Skip to content
2000
Volume 28, Issue 17
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

In this research, 3-(triethoxysilyl)propyl isocyanate (TESPIC) functionalized chitosan was successfully synthesized to fabricate silica-coated magnetite nanoparticles (FeO@SiO-CS MNPs).

Method

The synthesized MNPs were characterized using XRD, FT-IR, SEM, and TEM instruments and were utilized for the decolorization of Crystal Violet cationic dye (CV). The affecting variables controlling CV removal efficiency were investigated using the Taguchi fractional factorial design method (L array).

Result

Under the optimized removal conditions (adsorbent amount = 0.12 g (4.8 g L-1), pH = 4, ionic strength = 0.05 mol L-1 NaCl, and 30 min stirring), 98.2% of the CV dye was eliminated. The kinetic and equilibrium adsorption isotherms were explained by the pseudo-second-order kinetic (R2 = 0.999) and Freundlich isotherm models, respectively. MATLAB’s fmincon function as an efficient solution was applied in order to compare the Redlich-Peterson three-parametric isotherm model with two-parametric models. Moreover, the FeO@SiO-CS-TESPIC MNPs showed recyclability and reusability for subsequent runs.

Conclusion

The findings confirmed that these functional MNPs can be considered as proper adsorbents for the removal of CV dye from the aqueous solutions.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073350298241015071020
2024-10-29
2025-12-24
Loading full text...

Full text loading...

References

  1. AnS. LiuX. YangL. ZhangL. Enhancement removal of crystal violet dye using magnetic calcium ferrite nanoparticle: Study in single- and binary-solute systems.Chem. Eng. Res. Des.20159472673510.1016/j.cherd.2014.10.013
    [Google Scholar]
  2. OladipoA.A. GaziM. YilmazE. Single and binary adsorption of azo and anthraquinone dyes by chitosan-based hydrogel: Selectivity factor and Box-Behnken process design.Chem. Eng. Res. Des.201510426427910.1016/j.cherd.2015.08.018
    [Google Scholar]
  3. SoaresS.F. RodriguesM.I. TrindadeT. Daniel-da-SilvaA.L. Chitosan-silica hybrid nanosorbents for oil removal from water.Colloids Surf. A Physicochem. Eng. Asp.201753230531310.1016/j.colsurfa.2017.04.076
    [Google Scholar]
  4. CriniG. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment.Prog. Polym. Sci.2005301387010.1016/j.progpolymsci.2004.11.002
    [Google Scholar]
  5. JaworskaM.M. AntosD. GórakA. Review on the application of chitin and chitosan in chromatography.React. Funct. Polym.2020152April10460610.1016/j.reactfunctpolym.2020.104606
    [Google Scholar]
  6. ZhangY. JiC. Electro-induced covalent cross-linking of chitosan and formation of chitosan hydrogel films: Its application as an enzyme immobilization matrix for use in a phenol sensor.Anal. Chem.201082125275528110.1021/ac100714s 20496867
    [Google Scholar]
  7. ShahabeddinL. DamourO. BerthodF. RousselleP. SaintignyG. CollombelC. Reconstructed skin from co-cultured human keratinocytes and fibroblasts on a chitosane cross-linked collagen-GAG matrix.J. Mater. Sci. Mater. Med.19912422222610.1007/BF00703375
    [Google Scholar]
  8. MuzzarelliR. BiaginiG. PugnaloniA. FilippiniO. BaldassarreV. CastaldiniC. RizzoliC. Reconstruction of parodontal tissue with chitosan.Biomaterials198910959860310.1016/0142‑9612(89)90113‑0 2611308
    [Google Scholar]
  9. CostainD.J. KennedyR. CionaC. McAlisterV.C. LeeT.D.G. Prevention of postsurgical adhesions with N,O-carboxymethyl chitosan: Examination of the most efficacious preparation and the effect of N,O-carboxymethyl chitosan on postsurgical healing.Surgery1997121331431910.1016/S0039‑6060(97)90360‑3 9068673
    [Google Scholar]
  10. PrabaharanM. ManoJ.F. Chitosan-based particles as controlled drug delivery systems.Drug Deliv.2004121415710.1080/10717540590889781 15801720
    [Google Scholar]
  11. ReddyD.H.K. LeeS.M. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions.Adv. Colloid Interface Sci.2013201-202689310.1016/j.cis.2013.10.002 24182685
    [Google Scholar]
  12. ChangM.Y. JuangR.S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay.J. Colloid Interface Sci.20042781182510.1016/j.jcis.2004.05.029 15313633
    [Google Scholar]
  13. GalhoumA.A. MahfouzM.G. GomaaN.M. VincentT. GuibalE. Chemical modifications of chitosan nano-based magnetic particles for enhanced uranyl sorption.Hydrometallurgy201716812713410.1016/j.hydromet.2016.08.011
    [Google Scholar]
  14. VakiliM. RafatullahM. IbrahimM.H. AbdullahA.Z. GholamiZ. SalamatiniaB. Enhancing reactive blue 4 adsorption through chemical modification of chitosan with hexadecylamine and 3-aminopropyl triethoxysilane.J. Water Process Eng.201715495410.1016/j.jwpe.2016.06.005
    [Google Scholar]
  15. Ruiz-RicoM. SancenónF. BaratJ.M. Evaluation of the in vitro and in situ antimicrobial properties of chitosan-functionalised silica materials.Lebensm. Wiss. Technol.202317311437310.1016/j.lwt.2022.114373
    [Google Scholar]
  16. SunX. YangL. DongT. LiuZ. LiuH. Removal of Cr(VI) from aqueous solution using amino‐modified Fe3O4–SiO2 –chitosan magnetic microspheres with high acid resistance and adsorption capacity.J. Appl. Polym. Sci.201613310app.4307810.1002/app.43078
    [Google Scholar]
  17. KhabazipourM. ShariatiS. SafaF. SBA and kiT-6 mesoporous silica magnetite nanoparticles: Synthesis and characterization.Synth. React. Inorg. Met.-Org. Nano-Met. Chem.201646575976510.1080/15533174.2014.989583
    [Google Scholar]
  18. Mohammadi GalangashM. GhavidastA. BozorgpanahZ. Adsorption of acid red 114 and reactive black 5 in aqueous solutions on dendrimer‐conjugated magnetic nanoparticles.J. Chin. Chem. Soc. (Taipei)2019661627410.1002/jccs.201800177
    [Google Scholar]
  19. ToutounchiS. ShariatiS. MahanpoorK. Synthesis of nano‐sized magnetite mesoporous carbon for removal of reactive yellow dye from aqueous solutions.Appl. Organomet. Chem.2019339e504610.1002/aoc.5046
    [Google Scholar]
  20. GalangashM.M. KolkasaraeiZ.N. GhavidastA. Shirzad-SiboniM. Facile synthesis of methyl propylaminopropanoate functionalized magnetic nanoparticles for removal of acid red 114 from aqueous solution.RSC Advances2016611411349211350210.1039/C6RA22710D
    [Google Scholar]
  21. HuangX. WangG. YangM. GuoW. GaoH. Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application.Mater. Lett.20116519-202887289010.1016/j.matlet.2011.06.005
    [Google Scholar]
  22. ToutounchiS. ShariatiS. MahanpoorK. Sulfonic acid functionalized magnetite nanomesoporous carbons for removal of Safranin O from aqueous solutions.Desalination Water Treat.201915325326310.5004/dwt.2019.23745
    [Google Scholar]
  23. GulK. SohniS. WaqarM. AhmadF. NorulainiN.A.N. A K, M.O. Functionalization of magnetic chitosan with graphene oxide for removal of cationic and anionic dyes from aqueous solution.Carbohydr. Polym.201615252053110.1016/j.carbpol.2016.06.045 27516300
    [Google Scholar]
  24. Pashai GatabiM. Milani MoghaddamH. GhorbaniM. Point of zero charge of maghemite decorated multiwalled carbon nanotubes fabricated by chemical precipitation method.J. Mol. Liq.201621611712510.1016/j.molliq.2015.12.087
    [Google Scholar]
  25. Vega-NegronA.L. Alamo-NoleL. Perales-PerezO. Gonzalez-MederosA.M. Jusino-OlivenciaC. Roman-VelazquezF.R. Simultaneous adsorption of cationic and anionic dyes by chitosan/cellulose beads for wastewaters treatment.Int. J. Environ. Res.2018121596510.1007/s41742‑018‑0066‑2
    [Google Scholar]
  26. GeY.M. ZhaoX.F. XuJ.H. LiuJ.Z. YangJ.S. LiS.J. Recyclable magnetic chitosan microspheres with good ability of removing cationic dyes from aqueous solutions.Int. J. Biol. Macromol.20211671020102910.1016/j.ijbiomac.2020.11.057 33186645
    [Google Scholar]
  27. KeyhanianF. ShariatiS. FarajiM. HesabiM. Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions.Arab. J. Chem.20169S348S35410.1016/j.arabjc.2011.04.012
    [Google Scholar]
  28. Nikzad ShalkouhiS. KefayatiH. ShariatiS. Cysteine-coated magnetite nanoparticles for the removal of carmoisine edible dye from aqueous medium.Comb. Chem. High Throughput Screen.202427192861287010.2174/0113862073259873231018081113 37929729
    [Google Scholar]
  29. Uzunİ. GüzelF. Rate studies on the adsorption of some dyestuffs and p-nitrophenol by chitosan and monocarboxymethylated(mcm)-chitosan from aqueous solution.J. Hazard. Mater.20051181-314115410.1016/j.jhazmat.2004.10.006 15721538
    [Google Scholar]
  30. QiaoH. ZhouY. YuF. WangE. MinY. HuangQ. PangL. MaT. Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals.Chemosphere201514129730310.1016/j.chemosphere.2015.07.078 26298027
    [Google Scholar]
  31. ChowdhuryS. ChakrabortyS. SahaP.D. Removal of crystal violet from aqueous solution by adsorption onto eggshells: Equilibrium, kinetics, thermodynamics and artificial neural network modeling.Waste Biomass Valoriz.20134365566410.1007/s12649‑012‑9139‑1
    [Google Scholar]
  32. WangX.S. LiuX. WenL. ZhouY. JiangY. LiZ. Comparison of basic dye crystal violet removal from aqueous solution by low-cost biosorbents.Sep. Sci. Technol.200843143712373110.1080/01496390802222640
    [Google Scholar]
  33. Seyed DaneshS.M. FaghihianH. ShariatiS. Sulfonic acid functionalized magnetite nanoporous-KIT-6 for removal of methyl green from aqueous solutions.J. Nano Res.201852547010.4028/www.scientific.net/JNanoR.52.54
    [Google Scholar]
  34. KouchakinejadR. ShariatiS. AbolhasaniJ. KalhorE.G. VardiniM.T. Core-shells of magnetite nanoparticles decorated by SBA-3-SO3H mesoporous silica for magnetic solid phase adsorption of paraquat herbicide from aqueous solutions.Colloids Surf. A Physicochem. Eng. Asp.202264312870910.1016/j.colsurfa.2022.128709
    [Google Scholar]
  35. MostashariS.Z. ShojaeiA.F. TabatabaeianK. KefayatiH. ShariatiS. Efficient removal of carmoisine dye from aqueous solution using Fe3O4 magnetic nanoparticles modified with asparagine.Desalination Water Treat.202122944145110.5004/dwt.2021.27404
    [Google Scholar]
  36. NozariM. ShariatiS. Poly(methacrylic acid) surface modified magnetite nanoparticles for dispersive solid-phase adsorption of chlorpyrifos pesticide from aqueous solutions.Desalination Water Treat.202328916317910.5004/dwt.2023.29417
    [Google Scholar]
  37. ShariatiS. ChinevariA. GhorbaniM. Simultaneous removal of four dye pollutants in mixture using amine functionalized kit-6 silica mesoporous magnetic nanocomposite.Silicon20201281865187810.1007/s12633‑019‑00288‑1
    [Google Scholar]
  38. ToutounchiS. ShariatiS. MahanpoorK. Application of magnetic ordered mesoporous carbon nanocomposite for the removal of ponceau 4R using factorial experimental design.Silicon20211351561157310.1007/s12633‑020‑00535‑w
    [Google Scholar]
  39. ChenX. LiF. AsumanaC. YuG. Extraction of soluble dyes from aqueous solutions with quaternary ammonium-based ionic liquids.Separ. Purif. Tech.201310610510910.1016/j.seppur.2013.01.002
    [Google Scholar]
  40. HosseinzadehH. MohammadiS. Quince seed mucilage magnetic nanocomposites as novel bioadsorbents for efficient removal of cationic dyes from aqueous solutions.Carbohydr. Polym.201513421322110.1016/j.carbpol.2015.08.008 26428118
    [Google Scholar]
  41. HuY. GuoT. YeX. LiQ. GuoM. LiuH. WuZ. Dye adsorption by resins: Effect of ionic strength on hydrophobic and electrostatic interactions.Chem. Eng. J.201322839239710.1016/j.cej.2013.04.116
    [Google Scholar]
  42. OladipoA.A. GaziM. Enhanced removal of crystal violet by low cost alginate/acid activated bentonite composite beads: Optimization and modelling using non-linear regression technique.J. Water Process Eng.20142435210.1016/j.jwpe.2014.04.007
    [Google Scholar]
  43. GholivandM.B. YaminiY. DayeniM. SeidiS. TahmasebiE. Adsorptive removal of alizarin red-S and alizarin yellow GG from aqueous solutions using polypyrrole-coated magnetic nanoparticles.J. Environ. Chem. Eng.20153152954010.1016/j.jece.2015.01.011
    [Google Scholar]
  44. WangX.S. ZhangW. Removal of basic dye crystal violet from aqueous solution by Cu(II)-loaded montmorillonite.Sep. Sci. Technol.201146465666310.1080/01496395.2010.517823
    [Google Scholar]
  45. NgoT.M.V. TruongT.H. NguyenT.H.L. DuongT.T.A. VuT.H. NguyenT.T.T. PhamT.D. Surface modified laterite soil with an anionic surfactant for the removal of a cationic dye (Crystal violet) from an aqueous solution.Water Air Soil Pollut.2020231628510.1007/s11270‑020‑04647‑2
    [Google Scholar]
  46. DjeladA. MokhtarA. KhelifaA. BengueddachA. SassiM. Alginate-whey an effective and green adsorbent for crystal violet removal: Kinetic, thermodynamic and mechanism studies.Int. J. Biol. Macromol.201913994495410.1016/j.ijbiomac.2019.08.068 31401273
    [Google Scholar]
  47. MadalaS. NadavalaS.K. VudagandlaS. BodduV.M. AbburiK. Equilibrium, kinetics and thermodynamics of Cadmium (II) biosorption on to composite chitosan biosorbent.Arab. J. Chem.201710S1883S189310.1016/j.arabjc.2013.07.017
    [Google Scholar]
  48. KonickiW. AleksandrzakM. MijowskaE. Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide.Chem. Eng. Res. Des.2017123354910.1016/j.cherd.2017.03.036
    [Google Scholar]
  49. CriniG. BadotP.M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature.Prog. Polym. Sci.200833439944710.1016/j.progpolymsci.2007.11.001
    [Google Scholar]
  50. AzariA. NoorisepehrM. DehghanifardE. KarimyanK. HashemiS.Y. KalhoriE.M. NorouziR. AgarwalS. GuptaV.K. Experimental design, modeling and mechanism of cationic dyes biosorption on to magnetic chitosan-lutaraldehyde composite.Int. J. Biol. Macromol.201913163364510.1016/j.ijbiomac.2019.03.058 30857962
    [Google Scholar]
  51. RezakazemiM. ShirazianS. Lignin-chitosan blend for methylene blue removal: Adsorption modeling.J. Mol. Liq.201927477879110.1016/j.molliq.2018.11.043
    [Google Scholar]
  52. SenthilkumaarS. KalaamaniP. PorkodiK. VaradarajanP.R. SubburaamC.V. Adsorption of dissolved reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste.Bioresour. Technol.200697141618162510.1016/j.biortech.2005.08.001 16182523
    [Google Scholar]
  53. El-LatifM.M.A. IbrahimA.M. ShowmanM.S. HamideR.R.A. Alumina/iron oxide nano composite for cadmium ions removal from aqueous solutions.Int J Nonferrous Metall201322476210.4236/ijnm.2013.22007
    [Google Scholar]
  54. FierroV. Torné-FernándezV. MontanéD. CelzardA. Adsorption of phenol onto activated carbons having different textural and surface properties.Microporous Mesoporous Mater.20081111-327628410.1016/j.micromeso.2007.08.002
    [Google Scholar]
  55. GeorgeG. SaravanakumarM.P. Facile synthesis of carbon-coated layered double hydroxide and its comparative characterisation with Zn–Al LDH: Application on crystal violet and malachite green dye adsorption—isotherm, kinetics and Box-Behnken design.Environ. Sci. Pollut. Res. Int.20182530302363025410.1007/s11356‑018‑3001‑3 30155633
    [Google Scholar]
  56. MuthukumaranC. SivakumarV.M. ThirumarimuruganM. Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent.J. Taiwan Inst. Chem. Eng.20166335436210.1016/j.jtice.2016.03.034
    [Google Scholar]
  57. NasabS.G. SemnaniA. TeimouriA. YazdM.J. IsfahaniT.M. HabibollahiS. Decolorization of crystal violet from aqueous solutions by a novel adsorbent chitosan/nanodiopside using response surface methodology and artificial neural network-genetic algorithm.Int. J. Biol. Macromol.201912442944310.1016/j.ijbiomac.2018.11.148 30452982
    [Google Scholar]
  58. ParabH. SudersananM. ShenoyN. PathareT. VazeB. Use of agro‐industrial wastes for removal of basic dyes from aqueous solutions.Clean (Weinh.)2009371296396910.1002/clen.200900158
    [Google Scholar]
  59. AlshabanatM. AlsenaniG. AlmufarijR. Removal of crystal violet dye from aqueous solutions onto date palm fiber by adsorption technique.J. Chem.20132013121023910.1155/2013/210239
    [Google Scholar]
  60. YanH. LiH. YangH. LiA. ChengR. Removal of various cationic dyes from aqueous solutions using a kind of fully biodegradable magnetic composite microsphere.Chem. Eng. J.201322340241110.1016/j.cej.2013.02.113
    [Google Scholar]
  61. AhmadR. MirzaA. Synthesis of Guar gum/bentonite a novel bionanocomposite: Isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye.J. Mol. Liq.201824980581410.1016/j.molliq.2017.11.082
    [Google Scholar]
  62. WangY. XieY. ZhangY. TangS. GuoC. WuJ. LauR. Anionic and cationic dyes adsorption on porous poly-melamine-formaldehyde polymer.Chem. Eng. Res. Des.201611425826710.1016/j.cherd.2016.08.027
    [Google Scholar]
  63. HanafiahM.A.K.M. NgahW.S.W. ZolkaflyS.H. TeongL.C. MajidZ.A.A. Acid Blue 25 adsorption on base treated Shorea dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis.J. Environ. Sci. (China)201224226126810.1016/S1001‑0742(11)60764‑X 22655386
    [Google Scholar]
  64. PopoolaL.T. YusuffA.S. AdesinaO.A. LalaM.A. Brilliant green dye sorption onto snail shell-rice husk: Statistical and error function models as parametric isotherm predictors.J. Environ. Sci. Technol.2019122658010.3923/jest.2019.65.80
    [Google Scholar]
  65. FreundlichH. About adsorption in solutions.J. Phys. Chem.1907571385470
    [Google Scholar]
  66. ViswanathanN. MeenakshiS. Enriched fluoride sorption using alumina/chitosan composite.J. Hazard. Mater.20101781-322623210.1016/j.jhazmat.2010.01.067 20144851
    [Google Scholar]
  67. MassoudinejadM. RasoulzadehH. GhaderpooriM. Magnetic chitosan nanocomposite: Fabrication, properties, and optimization for adsorptive removal of crystal violet from aqueous solutions.Carbohydr. Polym.201920684485310.1016/j.carbpol.2018.11.048 30553392
    [Google Scholar]
  68. RasoulzadehH. Mohseni-BandpeiA. HosseiniM. SafariM. Mechanistic investigation of ciprofloxacin recovery by magnetite–imprinted chitosan nanocomposite: Isotherm, kinetic, thermodynamic and reusability studies.Int. J. Biol. Macromol.201913371272110.1016/j.ijbiomac.2019.04.139 31022483
    [Google Scholar]
  69. FanL. ZhangY. LiX. LuoC. LuF. QiuH. Removal of alizarin red from water environment using magnetic chitosan with alizarin red as imprinted molecules.Colloids Surf. B Biointerfaces201291125025710.1016/j.colsurfb.2011.11.014 22119217
    [Google Scholar]
  70. SmithaT. ThirumalisamyS. ManonmaniS. Equilibrium and kinetics study of adsorption of crystal violet onto the peel of Cucumis sativa fruit from aqueous solution.J. Chem.2012931091110110.1155/2012/457632
    [Google Scholar]
  71. AtarN. OlgunA. WangS. Adsorption of cadmium (II) and zinc (II) on boron enrichment process waste in aqueous solutions: Batch and fixed-bed system studies.Chem. Eng. J.201219231710.1016/j.cej.2012.03.067
    [Google Scholar]
  72. RenY. ChenY. SunM. PengH. HuangK. Rapid and efficient removal of cationic dyes by magnetic chitosan adsorbent modified with EDTA.Sep. Sci. Technol.201449132049205910.1080/01496395.2014.903972
    [Google Scholar]
  73. ZhouL. JinJ. LiuZ. LiangX. ShangC. Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles.J. Hazard. Mater.20111852-31045105210.1016/j.jhazmat.2010.10.012 21035264
    [Google Scholar]
  74. ÖzkayaB. Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models.J. Hazard. Mater.20061291-315816310.1016/j.jhazmat.2005.08.025 16198050
    [Google Scholar]
  75. AlbadarinA.B. CollinsM.N. NaushadM. ShirazianS. WalkerG. MangwandiC. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue.Chem. Eng. J.201730726427210.1016/j.cej.2016.08.089
    [Google Scholar]
  76. HosseinzadehH. RaminS. Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites.Int. J. Biol. Macromol.201811385986810.1016/j.ijbiomac.2018.03.028 29524485
    [Google Scholar]
  77. MonashP. PugazhenthiG. Adsorption of crystal violet dye from aqueous solution using mesoporous materials synthesized at room temperature.Adsorption200915439040510.1007/s10450‑009‑9156‑y
    [Google Scholar]
  78. PorkodiK. Vasanth KumarK. Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems.J. Hazard. Mater.20071431-231132710.1016/j.jhazmat.2006.09.029 17069970
    [Google Scholar]
  79. BrdarM. ŠćibanM. TakačiA. DošenovićT. Comparison of two and three parameters adsorption isotherm for Cr(VI) onto Kraft lignin.Chem. Eng. J.201218310811110.1016/j.cej.2011.12.036
    [Google Scholar]
  80. Senthil KumarP. RamalingamS. SenthamaraiC. NiranjanaaM. VijayalakshmiP. SivanesanS. Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions.Desalination20102611-2526010.1016/j.desal.2010.05.032
    [Google Scholar]
  81. LalhruaitluangaH. JayaramK. PrasadM.N.V. KumarK.K. Lead(II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)—A comparative study.J. Hazard. Mater.20101751-331131810.1016/j.jhazmat.2009.10.005 19883973
    [Google Scholar]
  82. MousazadehS. ShariatiS. YousefiM. BaniyaghoobS. KefayatiH. Hexavalent chromium removal using ionic liquid coated magnetic nano zero-valent iron biosynthesized by Camellia sinensis extract.Int. J. Environ. Res.20211561017103610.1007/s41742‑021‑00368‑4
    [Google Scholar]
  83. FooK.Y. HameedB.H. Insights into the modeling of adsorption isotherm systems.Chem. Eng. J.2010156121010.1016/j.cej.2009.09.013
    [Google Scholar]
  84. MahmoodiN.M. SalehiR. AramiM. BahramiH. Dye removal from colored textile wastewater using chitosan in binary systems.Desalination20112671647210.1016/j.desal.2010.09.007
    [Google Scholar]
  85. NadavalaS.K. SwayampakulaK. BodduV.M. AbburiK. Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads.J. Hazard. Mater.2009162148248910.1016/j.jhazmat.2008.05.070 18573601
    [Google Scholar]
  86. ChenC.Y. ChangJ.C. ChenA.H. Competitive biosorption of azo dyes from aqueous solution on the templated crosslinked-chitosan nanoparticles.J. Hazard. Mater.2011185143044110.1016/j.jhazmat.2010.09.051 20934251
    [Google Scholar]
  87. SherlalaA.I.A. RamanA.A.A. BelloM.M. ButhiyappanA. Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite.J. Environ. Manage.2019246January54755610.1016/j.jenvman.2019.05.117 31202019
    [Google Scholar]
  88. ChakrabortyS. ChowdhuryS. SahaP.D. Insight into biosorption equilibrium, kinetics and thermodynamics of crystal violet onto Ananas comosus (pineapple) leaf powder.Appl. Water Sci.20122213514110.1007/s13201‑012‑0030‑9
    [Google Scholar]
  89. GeF. YeH. LiM.M. ZhaoB.X. Efficient removal of cationic dyes from aqueous solution by polymer-modified magnetic nanoparticles.Chem. Eng. J.2012198-199111710.1016/j.cej.2012.05.074
    [Google Scholar]
  90. SenthilkumaarS. KalaamaniP. SubburaamC. Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree.J. Hazard. Mater.2006136380080810.1016/j.jhazmat.2006.01.045 16675107
    [Google Scholar]
  91. MadhavakrishnanS. ManickavasagamK. VasanthakumarR. RasappanK. MohanrajR. PattabhiS. Adsorption of crystal violet dye from aqueous solution Using Ricinus Communis pericarp carbon as an adsorbent.J. Chem.2009641109111610.1155/2009/764197
    [Google Scholar]
  92. NandiB. GoswamiA. PurkaitM. Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies.Appl. Clay Sci.2009423-458359010.1016/j.clay.2008.03.015
    [Google Scholar]
  93. ChakrabortyS. ChowdhuryS. Das SahaP. Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk.Carbohydr. Polym.20118641533154110.1016/j.carbpol.2011.06.058
    [Google Scholar]
  94. El-SayedG.O. Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber.Desalination20112721-322523210.1016/j.desal.2011.01.025
    [Google Scholar]
  95. AlizadehN. ShariatiS. BesharatiN. Adsorption of crystal violet and methylene blue on azolla and fig leaves modified with magnetite iron oxide nanoparticles.Int. J. Environ. Res.201711219720610.1007/s41742‑017‑0019‑1
    [Google Scholar]
  96. PuriC. SumanaG. Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite.Appl. Clay Sci.2018166April10211210.1016/j.clay.2018.09.012
    [Google Scholar]
  97. CheruiyotG.K. WanyonyiW.C. KiplimoJ.J. MainaE.N. Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study.Sci. Am.20195e0011610.1016/j.sciaf.2019.e00116
    [Google Scholar]
  98. YakoutS.M. HassanM.R. AbdeltawabA.A. AlyM.I. Sono-sorption efficiencies and equilibrium removal of triphenylmethane (crystal violet) dye from aqueous solution by activated charcoal.J. Clean. Prod.201923412413110.1016/j.jclepro.2019.06.164
    [Google Scholar]
  99. WongY.C. SzetoY.S. CheungW.H. McKayG. Adsorption of acid dyes on chitosan-equilibrium isotherm analyses.Process Biochem.200439669570410.1016/S0032‑9592(03)00152‑3
    [Google Scholar]
  100. HuZ.G. ZhangJ. ChanW.L. SzetoY.S. The sorption of acid dye onto chitosan nanoparticles.Polymer (Guildf.)200647165838584210.1016/j.polymer.2006.05.071
    [Google Scholar]
  101. AnnaduraiG. LingL.Y. LeeJ.F. Adsorption of reactive dye from an aqueous solution by chitosan: Isotherm, kinetic and thermodynamic analysis.J. Hazard. Mater.2008152133734610.1016/j.jhazmat.2007.07.002 17686579
    [Google Scholar]
  102. Wan NgahW.S. AriffN.F.M. HashimA. HanafiahM.A.K.M. Malachite green adsorption onto chitosan coated bentonite beads: Isotherms, kinetics and mechanism.Clean (Weinh.)201038439440010.1002/clen.200900251
    [Google Scholar]
  103. SalehiR. AramiM. MahmoodiN.M. BahramiH. KhorramfarS. Novel biocompatible composite (Chitosan–zinc oxide nanoparticle): Preparation, characterization and dye adsorption properties.Colloids Surf. B Biointerfaces2010801869310.1016/j.colsurfb.2010.05.039 20566273
    [Google Scholar]
  104. MomenzadehH. Tehrani-BaghaA.R. KhosraviA. GharanjigK. HolmbergK. Reactive dye removal from wastewater using a chitosan nanodispersion.Desalination20112711-322523010.1016/j.desal.2010.12.036
    [Google Scholar]
  105. WangL. ZhangJ. WangA. Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite.Desalination20112661-3333910.1016/j.desal.2010.07.065
    [Google Scholar]
  106. ZhangZ. KongJ. Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution.J. Hazard. Mater.201119332532910.1016/j.jhazmat.2011.07.033 21813238
    [Google Scholar]
  107. ZhuH.Y. JiangR. FuY.Q. JiangJ.H. XiaoL. ZengG.M. Preparation, characterization and dye adsorption properties of γ-Fe2O3/SiO2/chitosan composite.Appl. Surf. Sci.201125841337134410.1016/j.apsusc.2011.09.045
    [Google Scholar]
  108. DebrassiA. CorrêaA.F. BaccarinT. NedelkoN. Ślawska-WaniewskaA. SobczakK. DłużewskiP. GrenecheJ.M. RodriguesC.A. Removal of cationic dyes from aqueous solutions using N-benzyl-O-carboxymethylchitosan magnetic nanoparticles.Chem. Eng. J.201218328429310.1016/j.cej.2011.12.078
    [Google Scholar]
  109. FanL. LuoC. SunM. LiX. LuF. QiuH. Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue.Bioresour. Technol.201211470370610.1016/j.biortech.2012.02.067 22464421
    [Google Scholar]
  110. ZhangY.R. WangS.Q. ShenS.L. ZhaoB.X. A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition.Chem. Eng. J.201323325826410.1016/j.cej.2013.07.009
    [Google Scholar]
  111. YuC. GengJ. ZhuangY. ZhaoJ. ChuL. LuoX. ZhaoY. GuoY. Preparation of the chitosan grafted poly (quaternary ammonium)/Fe3O4 nanoparticles and its adsorption performance for food yellow 3.Carbohydr. Polym.201615232733610.1016/j.carbpol.2016.06.114 27516279
    [Google Scholar]
  112. BéeA. ObeidL. MbolantenainaR. WelschbilligM. TalbotD. Magnetic chitosan/clay beads: A magsorbent for the removal of cationic dye from water.J. Magn. Magn. Mater.2017421596410.1016/j.jmmm.2016.07.022
    [Google Scholar]
  113. DottoG.L. SantosJ.M.N. TanabeE.H. BertuolD.A. FolettoE.L. LimaE.C. PavanF.A. Chitosan/polyamide nanofibers prepared by Forcespinning® technology: A new adsorbent to remove anionic dyes from aqueous solutions.J. Clean. Prod.201714412012910.1016/j.jclepro.2017.01.004
    [Google Scholar]
  114. Jayasantha KumariH. KrishnamoorthyP. ArumugamT.K. RadhakrishnanS. VasudevanD. An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: A novel low cost adsorbent.Int. J. Biol. Macromol.20179632433310.1016/j.ijbiomac.2016.11.077 27889343
    [Google Scholar]
  115. ZhouG. WangK.P. LiuH.W. WangL. XiaoX.F. DouD.D. FanY.B. Three-dimensional polylactic acid@graphene oxide/chitosan sponge bionic filter: Highly efficient adsorption of crystal violet dye.Int. J. Biol. Macromol.201811379280310.1016/j.ijbiomac.2018.02.017 29529585
    [Google Scholar]
  116. GopinathanR. BhowalA. GarlapatiC. Adsorption studies of some anionic dyes adsorbed by chitosan and new four-parameter adsorption isotherm model.J. Chem. Eng. Data20196462320232810.1021/acs.jced.8b01102
    [Google Scholar]
  117. TorezanL. BortoluzJ. GuerraN.B. FerrariniF. BonettoL.R. da Silva TeixeiraC. da Silva CrespoJ. GiovanelaM. CarliL.N. Magnetic chitosan microspheres for the removal of methyl violet 2B from aqueous solutions.J. Dispers. Sci. Technol.20234471170118210.1080/01932691.2021.2008420
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073350298241015071020
Loading
/content/journals/cchts/10.2174/0113862073350298241015071020
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Adsorption; chitosan; crystal violet; magnetic nanoparticles; organosilanes; silica
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test