inhibition prevents multiple organ dysfunction during sepsis by blocking NET formation. Blood 2021 138 25 2702 2713 10.1182/blood.2021011525 34407544
    [Google Scholar]
  97. Adrover J.M. Carrau L. Daßler-Plenker J. Bram Y. Chandar V. Houghton S. Redmond D. Merrill J.R. Shevik M. tenOever B.R. Lyons S.K. Schwartz R.E. Egeblad M. Disulfiram inhibits neutrophil extracellular trap formation and protects rodents from acute lung injury and SARS-CoV-2 infection. JCI Insight 2022 7 5 e157342 10.1172/jci.insight.157342 35133984
    [Google Scholar]
  98. Skrott Z. Mistrik M. Andersen K.K. Friis S. Majera D. Gursky J. Ozdian T. Bartkova J. Turi Z. Moudry P. Kraus M. Michalova M. Vaclavkova J. Dzubak P. Vrobel I. Pouckova P. Sedlacek J. Miklovicova A. Kutt A. Li J. Mattova J. Driessen C. Dou Q.P. Olsen J. Hajduch M. Cvek B. Deshaies R.J. Bartek J. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 2017 552 7684 194 199 10.1038/nature25016 29211715
    [Google Scholar]
  99. Zetterberg H. Blennow K. Moving fluid biomarkers for Alzheimer’s disease from research tools to routine clinical diagnostics. Mol. Neurodegener. 2021 16 1 10 10.1186/s13024‑021‑00430‑x 33608044
    [Google Scholar]
  100. Pomilio A.B. Vitale A.A. Lazarowski A.J. COVID-19 and Alzheimer’s disease: Neuroinflammation, oxidative stress, ferroptosis, and mechanisms involved. Curr. Med. Chem. 2023 30 35 3993 4031 10.2174/0929867329666221003101548 36200215
    [Google Scholar]
  101. Kempuraj D. Aenlle K.K. Cohen J. Mathew A. Isler D. Pangeni R.P. Nathanson L. Theoharides T.C. Klimas N.G. COVID-19 and long COVID: Disruption of the neurovascular unit, blood-brain barrier, and tight junctions. Neuroscientist 2024 30 4 421 439 10.1177/10738584231194927 37694571
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073383437250528173103
Loading
/content/journals/cchts/10.2174/0113862073383437250528173103
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test