Skip to content
2000
Volume 28, Issue 16
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

SH2B adaptor protein 2 (SH2B2, also named APS) is an adaptor protein implicated in the modulation of insulin signaling pathways and glucose metabolism. Its role in colon adenocarcinoma (COAD) is unknown.

Methods

Data from The Cancer Genome Atlas and Gene Expression Omnibus database were utilized to assess SH2B2 expression and its clinical significance in COAD. We investigated the associations between SH2B2 expression with genomic instability, tumor mutational burden (TMB), DNA methylation, alternative splicing, immune infiltration, and drug sensitivity. A SH2B2 knockdown model was developed to examine its impact on COAD cellular functions.

Results

Highly expressed SH2B2 is associated with a poorer prognosis in COAD. SH2B2 expression in COAD is associated with copy number variations, microsatellite instability, methylation patterns, and alternative 5’ splicing events, but not with TMB. SH2B2 is positively correlated with mostly immune cells and the expression of PD-1 and CTLA4. The IC50 values of ten drugs were significantly correlated with SH2B2 expression. BI-2536_1086 had a strong binding affinity with SH2B2. Furthermore, the knockdown of SH2B2 reduced the proliferation, migration, and invasion of COAD cells.

Conclusion

SH2B2 appears to act as an oncogene in COAD and may serve as a pivotal prognostic and therapeutic target, deserving further exploration.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073346075241118092413
2024-12-18
2025-12-30
Loading full text...

Full text loading...

References

  1. PinheiroM. MoreiraD.N. GhidiniM. Colon and rectal cancer: An emergent public health problem.World J. Gastroenterol.202430764465110.3748/wjg.v30.i7.644 38515957
    [Google Scholar]
  2. SiegelR.L. MillerK.D. Goding SauerA. FedewaS.A. ButterlyL.F. AndersonJ.C. CercekA. SmithR.A. JemalA. Colorectal cancer statistics, 2020.CA Cancer J. Clin.202070314516410.3322/caac.21601 32133645
    [Google Scholar]
  3. ChenY.C. TsaiH.L. LiC.C. HuangC.W. ChangT.K. SuW.C. ChenP.J. YinT.C. HuangC.M. WangJ.Y. Critical reappraisal of neoadjuvant concurrent chemoradiotherapy for treatment of locally advanced colon cancer.PLoS One20211611e025946010.1371/journal.pone.0259460 34727133
    [Google Scholar]
  4. CavigliaG.P. CabiancaL. FagooneeS. GiliF.M. Colorectal cancer detection in an asymptomatic population: Fecal immunochemical test for hemoglobin vs. fecal M2-type pyruvate kinase.Biochem. Med. (Zagreb)201626111412010.11613/BM.2016.012 26981025
    [Google Scholar]
  5. FearonE.R. VogelsteinB. A genetic model for colorectal tumorigenesis.Cell199061575976710.1016/0092‑8674(90)90186‑I 2188735
    [Google Scholar]
  6. BensonA.B. VenookA.P. Al-HawaryM.M. AzadN. ChenY.J. CiomborK.K. CohenS. CooperH.S. DemingD. Garrido-LagunaI. GremJ.L. GunnA. HechtJ.R. HoffeS. HubbardJ. HuntS. JeckW. JohungK.L. KirilcukN. KrishnamurthiS. MarattJ.K. MessersmithW.A. MeyerhardtJ. MillerE.D. MulcahyM.F. NurkinS. OvermanM.J. ParikhA. PatelH. PedersenK. SaltzL. SchneiderC. ShibataD. SkibberJ.M. SofocleousC.T. Stotsky-HimelfarbE. TavakkoliA. WillettC.G. GregoryK. GurskiL. Rectal cancer, version 2.2022, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202220101139116710.6004/jnccn.2022.0051 36240850
    [Google Scholar]
  7. AnteloM. BalaguerF. ShiaJ. ShenY. HurK. MoreiraL. CuatrecasasM. BujandaL. GiraldezM.D. TakahashiM. CabanneA. BarugelM.E. ArnoldM. RocaE.L. AndreuM. Castellvi-BelS. LlorX. JoverR. CastellsA. BolandC.R. GoelA. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer.PLoS One201279e4535710.1371/journal.pone.0045357 23049789
    [Google Scholar]
  8. PuntC.J.A. KoopmanM. VermeulenL. From tumour heterogeneity to advances in precision treatment of colorectal cancer.Nat. Rev. Clin. Oncol.201714423524610.1038/nrclinonc.2016.171 27922044
    [Google Scholar]
  9. RuiL. SH2B1 regulation of energy balance, body weight, and glucose metabolism.World J. Diabetes20145451152610.4239/wjd.v5.i4.511 25126397
    [Google Scholar]
  10. AhmedZ. PillayT.S. Adapter protein with a pleckstrin homology (PH) and an Src homology 2 (SH2) domain (APS) and SH2-B enhance insulin-receptor autophosphorylation, extracellular-signal-regulated kinase and phosphoinositide 3-kinase-dependent signalling.Biochem. J.2003371240541210.1042/bj20021589 12521378
    [Google Scholar]
  11. IsekiM. KuboC. KwonS.M. YamaguchiA. KataokaY. YoshidaN. TakatsuK. TakakiS. Increased numbers of B-1 cells and enhanced responses against TI-2 antigen in mice lacking APS, an adaptor molecule containing PH and SH2 domains.Mol. Cell. Biol.20042462243225010.1128/MCB.24.6.2243‑2250.2004 14993264
    [Google Scholar]
  12. ChengY. DuanC. ZhangC. New perspective on SH2B1: An accelerator of cancer progression.Biomed. Pharmacother.202012110965110.1016/j.biopha.2019.109651 31739166
    [Google Scholar]
  13. JinC. WangA. LiuL. WangG. LiG. Hsa_circ_0136666 promotes the proliferation and invasion of colorectal cancer through miR‐136/SH2B1 axis.J. Cell. Physiol.201923457247725610.1002/jcp.27482 30370521
    [Google Scholar]
  14. i v, A.N.; Nair, A.S. Bioinformatics screening of ETV4 transcription factor oncogenes and identifying small-molecular anticancer drugs.Chem. Biol. Drug Des.202299227728510.1111/cbdd.13981 34757684
    [Google Scholar]
  15. UhlenM. ZhangC. LeeS. SjöstedtE. FagerbergL. BidkhoriG. BenfeitasR. ArifM. LiuZ. EdforsF. SanliK. von FeilitzenK. OksvoldP. LundbergE. HoberS. NilssonP. MattssonJ. SchwenkJ.M. BrunnströmH. GlimeliusB. SjöblomT. EdqvistP.H. DjureinovicD. MickeP. LindskogC. MardinogluA. PontenF. A pathology atlas of the human cancer transcriptome.Science20173576352eaan250710.1126/science.aan2507 28818916
    [Google Scholar]
  16. ChandrashekarD.S. KarthikeyanS.K. KorlaP.K. PatelH. ShovonA.R. AtharM. NettoG.J. QinZ.S. KumarS. ManneU. CreightonC.J. VaramballyS. UALCAN: An update to the integrated cancer data analysis platform.Neoplasia202225182710.1016/j.neo.2022.01.001 35078134
    [Google Scholar]
  17. ChandrashekarD.S. BashelB. BalasubramanyaS.A.H. CreightonC.J. Ponce-RodriguezI. ChakravarthiB.V.S.K. VaramballyS. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses.Neoplasia201719864965810.1016/j.neo.2017.05.002 28732212
    [Google Scholar]
  18. RuB. WongC.N. TongY. ZhongJ.Y. ZhongS.S.W. WuW.C. ChuK.C. WongC.Y. LauC.Y. ChenI. ChanN.W. ZhangJ. TISIDB: An integrated repository portal for tumor–immune system interactions.Bioinformatics201935204200420210.1093/bioinformatics/btz210 30903160
    [Google Scholar]
  19. de BruijnI. KundraR. MastrogiacomoB. TranT.N. SikinaL. MazorT. LiX. OchoaA. ZhaoG. LaiB. AbeshouseA. BaiceanuD. CiftciE. DogrusozU. DufilieA. ErkocZ. Garcia LaraE. FuZ. GrossB. HaynesC. HeathA. HigginsD. JagannathanP. KalletlaK. KumariP. LindsayJ. LismanA. LeenknegtB. LukasseP. MadelaD. MadupuriR. van NieropP. PlantalechO. QuachJ. ResnickA.C. RodenburgS.Y.A. SatravadaB.A. SchaefferF. SheridanR. SinghJ. SirohiR. SumerS.O. van HagenS. WangA. WilsonM. ZhangH. ZhuK. RuskN. BrownS. LaveryJ.A. PanageasK.S. RudolphJ.E. LeNoue-NewtonM.L. WarnerJ.L. GuoX. Hunter-ZinckH. YuT.V. PilaiS. NicholsC. GardosS.M. PhilipJ. KehlK.L. RielyG.J. SchragD. LeeJ. FiandaloM.V. SweeneyS.M. PughT.J. SanderC. CeramiE. GaoJ. SchultzN. Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cBioPortal.Cancer Res.202383233861386710.1158/0008‑5472.CAN‑23‑0816 37668528
    [Google Scholar]
  20. PintoJ.P. KalathurR.K. OliveiraD.V. BarataT. MachadoR.S.R. MachadoS. Pacheco-LeyvaI. DuarteI. FutschikM.E. StemChecker: A web-based tool to discover and explore stemness signatures in gene sets.Nucleic Acids Res.201543W1W72W7710.1093/nar/gkv529 26007653
    [Google Scholar]
  21. LiJ.H. LiuS. ZhouH. QuL.H. YangJ.H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data.Nucleic Acids Res.201442D1D92D9710.1093/nar/gkt1248 24297251
    [Google Scholar]
  22. Díez-VillanuevaA. MallonaI. PeinadoM.A. Wanderer, an interactive viewer to explore DNA methylation and gene expression data in human cancer.Epigenetics Chromatin2015812210.1186/s13072‑015‑0014‑8 26113876
    [Google Scholar]
  23. ZhangY. YaoX. ZhouH. WuX. TianJ. ZengJ. YanL. DuanC. LiuH. LiH. ChenK. HuZ. YeZ. XuH. OncoSplicing: An updated database for clinically relevant alternative splicing in 33 human cancers.Nucleic Acids Res.202250D1D1340D134710.1093/nar/gkab851 34554251
    [Google Scholar]
  24. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.019 28052254
    [Google Scholar]
  25. BarbieD.A. TamayoP. BoehmJ.S. KimS.Y. MoodyS.E. DunnI.F. SchinzelA.C. SandyP. MeylanE. SchollC. FröhlingS. ChanE.M. SosM.L. MichelK. MermelC. SilverS.J. WeirB.A. ReilingJ.H. ShengQ. GuptaP.B. WadlowR.C. LeH. HoerschS. WittnerB.S. RamaswamyS. LivingstonD.M. SabatiniD.M. MeyersonM. ThomasR.K. LanderE.S. MesirovJ.P. RootD.E. GillilandD.G. JacksT. HahnW.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.Nature2009462726910811210.1038/nature08460 19847166
    [Google Scholar]
  26. LiT. FanJ. WangB. TraughN. ChenQ. LiuJ.S. LiB. LiuX.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells.Cancer Res.20177721e108e11010.1158/0008‑5472.CAN‑17‑0307 29092952
    [Google Scholar]
  27. TangZ. LiC. KangB. GaoG. LiC. ZhangZ. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses.Nucleic Acids Res.201745W1W98W10210.1093/nar/gkx247 28407145
    [Google Scholar]
  28. MaeserD. GruenerR.F. HuangR.S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data.Brief. Bioinform.2021226bbab26010.1093/bib/bbab260 34260682
    [Google Scholar]
  29. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac956 36305812
    [Google Scholar]
  30. BurleyS.K. BhikadiyaC. BiC. BittrichS. ChaoH. ChenL. CraigP.A. CrichlowG.V. DalenbergK. DuarteJ.M. DuttaS. FayaziM. FengZ. FlattJ.W. GanesanS. GhoshS. GoodsellD.S. GreenR.K. GuranovicV. HenryJ. HudsonB.P. KhokhriakovI. LawsonC.L. LiangY. LoweR. PeisachE. PersikovaI. PiehlD.W. RoseY. SaliA. SeguraJ. SekharanM. ShaoC. VallatB. VoigtM. WebbB. WestbrookJ.D. WhetstoneS. YoungJ.Y. ZalevskyA. ZardeckiC. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning.Nucleic Acids Res.202351D1D488D50810.1093/nar/gkac1077 36420884
    [Google Scholar]
  31. BaughE.H. LyskovS. WeitznerB.D. GrayJ.J. Real-Time PyMOL visualization for rosetta and PyRosetta.PLoS One201168e2193110.1371/journal.pone.0021931 21857909
    [Google Scholar]
  32. El-HachemN. Haibe-KainsB. KhalilA. KobeissyF.H. NemerG. AutoDock and autodocktools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study.Methods Mol. Biol.2017159839140310.1007/978‑1‑4939‑6952‑4_20 28508374
    [Google Scholar]
  33. LiuS. WangR. LouY. LiuJ. Uncovering the mechanism of the effects of Pien-Tze-Huang on liver cancer using network pharmacology and molecular docking.Evid. Based Complement. Alternat. Med.202020201486301510.1155/2020/4863015 32963562
    [Google Scholar]
  34. DengH. GaoJ. CaoB. QiuZ. LiT. ZhaoR. LiH. WeiB. LncRNA CCAT2 promotes malignant progression of metastatic gastric cancer through regulating CD44 alternative splicing.Cell Oncol. (Dordr.)20234661675169010.1007/s13402‑023‑00835‑4 37354353
    [Google Scholar]
  35. WuZ. ChenH. LiangY. LuoW. DengF. ZengF. Alternative splicing implicated in immunity and prognosis of colon adenocarcinoma.Int. Immunopharmacol.202089Part B10707510.1016/j.intimp.2020.107075
    [Google Scholar]
  36. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  37. DekkerE. TanisP.J. VleugelsJ.L.A. KasiP.M. WallaceM.B. Colorectal cancer.Lancet2019394102071467148010.1016/S0140‑6736(19)32319‑0 31631858
    [Google Scholar]
  38. VerrasG.I. MulitaF. Butyrylcholinesterase levels correlate with surgical site infection risk and severity after colorectal surgery: A prospective single-center study.Front. Surg.202411137941010.3389/fsurg.2024.1379410 39229253
    [Google Scholar]
  39. MorrisR. ZhangY. EllyardJ.I. VinuesaC.G. MurphyJ.M. LaktyushinA. KershawN.J. BabonJ.J. Structural and functional analysis of target recognition by the lymphocyte adaptor protein LNK.Nat. Commun.2021121611010.1038/s41467‑021‑26394‑6 34671038
    [Google Scholar]
  40. PanJ. PengR. ChengN. ChenF. GaoB. LNK protein: Low expression in human colorectal carcinoma and relationship with tumor invasion.Biomed. Pharmacother.202012110946710.1016/j.biopha.2019.109467 31706103
    [Google Scholar]
  41. YokouchiM. WakiokaT. SakamotoH. YasukawaH. OhtsukaS. SasakiA. OhtsuboM. ValiusM. InoueA. KomiyaS. YoshimuraA. APS, an adaptor protein containing PH and SH2 domains, is associated with the PDGF receptor and c-Cbl and inhibits PDGF-induced mitogenesis.Oncogene199918375976710.1038/sj.onc.1202326 9989826
    [Google Scholar]
  42. WakiokaT. SasakiA. MitsuiK. YokouchiM. InoueA. KomiyaS. YoshimuraA. APS, an adaptor protein containing Pleckstrin homology (PH) and Src homology-2 (SH2) domains inhibits the JAK-STAT pathway in collaboration with c-Cbl.Leukemia199913576076710.1038/sj.leu.2401397 10374881
    [Google Scholar]
  43. WangL.N. ZhangZ.T. WangL. WeiH.X. ZhangT. ZhangL.M. LinH. ZhangH. WangS.Q. TGF-β1/SH2B3 axis regulates anoikis resistance and EMT of lung cancer cells by modulating JAK2/STAT3 and SHP2/Grb2 signaling pathways.Cell Death Dis.202213547210.1038/s41419‑022‑04890‑x 35589677
    [Google Scholar]
  44. SiegfriedG. KhatibA.M. BenjannetS. ChrétienM. SeidahN.G. The proteolytic processing of pro-platelet-derived growth factor-A at RRKR(86) by members of the proprotein convertase family is functionally correlated to platelet-derived growth factor-A-induced functions and tumorigenicity.Cancer Res.200363714581463 12670890
    [Google Scholar]
  45. TiffenJ. GallagherS.J. FilippF. GunatilakeD. EmranA.A. CullinaneC. Dutton-RegisterK. AoudeL. HaywardN. ChatterjeeA. RodgerE.J. EcclesM.R. HerseyP. EZH2 cooperates with DNA methylation to downregulate key tumor suppressors and IFN gene signatures in melanoma.J. Invest. Dermatol.20201401224422454.e510.1016/j.jid.2020.02.042 32360600
    [Google Scholar]
  46. WangF. LongJ. LiL. WuZ.X. DaT.T. WangX.Q. HuangC. JiangY.H. YaoX.Q. MaH.Q. LianZ.X. ZhaoZ.B. CaoJ. Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer.Sci. Adv.2023924eadf546410.1126/sciadv.adf5464 37327339
    [Google Scholar]
  47. RasolaC. Laurent-PuigP. AndréT. FalcozA. LepageC. AparicioT. BouchéO. LievreA. MineurL. BennounaJ. LouvetC. BachetJ.B. BorgC. VernereyD. LonardiS. TaiebJ. Time to recurrence and its relation to survival after recurrence in patients resected for stage III colon cancer.Eur. J. Cancer202319411332110.1016/j.ejca.2023.113321 37797388
    [Google Scholar]
  48. WassermanI. LeeL.H. OginoS. MarcoM.R. WuC. ChenX. DattaJ. SadotE. SzeglinB. GuillemJ.G. PatyP.B. WeiserM.R. NashG.M. SaltzL. BarlasA. Manova-TodorovaK. UppadaS.P.B. ElghouayelA.E. NtiamoahP. GlickmanJ.N. HamadaT. KosumiK. InamuraK. ChanA.T. NishiharaR. CercekA. GaneshK. KemenyN.E. DhawanP. YaegerR. SawyersC.L. Garcia-AguilarJ. GiannakisM. ShiaJ. SmithJ.J. SMAD4 loss in colorectal cancer patients correlates with recurrence, loss of immune infiltrate, and chemoresistance.Clin. Cancer Res.20192561948195610.1158/1078‑0432.CCR‑18‑1726 30587545
    [Google Scholar]
  49. TanX. FangY. FanX. DengW. HuangJ. CaiY. ZouJ. ChenZ. LinH. XuL. WangG. ZhanH. HuangS. FuX. Testing region selection and prognostic analysis of MLH1 promoter methylation in colorectal cancer in China.Gastroenterol. Rep. (Oxf.)202312goae01110.1093/gastro/goae011 38566849
    [Google Scholar]
  50. DereE. WilsonS.K. AndersonL.M. BoekelheideK. From the cover: Sperm molecular biomarkers are sensitive indicators of testicular injury following subchronic model toxicant exposure.Toxicol. Sci.2016153232734010.1093/toxsci/kfw137 27466211
    [Google Scholar]
  51. Papanicolau-SengosA. AldapeK. DNA methylation profiling: An emerging paradigm for cancer diagnosis.Annu. Rev. Pathol.202217129532110.1146/annurev‑pathol‑042220‑022304 34736341
    [Google Scholar]
  52. MazloumiZ. FarahzadiR. RafatA. Dizaji AslK. KarimipourM. MontazerM. MovassaghpourA.A. DehnadA. Nozad CharoudehH. Effect of aberrant DNA methylation on cancer stem cell properties.Exp. Mol. Pathol.202212510475710.1016/j.yexmp.2022.104757 35339454
    [Google Scholar]
  53. VinogradovS. WeiX. Cancer stem cells and drug resistance: The potential of nanomedicine.Nanomedicine (Lond.)20127459761510.2217/nnm.12.22 22471722
    [Google Scholar]
  54. EbrahimiN. AfshinpourM. FakhrS.S. KalkhoranP.G. Shadman-ManeshV. AdelianS. BeiranvandS. Rezaei-TazangiF. KhorramR. HamblinM.R. ArefA.R. Cancer stem cells in colorectal cancer: Signaling pathways involved in stemness and therapy resistance.Crit. Rev. Oncol. Hematol.202318210392010.1016/j.critrevonc.2023.103920 36702423
    [Google Scholar]
  55. DivisatoG. PiscitelliS. EliaM. CasconeE. ParisiS. MicroRNAs and stem-like properties: The complex regulation underlying stemness maintenance and cancer development.Biomolecules2021118107410.3390/biom11081074 34439740
    [Google Scholar]
  56. LiM. LiZ. MorrisD.L. RuiL. Identification of SH2B2beta as an inhibitor for SH2B1- and SH2B2alpha-promoted Janus kinase-2 activation and insulin signaling.Endocrinology200714841615162110.1210/en.2006‑1010 17204555
    [Google Scholar]
  57. IsekiM. HidanoS. KudoF. TakakiS. Control of germinal center B cell survival and IgE production by an adaptor molecule containing PH and SH2 domains, Aps/Sh2b2.Sci. Rep.20241411776710.1038/s41598‑024‑68739‑3 39090233
    [Google Scholar]
  58. Kubo-AkashiC. IsekiM. KwonS.M. TakizawaH. TakatsuK. TakakiS. Roles of a conserved family of adaptor proteins, Lnk, SH2-B, and APS, for mast cell development, growth, and functions: APS-deficiency causes augmented degranulation and reduced actin assembly.Biochem. Biophys. Res. Commun.2004315235636210.1016/j.bbrc.2004.01.060 14766215
    [Google Scholar]
  59. TsuchiyaH. ShiotaG. Immune evasion by cancer stem cells.Regen. Ther.202117203310.1016/j.reth.2021.02.006 33778133
    [Google Scholar]
  60. WeiC. YangC. WangS. ShiD. ZhangC. LinX. LiuQ. DouR. XiongB. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis.Mol. Cancer20191816410.1186/s12943‑019‑0976‑4 30927925
    [Google Scholar]
  61. AndréT. PietrantonioF. AvalloneA. GumusM. WyrwiczL. KimJ.G. YalcinS. KwiatkowskiM. LonardiS. ZolnierekJ. Odeleye-AjakayeA. LeconteP. FogelmanD. KimT.W. KEYSTEP-008: Phase II trial of pembrolizumab-based combination in MSI-H/dMMR metastatic colorectal cancer.Future Oncol.202319372445245210.2217/fon‑2022‑1105 37701986
    [Google Scholar]
  62. TongG. ZhangG. HuY. XuX. WangY. Correlation between mismatch repair statuses and the prognosis of stage I–IV colorectal cancer.Front. Oncol.202413127839810.3389/fonc.2023.1278398 38348120
    [Google Scholar]
  63. FuX. HuangJ. ZhuJ. FanX. WangC. DengW. TanX. ChenZ. CaiY. LinH. WangG. ZhangN. ZhuY. ChenJ. ZhanH. HuangS. FangY. LiY. HuangY. Prognosis and immunotherapy efficacy in dMMR&MSS colorectal cancer patients and an MSI status predicting model.Int. J. Cancer2024155476677510.1002/ijc.34946 38594805
    [Google Scholar]
  64. ZhangY. WangQ. ChenL. YangH.S. Inhibition of p70S6K1 activation by Pdcd4 overcomes the resistance to an IGF-1R/IR inhibitor in colon carcinoma cells.Mol. Cancer Ther.201514379980910.1158/1535‑7163.MCT‑14‑0648 25573956
    [Google Scholar]
  65. BhagwatS.V. GokhaleP.C. CrewA.P. CookeA. YaoY. MantisC. KahlerJ. WorkmanJ. BittnerM. DudkinL. EpsteinD.M. GibsonN.W. WildR. ArnoldL.D. HoughtonP.J. PachterJ.A. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: Distinct from rapamycin.Mol. Cancer Ther.20111081394140610.1158/1535‑7163.MCT‑10‑1099 21673091
    [Google Scholar]
  66. FrancescangeliF. PatriziiM. SignoreM. FedericiG. Di FrancoS. PagliucaA. BaiocchiM. BiffoniM. Ricci VitianiL. TodaroM. De MariaR. ZeunerA. Proliferation state and polo-like kinase1 dependence of tumorigenic colon cancer cells.Stem Cells20123091819183010.1002/stem.1163 22753241
    [Google Scholar]
  67. NonomiyaY. NoguchiK. TanakaN. KasagakiT. KatayamaK. SugimotoY. Effect of AKT3 expression on MYC- and caspase-8-dependent apoptosis caused by polo-like kinase inhibitors in HCT 116 cells.Cancer Sci.2016107121877188710.1111/cas.13093 27699933
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073346075241118092413
Loading
/content/journals/cchts/10.2174/0113862073346075241118092413
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher's website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test