Skip to content
2000
Volume 28, Issue 17
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Stomach adenocarcinoma (STAD) is the fifth most common tumor worldwide, imposing a significant disease burden on populations, particularly in Asia. Oxidative stress is well-known to play an essential role in the occurrence and progression of malignancies. Our study aimed to construct a prediction model by exploring the correlation between oxidative stress-related genes and the prognosis of patients with STAD.

Method

STAD data from TCGA were used to identify the differentially expressed oxidative stress-related genes (OSGs), with data from GEO serving as the validation cohort. Univariate Cox and LASSO regression analyses were performed to select prognosis-related genes for the risk model, which was then integrated with clinical features into a nomogram. The physiological functions and pathways of these identified genes were explored using GO and KEGG analyses. After evaluating the prediction value of the prognostic model in the GEO cohort, drug sensitivity and immune infiltration were comprehensively analyzed using R. Expression levels of the prognostic genes were verified by quantitative real-time PCR in gastric cancer and paired normal tissues.

Results

Cox regression and LASSO regression analysis identified SERPINE1, VHL, CD36, NOS3, ANXA5, ADCYAP1, POLRMT and GPX3 as the signature genes from 160 differentially expressed OSGs. Both Kaplan–Meier survival analysis and ROC curve at 5 years in the TCGA and the GEO cohort exhibited great predictive ability of the prognostic model, with the AUC >0.7 in TCGA. Validated as an independent risk factor, the model was integrated with clinicopathological variables (including age, stage, and gender) to build a nomogram for more accurate risk stratification. Moreover, therapy sensitivity analysis between the low- and high-risk categories showed that those who scored higher would benefit more from BEZ235, Dasatinib, Pazopanib, and Saracatinib. Meanwhile, differences in the tumor environment, immune infiltration and response to immunotherapy between the two groups were noted. Finally, qRT-PCR validated the differential expression of these genes in STAD and paired normal tissues.

Conclusion

Our study has effectively established an oxidative stress-related prognostic model, providing a promising tool for personalized clinical strategies and improved STAD patient outcomes.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073353612241030061241
2025-01-07
2025-12-24
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660
    [Google Scholar]
  2. ChiaN.Y. TanP. Molecular classification of gastric cancer.Ann. Oncol.201627576376910.1093/annonc/mdw040
    [Google Scholar]
  3. GravalosC. JimenoA. HER2 in gastric cancer: A new prognostic factor and a novel therapeutic target.Ann. Oncol.20081991523152910.1093/annonc/mdn169
    [Google Scholar]
  4. JanjigianY.Y. KawazoeA. YañezP. LiN. LonardiS. KolesnikO. BarajasO. BaiY. ShenL. TangY. WyrwiczL.S. XuJ. ShitaraK. QinS. Van CutsemE. TaberneroJ. LiL. ShahS. BhagiaP. ChungH.C. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer.Nature2021600789072773010.1038/s41586‑021‑04161‑3
    [Google Scholar]
  5. MachlowskaJ. BajJ. SitarzM. MaciejewskiR. SitarzR. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies.Int. J. Mol. Sci.20202111401210.3390/ijms21114012
    [Google Scholar]
  6. BiagioniA. SkalameraI. PeriS. SchiavoneN. CianchiF. GiommoniE. MagnelliL. PapucciL. Update on gastric cancer treatments and gene therapies.Cancer Metastasis Rev.201938353754810.1007/s10555‑019‑09803‑7
    [Google Scholar]
  7. SiesH. Oxidative stress: A concept in redox biology and medicine.Redox Biol.2015418018310.1016/j.redox.2015.01.002
    [Google Scholar]
  8. FormanH.J. ZhangH. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy.Nat. Rev. Drug Discov.202120968970910.1038/s41573‑021‑00233‑1
    [Google Scholar]
  9. ZhangY. KhanS. LiuY. WuG. YongV.W. XueM. Oxidative stress following intracerebral hemorrhage: From molecular mechanisms to therapeutic targets.Front. Immunol.20221384724610.3389/fimmu.2022.847246
    [Google Scholar]
  10. KimballJ.S. JohnsonJ.P. CarlsonD.A. Oxidative stress and osteoporosis.J. Bone Joint Surg. Am.2021103151451146110.2106/JBJS.20.00989
    [Google Scholar]
  11. GorriniC. HarrisI.S. MakT.W. Modulation of oxidative stress as an anticancer strategy.Nat. Rev. Drug Discov.2013121293194710.1038/nrd4002
    [Google Scholar]
  12. BhatA.V. HoraS. PalA. JhaS. TanejaR. Stressing the (epi)genome: Dealing with reactive oxygen species in cancer.Antioxid. Redox Signal.201829131273129210.1089/ars.2017.7158
    [Google Scholar]
  13. OutschoornU.E. CurryJ.M. KoY.H. LinZ. TulucM. CognettiD. BirbeR.C. PribitkinE. BombonatiA. PestellR.G. HowellA. SotgiaF. LisantiM.P. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment.Cell Cycle201312162580259710.4161/cc.25510
    [Google Scholar]
  14. CastellaniP. BalzaE. RubartelliA. Inflammation, damps, tumor development, and progression: A vicious circle orchestrated by redox signaling.Antioxid. Redox Signal.20142071086109710.1089/ars.2012.5164
    [Google Scholar]
  15. ZhangZ. XueH. DongY. ZhangJ. PanY. ShiL. XiongP. ZhuJ. LiW. ZhengW. LiuJ. DuJ. GKN2 promotes oxidative stress-induced gastric cancer cell apoptosis via the Hsc70 pathway.J. Exp. Clin. Cancer Res.201938133810.1186/s13046‑019‑1336‑3
    [Google Scholar]
  16. WangS. ChenZ. ZhuS. LuH. PengD. SouttoM. NazH. PeekR.Jr XuH. ZaikaA. XuZ. El-RifaiW. PRDX2 protects against oxidative stress induced by H. pylori and promotes resistance to cisplatin in gastric cancer.Redox Biol.20202810131910.1016/j.redox.2019.101319
    [Google Scholar]
  17. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e47e4710.1093/nar/gkv007
    [Google Scholar]
  18. YuG. WangL.G. HanY. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.0118
    [Google Scholar]
  19. LiuT.T. LiR. HuoC. Identification of CDK2-Related Immune Forecast Model and ceRNA in Lung Adenocarcinoma, a Pan-Cancer Analysis.Front. Cell Dev. Biol.2021968200210.3389/fcell.2021.682002
    [Google Scholar]
  20. WangS. SuW. ZhongC. An Eight-CircRNA Assessment Model for Predicting Biochemical Recurrence in Prostate Cancer.Front. Cell Dev. Biol.2020859949410.3389/fcell.2020.599494
    [Google Scholar]
  21. WangL. ChenF. LiuR. ShiL. ZhaoG. YanZ. Gene expression and immune infiltration in melanoma patients with different mutation burden.BMC Cancer202121137910.1186/s12885‑021‑08083‑1
    [Google Scholar]
  22. HeY. ZhangJ. ChenZ. A seven-gene prognosis model to predict biochemical recurrence for prostate cancer based on the TCGA database.Front. Surg.2022992347310.3389/fsurg.2022.923473
    [Google Scholar]
  23. GeeleherP. CoxN. HuangR.S. PRRophetic: An r package for prediction of clinical chemotherapeutic response from tumor gene expression levels.PLoS One201499e10746810.1371/journal.pone.0107468
    [Google Scholar]
  24. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms3612
    [Google Scholar]
  25. ChenB. KhodadoustM.S. LiuC.L. Profiling tumor infiltrating immune cells with cibersort.Cancer Systems Biology: Methods and Protocols.New York, NYSpringer201810.1007/978‑1‑4939‑7493‑1_12
    [Google Scholar]
  26. JiangY. LiT. LiangX. HuY. HuangL. LiaoZ. ZhaoL. HanZ. ZhuS. WangM. XuY. QiX. LiuH. YangY. YuJ. LiuW. CaiS. LiG. Association of adjuvant chemotherapy with survival in patients with stage ii or iii gastric cancer.JAMA Surg.20171527e17108710.1001/jamasurg.2017.1087
    [Google Scholar]
  27. LiuY. ShiY. HanR. Signaling pathways of oxidative stress response: the potential therapeutic targets in gastric cancer.Front. Immunol.202314113958910.3389/fimmu.2023.1139589
    [Google Scholar]
  28. BhattacharyyaA. ChattopadhyayR. MitraS. CroweS.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases.Physiol. Rev.201494232935410.1152/physrev.00040.2012
    [Google Scholar]
  29. MashimoM. NishikawaM. HiguchiK. HiroseM. WeiQ. HaqueA. SasakiE. ShibaM. TominagaK. WatanabeT. FujiwaraY. ArakawaT. InoueM. Production of reactive oxygen species in peripheral blood is increased in individuals with helicobacter pylori infection and decreased after its eradication.Helicobacter200611426627110.1111/j.1523‑5378.2006.00410.x
    [Google Scholar]
  30. SunL. WangX. SaredyJ. YuanZ. YangX. WangH. Innate-adaptive immunity interplay and redox regulation in immune response.Redox Biol.20203710175910.1016/j.redox.2020.101759
    [Google Scholar]
  31. ChattopadhyayI. GundamarajuR. JhaN.K. GuptaP.K. DeyA. MandalC.C. FordB.M. Interplay between dysbiosis of gut microbiome, lipid metabolism, and tumorigenesis: Can gut dysbiosis stand as a prognostic marker in cancer?Dis. Markers2022202211510.1155/2022/2941248
    [Google Scholar]
  32. KattoorA.J. PothineniN.V.K. PalagiriD. MehtaJ.L. Oxidative stress in atherosclerosis.Curr. Atheroscler. Rep.201719114210.1007/s11883‑017‑0678‑6
    [Google Scholar]
  33. GanL. CooksonM.R. PetrucelliL. La SpadaA.R. Converging pathways in neurodegeneration, from genetics to mechanisms.Nat. Neurosci.201821101300130910.1038/s41593‑018‑0237‑7
    [Google Scholar]
  34. AbdelhamidR.F. NaganoS. Crosstalk between oxidative stress and aging in neurodegeneration disorders.Cells202312575310.3390/cells12050753
    [Google Scholar]
  35. KuoC.L. Ponneri BabuharisankarA. LinY.C. LienH-W. LoY.K. ChouH-Y. TangedaV. ChengL-C. ChengA.N. LeeA.Y-L. Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: Foe or friend?J. Biomed. Sci.20222917410.1186/s12929‑022‑00859‑2
    [Google Scholar]
  36. YuY. WuY. ZhangY. LuM. SuX. Oxidative stress in the tumor microenvironment in gastric cancer and its potential role in immunotherapy.FEBS Open Bio20231371238125210.1002/2211‑5463.13630
    [Google Scholar]
  37. LiY. ShenL. TaoK. XuG. JiK. Key roles of p53 signaling pathway-related factors gadd45b and serpine1 in the occurrence and development of gastric cancer.Mediators Inflamm.2023202311510.1155/2023/6368893
    [Google Scholar]
  38. YangJ.D. MaL. ZhuZ. SERPINE1 as a cancer-promoting gene in gastric adenocarcinoma: Facilitates tumour cell proliferation, migration, and invasion by regulating EMT.J. Chemother.2019317-840841810.1080/1120009X.2019.1687996
    [Google Scholar]
  39. DuY. ZhangJ. GongL. FengZ. WangD. PanY. SunL. WenJ. ChenG. LiangJ. ChenJ. ShaoC. Hypoxia-induced ebv-circLMP2A promotes angiogenesis in EBV-associated gastric carcinoma through the KHSRP/VHL/HIF1α/VEGFA pathway.Cancer Lett.202252625927210.1016/j.canlet.2021.11.031
    [Google Scholar]
  40. Jacome-SosaM. MiaoZ.F. PecheV.S. MorrisE.F. NarendranR. PietkaK.M. SamovskiD. LoH-Y.G. PietkaT. VarroA. Love-GregoryL. GoldenringJ.R. KudaO. GamazonE.R. MillsJ.C. AbumradN.A. CD36 maintains the gastric mucosa and associates with gastric disease.Commun. Biol.202141124710.1038/s42003‑021‑02765‑z
    [Google Scholar]
  41. PanJ. FanZ. WangZ. DaiQ. XiangZ. YuanF. YanM. ZhuZ. LiuB. LiC. CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3β/β-catenin pathway.J. Exp. Clin. Cancer Res.20193815210.1186/s13046‑019‑1049‑7
    [Google Scholar]
  42. WangJ. WenT. LiZ. CheX. GongL. JiaoZ. QuX. LiuY. CD36 upregulates DEK transcription and promotes cell migration and invasion via GSK-3β/β-catenin-mediated epithelial-to-mesenchymal transition in gastric cancer.Aging (Albany NY)20211321883189710.18632/aging.103985
    [Google Scholar]
  43. JiangQ. ChenZ. MengF. ZhangH. ChenH. XueJ. ShenX. LiuT. DongL. ZhangS. XueR. CD36-batf2\myb axis predicts anti-pd-1 immunotherapy response in gastric cancer.Int. J. Biol. Sci.202319144476449210.7150/ijbs.87635
    [Google Scholar]
  44. JeongS. KimB.G. KimD.Y. KimB.R. KimJ.L. ParkS.H. NaY.J. JoM.J. YunH.K. JeongY.A. KimH.J. LeeS.I. KimH.D. KimD.H. OhS.C. LeeD-H. Cannabidiol overcomes oxaliplatin resistance by enhancing nos3- and sod2-induced autophagy in human colorectal cancer cells.Cancers (Basel)201911678110.3390/cancers11060781
    [Google Scholar]
  45. PeñarandoJ. López-SánchezL.M. MenaR. Guil-LunaS. CondeF. HernándezV. ToledanoM. GudiñoV. RaponiM. BillardC. VillarC. DíazC. Gómez-BarbadilloJ. De la Haba-RodríguezJ. MyantK. ArandaE. Rodríguez-ArizaA. A role for endothelial nitric oxide synthase in intestinal stem cell proliferation and mesenchymal colorectal cancer.BMC Biol.2018161310.1186/s12915‑017‑0472‑5
    [Google Scholar]
  46. WangL. ShiG.G. YaoJ.C. GongW. WeiD. WuT-T. AjaniJ.A. HuangS. XieK. Expression of endothelial nitric oxide synthase correlates with the angiogenic phenotype of and predicts poor prognosis in human gastric cancer.Gastric Cancer200581182810.1007/s10120‑004‑0310‑7
    [Google Scholar]
  47. PengB. GuoC. GuanH. LiuS. SunM-Z. Annexin A5 as a potential marker in tumors.Clin. Chim. Acta2014427424810.1016/j.cca.2013.09.048
    [Google Scholar]
  48. DengS. WangJ. HouL. LiJ. ChenG. JingB. ZhangX. YangZ. Annexin A1, A2, A4 and A5 play important roles in breast cancer, pancreatic cancer and laryngeal carcinoma, alone and/or synergistically.Oncol. Lett.20135110711210.3892/ol.2012.959
    [Google Scholar]
  49. JungS. YiL. JeongD. The role of adcyap1, adenylate cyclase activating polypeptide 1, as a methylation biomarker for the early detection of cervical cancer.Oncol. Rep.2011251245252
    [Google Scholar]
  50. KimM.K. LeeI.H. LeeK.H. LeeY.K. SoK.A. HongS.R. HwangC-S. KeeM-K. RheeJ.E. KangC. HurS.Y. ParkJ.S. KimT-J. DNA methylation in human papillomavirus-infected cervical cells is elevated in high-grade squamous intraepithelial lesions and cancer.J. Gynecol. Oncol.2016272e1410.3802/jgo.2016.27.e14
    [Google Scholar]
  51. LeeJ.H. LeeJ.Y. RhoS.B. ChoiJ-S. LeeD-G. AnS. OhT. ChoiD-C. LeeS-H. PACAP inhibits tumor growth and interferes with clusterin in cervical carcinomas.FEBS Lett.2014588244730473910.1016/j.febslet.2014.11.004
    [Google Scholar]
  52. GermanoP.M. LieuS.N. XueJ. CookeH.J. ChristofiF.L. LuY. PisegnaJ.R. PACAP induces signaling and stimulation of 5-hydroxytryptamine release and growth in neuroendocrine tumor cells.J. Mol. Neurosci.200939339140110.1007/s12031‑009‑9283‑7
    [Google Scholar]
  53. BonekampN.A. PeterB. HillenH.S. FelserA. BergbredeT. ChoidasA. HornM. UngerA. Di LucreziaR. AtanassovI. LiX. KochU. MenningerS. BorosJ. HabenbergerP. GiavaliscoP. CramerP. DenzelM.S. NussbaumerP. KleblB. FalkenbergM. GustafssonC.M. LarssonN-G. Small-molecule inhibitors of human mitochondrial DNA transcription.Nature2020588783971271610.1038/s41586‑020‑03048‑z
    [Google Scholar]
  54. KongY. LiX. ZhangH. FuB. JiangH-Y. YangH-L. DaiJ. Targeting POLRMT by a first-in-class inhibitor IMT1 inhibits osteosarcoma cell growth in vitro and in vivo.Cell Death Dis.20241515710.1038/s41419‑024‑06444‑9
    [Google Scholar]
  55. LiX. YaoL. WangT. GuX. WuY. JiangT. Identification of the mitochondrial protein POLRMT as a potential therapeutic target of prostate cancer.Cell Death Dis.2023141066510.1038/s41419‑023‑06203‑2
    [Google Scholar]
  56. LiS. OuL. ZhangY. ShenF. ChenY. A first-in-class POLRMT specific inhibitor IMT1 suppresses endometrial carcinoma cell growth.Cell Death Dis.202314215210.1038/s41419‑023‑05682‑7
    [Google Scholar]
  57. ChangC. WorleyB.L. PhaëtonR. HempelN. Extracellular glutathione peroxidase gpx3 and its role in cancer.Cancers (Basel)2020128219710.3390/cancers12082197
    [Google Scholar]
  58. GuvenM. OzturkB. SayalA. Lipid peroxidation and antioxidant system in the blood of cancerous patients with metastasis.Cancer Biochem. Biophys.1999171–2155162
    [Google Scholar]
  59. AnB.C. GPx3-mediated redox signaling arrests the cell cycle and acts as a tumor suppressor in lung cancer cell lines.PLoS One2018139e020417010.1371/journal.pone.0204170
    [Google Scholar]
  60. CaiM. SikongY. WangQ. Gpx3 prevents migration and invasion in gastric cancer by targeting nfкb/wnt5a/jnk signaling.Int. J. Clin. Exp. Pathol.201912411941203
    [Google Scholar]
  61. HeQ. ChenN. WangX. LiP. LiuL. RongZ. LiuW. JiangK. ZhaoJ. Prognostic value and immunological roles of GPX3 in gastric cancer.Int. J. Med. Sci.202320111399141610.7150/ijms.85253
    [Google Scholar]
  62. WorleyB.L. KimY.S. MardiniJ. ZamanR. LeonK.E. VallurP.G. NduwumwamiA. WarrickJ.I. TimminsP.F. KestersonJ.P. PhaëtonR. LeeN.Y. WalterV. EndresL. MythreyeK. AirdK.M. HempelN. GPx3 supports ovarian cancer progression by manipulating the extracellular redox environment.Redox Biol.20192510105110.1016/j.redox.2018.11.009
    [Google Scholar]
  63. LeeH.J. DoJ.H. BaeS. YangS. ZhangX. LeeA. ChoiY.J. ParkD.C. AhnW.S. Immunohistochemical evidence for the over-expression of Glutathione peroxidase 3 in clear cell type ovarian adenocarcinoma.Med. Oncol.201128Suppl. 152252710.1007/s12032‑010‑9659‑0
    [Google Scholar]
  64. MedzhitovR. Origin and physiological roles of inflammation.Nature2008454720342843510.1038/nature07201
    [Google Scholar]
  65. ChenJ. TanY. SunF. HouL. ZhangC. GeT. YuH. WuC. ZhuY. DuanL. WuL. SongN. ZhangL. ZhangW. WangD. ChenC. WuC. JiangG. ZhangP. Single-cell transcriptome and antigen-immunoglobin analysis reveals the diversity of B cells in non-small cell lung cancer.Genome Biol.202021115210.1186/s13059‑020‑02064‑6
    [Google Scholar]
  66. NiuX. MaJ. LiJ. GuY. YinL. WangY. ZhouX. WangJ. JiH. ZhangQ. Sodium/glucose cotransporter 1-dependent metabolic alterations induce tamoxifen resistance in breast cancer by promoting macrophage M2 polarization.Cell Death Dis.202112650910.1038/s41419‑021‑03781‑x
    [Google Scholar]
  67. YeG. TuL. LiZ. LiX. ZhengX. SongY. SYNPO2 promotes the development of BLCA by upregulating the infiltration of resting mast cells and increasing the resistance to immunotherapy.Oncol. Rep.20235111410.3892/or.2023.8673
    [Google Scholar]
  68. CuiY. ShenT. XuF. ZhangJ. WangY. WuJ. BuH. FuD. FangB. LvH. WangS. ShiC. LiuB. HeH. TangH. GeJ. KCNN4 may weaken anti-tumor immune response via raising Tregs and diminishing resting mast cells in clear cell renal cell carcinoma.Cancer Cell Int.202222121110.1186/s12935‑022‑02626‑7
    [Google Scholar]
  69. BlombergO.S. SpagnuoloL. GarnerH. VoorwerkL. IsaevaO.I. van DykE. BakkerN. ChalabiM. KlaverC. DuijstM. KerstenK. BrüggemannM. PastoorsD. HauC-S. VrijlandK. RaevenE.A.M. KaldenbachD. KosK. AfoninaI.S. KapteinP. HoesL. TheelenW.S.M.E. BaasP. VoestE.E. BeyaertR. ThommenD.S. WesselsL.F.A. de VisserK.E. KokM. IL-5-producing CD4+ T cells and eosinophils cooperate to enhance response to immune checkpoint blockade in breast cancer.Cancer Cell2023411106123.e1010.1016/j.ccell.2022.11.014
    [Google Scholar]
  70. Grisaru-TalS. RothenbergM.E. MunitzA. Eosinophil–lymphocyte interactions in the tumor microenvironment and cancer immunotherapy.Nat. Immunol.20222391309131610.1038/s41590‑022‑01291‑2
    [Google Scholar]
  71. XiongS. DongL. ChengL. Neutrophils in cancer carcinogenesis and metastasis.J. Hematol. Oncol.202114117310.1186/s13045‑021‑01187‑y
    [Google Scholar]
  72. ShaulM.E. FridlenderZ.G. Tumour-associated neutrophils in patients with cancer.Nat. Rev. Clin. Oncol.2019161060162010.1038/s41571‑019‑0222‑4
    [Google Scholar]
  73. HollernD.P. XuN. ThennavanA. GlodowskiC. Garcia-RecioS. MottK.R. HeX. GarayJ.P. Carey-EwendK. MarronD. FordJ. LiuS. VickS.C. MartinM. ParkerJ.S. VincentB.G. SerodyJ.S. PerouC.M. B cells and t follicular helper cells mediate response to checkpoint inhibitors in high mutation burden mouse models of breast cancer.Cell2019179511911206.e2110.1016/j.cell.2019.10.028
    [Google Scholar]
  74. HongZ. WenP. WangK. WeiX. XieW. RaoS. ChenX. HouJ. ZhuoH. The macrophage-associated prognostic gene ANXA5 promotes immunotherapy resistance in gastric cancer through angiogenesis.BMC Cancer202424114110.1186/s12885‑024‑11878‑7
    [Google Scholar]
  75. ZhangQ. LeiL. JingD. Knockdown of SERPINE1 reverses resistance of triple negative breast cancer to paclitaxel via suppression of VEGFA.Oncol. Rep.20204451875188410.3892/or.2020.7770
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073353612241030061241
Loading
/content/journals/cchts/10.2174/0113862073353612241030061241
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test