Skip to content
2000
Volume 28, Issue 16
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Aim

This study aims to explore the relevant biomarkers in breast cancer (BC).

Background

Kinesin family member 4A (KIF4A) is a member of the Kinesin 4 subfamily of kinesin-related proteins, which has already been investigated in diverse types of tumors.

Objective

Our current study aims to investigate the involvement of KIF4A in BC.

Methods

KIF4A expression level was firstly predicted based on the data from the Cancer Genome Atlas (TCGA) and then assessed in BC cells. Subsequently, after silencing KIF4A, its effects on BC cell proliferation and metastasis, as well as on immune-related cytokines, were assessed by cell counting kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU) staining and quantitative Polymerase Chain Reaction (qPCR). Next, western blotting assays were used to detect the expression and phosphorylation levels of transforming growth factor-beta 1 (TGF-β1) and small mothers against decapentaplegic 3 (Smad3) in BC cells after KIF4A silencing and the role of the pathway was verified by Smad3 inhibitor (SIS3).

Results

KIF4A was highly expressed in BC, and silencing of KIF4A repressed the proliferation and metastasis potential of - cultured BC cells, concurrent with the reduction of CDH2, VIM, and SNAIL levels, yet the increase in the expression of CDH1. In the meantime, KIF4A knockdown diminished the levels of IL4, SMAD3, and TGFB1 while promoting those of IL1B and IL6 in BC cells. Further, enhanced phosphorylation of Smad3 was observed in BC cells, and the intervention of SIS3 restrained the proliferation and metastasis potential of BC cells and reduced the expression levels of CDH2, VIM, and SNAIL whilst promoting that of CDH1. Additionally, SIS3 intervention increased IL1B and IL6 levels and decreased IL4, SMAD3 and TGFB1 levels in BC cells.

Conclusion

This study preliminarily explored the involvement of KIF4A and TGF-β1/Smad3 together in BC, which may provide another insight into the management of BC in clinical practice.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073356925241122055343
2024-12-26
2025-12-30
Loading full text...

Full text loading...

References

  1. KatsuraC. OgunmwonyiI. KankamH.K. SahaS. Breast cancer: presentation, investigation and management.Br. J. Hosp. Med.202283217
    [Google Scholar]
  2. WangL. HanH. MaJ. FengY. HanZ. MaharajV. TianJ. ZhuW. LiS. ShaoX. Identification of hypoxia-immune-related signatures for predicting immune efficacy in triple-negative breast cancer.Oncologie202426343344410.1515/oncologie‑2023‑0539
    [Google Scholar]
  3. TalebiM. FarkhondehT. Harifi-MoodM.S. TalebiM. SamarghandianT. Mechanistic Features and Therapeutic Implications Related to the MiRNAs and Wnt Signaling Regulatory in Breast Cancer.Curr. Mol. Pharmacol.202316e171022210080
    [Google Scholar]
  4. TanX.J. CheorW.L. ChengE.M. Ab RahmanK.S. Wan MuhamadW.Z.A. LeowW.Z. Breast cancer status, grading system, etiology, and challenges in Asia: An updated review.Oncologie20232529911010.1515/oncologie‑2022‑1011
    [Google Scholar]
  5. SarhangiN. HajjariS. HeydariS.F. GanjizadehM. RouhollahF. HasanzadM. Breast cancer in the era of precision medicine.Mol. Biol. Rep.20224910100231003710.1007/s11033‑022‑07571‑2
    [Google Scholar]
  6. PourhanifehM.H. Hossein Farrokhi-KebriaH.F. MostanadiP. Tahereh FarkhondehT. Saeed SamarghandianS. Anticancer Properties of Baicalin against Breast Cancer and other Gynecological Cancers: Therapeutic Opportunities based on Underlying Mechanisms.Curr. Mol. Pharmacol.202417e18761429263063
    [Google Scholar]
  7. KumarB. AkhtarM.J. PaulJ. SinghK. PannuS. PalR. KhanS.A. An update on recently developed analytical and bio-analytical methods for some anticancer drugs.Curr. Pharm. Anal.202319211713510.2174/1573412919666221123110420
    [Google Scholar]
  8. BylerS. GoldgarS. HeerbothS. LearyM. HousmanG. MoultonK. SarkarS. Genetic and epigenetic aspects of breast cancer progression and therapy.Anticancer Res.201434310711077
    [Google Scholar]
  9. KalantariS. CarlstonC. AlsalehN. Abdel-SalamG.M.H. AlkurayaF. KatoM. MatsumotoN. MiyatakeS. YamamotoT. Fares-TaieL. RozetJ.M. ChassaingN. Vincent-DelormeC. Kang-BellinA. McWalterK. BuppC. PalenE. WagnerM.D. NicetaM. CesarioC. MiloneR. KaplanJ. WadmanE. DobynsW.B. FilgesI. Expanding the KIF4A ‐associated phenotype.Am. J. Med. Genet. A.2021185123728373910.1002/ajmg.a.62443
    [Google Scholar]
  10. LawrenceC.J. DaweR.K. ChristieK.R. ClevelandD.W. DawsonS.C. EndowS.A. GoldsteinL.S.B. GoodsonH.V. HirokawaN. HowardJ. MalmbergR.L. McIntoshJ.R. MikiH. MitchisonT.J. OkadaY. ReddyA.S.N. SaxtonW.M. SchliwaM. ScholeyJ.M. ValeR.D. WalczakC.E. WordemanL. A standardized kinesin nomenclature.J. Cell Biol.20041671192210.1083/jcb.200408113
    [Google Scholar]
  11. MikiH. OkadaY. HirokawaN. Analysis of the kinesin superfamily: Insights into structure and function.Trends Cell Biol.200515946747610.1016/j.tcb.2005.07.006
    [Google Scholar]
  12. WandkeC. BarisicM. SiglR. RauchV. WolfF. AmaroA.C. TanC.H. PereiraA.J. KutayU. MaiatoH. MeraldiP. GeleyS. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis.J. Cell Biol.2012198584786310.1083/jcb.201110060
    [Google Scholar]
  13. MazumdarM. SundareshanS. MisteliT. Human chromokinesin KIF4A functions in chromosome condensation and segregation.J. Cell Biol.2004166561362010.1083/jcb.200401142
    [Google Scholar]
  14. MatsumotoY. SaitoM. SaitoK. KankeY. WatanabeY. OnozawaH. HayaseS. SakamotoW. IshigameT. MommaT. KumamotoK. OhkiS. TakenoshitaS. Enhanced expression of KIF4A in colorectal cancer is associated with lymph node metastasis.Oncol. Lett.201815221882194
    [Google Scholar]
  15. JinW. YeL. KIF4A knockdown suppresses ovarian cancer cell proliferation and induces apoptosis by downregulating BUB1 expression.Mol. Med. Rep.202124151610.3892/mmr.2021.12155
    [Google Scholar]
  16. ZhangJ. AnL. ZhaoR. ShiR. ZhouX. WeiS. ZhangQ. ZhangT. FengD. YuZ. WangH. KIF4A promotes genomic stability and progression of endometrial cancer through regulation of TPX2 protein degradation.Mol. Carcinog.202362330331810.1002/mc.23487
    [Google Scholar]
  17. XueD. ChengP. HanM. LiuX. XueL. YeC. WangK. HuangJ. An integrated bioinformatical analysis to evaluate the role of KIF4A as a prognostic biomarker for breast cancer.OncoTargets Ther.2018114755476810.2147/OTT.S164730
    [Google Scholar]
  18. WangH. LuC. LiQ. XieJ. ChenT. TanY. WuC. JiangJ. The role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells.Mol. Cells2014371181281810.14348/molcells.2014.0210
    [Google Scholar]
  19. TangP.M.K. TangP.C.T. ChungJ.Y.F. LanH.Y. TGF-β1 signaling in kidney disease: From Smads to long non-coding RNAs.Noncoding RNA Res.201721687310.1016/j.ncrna.2017.04.001
    [Google Scholar]
  20. LiN. HangW. ShuH. ZhouN. Pirfenidone alleviates cardiac fibrosis induced by pressure overload via inhibiting TGF‐β1/Smad3 signalling pathway.J. Cell. Mol. Med.202226164548455510.1111/jcmm.17478
    [Google Scholar]
  21. TianF. ZhangZ.Y. SunJ. HanY.C. Expression of miR-207 in renal tissue of renal fibrosis rats and its correlation analysis with protein expression of TGF-β1 and Smad3.Eur. Rev. Med. Pharmacol. Sci.2021252787794
    [Google Scholar]
  22. GuoJ. FangY. JiangF. LiL. ZhouH. XuX. NingW. Neohesperidin inhibits TGF-β1/Smad3 signaling and alleviates bleomycin-induced pulmonary fibrosis in mice.Eur. J. Pharmacol.201986417271210.1016/j.ejphar.2019.172712
    [Google Scholar]
  23. ChungJ.Y.F. TangP.C.T. ChanM.K.K. XueV.W. HuangX.R. NgC.S.H. ZhangD. LeungK.T. WongC.K. LeeT.L. LamE.W.F. Nikolic-PatersonD.J. ToK.F. LanH.Y. TangP.M.K. Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma.Nat. Commun.2023141179410.1038/s41467‑023‑37515‑8
    [Google Scholar]
  24. DengL. BaoW. ZhangB. ZhangS. ChenZ. ZhuX. HeB. WuL. ChenX. DengT. ChenB. YuZ. WangY. ChenG. AZGP1 activation by lenvatinib suppresses intrahepatic cholangiocarcinoma epithelial-mesenchymal transition through the TGF-β1/Smad3 pathway.Cell Death Dis.202314959010.1038/s41419‑023‑06092‑5
    [Google Scholar]
  25. MoD. HeF. ZhengJ. ChenH. TangL. YanF. tRNA-derived fragment tRF-17-79MP9PP attenuates cell invasion and migration via THBS1/TGF-β1/Smad3 axis in Breast Cancer.Front. Oncol.20211165607810.3389/fonc.2021.656078
    [Google Scholar]
  26. PanQ.F. OuyangW.W. ZhangM.Q. HeS. YangS.Y. ZhangJ. Chondroitin polymerizing factor predicts a poor prognosis and promotes breast cancer progression via the upstream TGF-β1/SMAD3 and JNK axis activation.J. Cell Commun. Signal.20231718910210.1007/s12079‑022‑00684‑0
    [Google Scholar]
  27. ZhouT. LinK. NieJ. PanB. HeB. PanY. SunH. XuT. WangS. LncRNA SPINT1-AS1 promotes breast cancer proliferation and metastasis by sponging let-7 a/b/i-5p.Pathol. Res. Pract.202121715326810.1016/j.prp.2020.153268
    [Google Scholar]
  28. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)).Method. Methods200125440240810.1006/meth.2001.1262
    [Google Scholar]
  29. AmuthalakshmiS. SindhujaS. NaliniC.N. A Review on PCR and POC-PCR - A Boon in the Diagnosis of COVID-19.Curr. Pharm. Anal.202218874576410.2174/1573412918666220509032754
    [Google Scholar]
  30. FengS. LuoS. JiC. ShiJ. miR-29c-3p regulates proliferation and migration in ovarian cancer by targeting KIF4A.World J. Surg. Oncol.202018131510.1186/s12957‑020‑02088‑z
    [Google Scholar]
  31. HouG. DongC. DongZ. LiuG. XuH. ChenL. LiuL. WangH. ZhouW. Upregulate KIF4A enhances proliferation, invasion of hepatocellular carcinoma and indicates poor prognosis across human cancer types.Sci. Rep.201771414810.1038/s41598‑017‑04176‑9
    [Google Scholar]
  32. SunX. ChenP. ChenX. YangW. ChenX. ZhouW. HuangD. ChengY. KIF4A enhanced cell proliferation and migration via Hippo signaling and predicted a poor prognosis in esophageal squamous cell carcinoma.Thorac. Cancer202112451252410.1111/1759‑7714.13787
    [Google Scholar]
  33. Rodrigues-FerreiraS. MorinM. GuichaouaG. MoindjieH. HaykalM.M. CollierO. StovenV. NahmiasC. A network of 17 microtubule-related genes highlights functional deregulations in breast cancer.Cancers20231519487010.3390/cancers15194870
    [Google Scholar]
  34. ZhengG. ZhangC. ZhongC. Identification of potential prognostic biomarkers for breast cancer using WGCNA and PPI integrated techniques.Ann. Diagn. Pathol.20215015167510.1016/j.anndiagpath.2020.151675
    [Google Scholar]
  35. SangM. WuM. MengL. ZhengY. GuL. LiuF. SangM. Identification of epithelial-mesenchymal transition-related circRNA-miRNA-mRNA ceRNA regulatory network in breast cancer.Pathol. Res. Pract.2020216915308810.1016/j.prp.2020.153088
    [Google Scholar]
  36. YangK. LiD. JiaW. SongY. SunN. WangJ. LiH. YinC. MiR‐379‐5p inhibits the proliferation, migration, and invasion of breast cancer by targeting KIF4A.Thorac. Cancer202213131916192410.1111/1759‑7714.14437
    [Google Scholar]
  37. GaoR. LuoQ. LiY. SongL. CaiJ. XiongY. YanF. LiuJ. Biosynthetic nanobubble-mediated CRISPR/Cas9 gene editing of Cdh2 inhibits breast cancer metastasis.Pharmaceutics2022147138210.3390/pharmaceutics14071382
    [Google Scholar]
  38. HashemiM. AraniH.Z. OroueiS. FallahS. GhorbaniA. KhaledabadiM. KakavandA. TavakolpournegariA. SaebfarH. HeidariH. SalimimoghadamS. EntezariM. TaheriazamA. HushmandiK. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions.Biomed. Pharmacother.2022155113774
    [Google Scholar]
  39. PadmanabanV. KrolI. SuhailY. SzczerbaB.M. AcetoN. BaderJ.S. EwaldA.J. E-cadherin is required for metastasis in multiple models of breast cancer.Nature2019573777443944410.1038/s41586‑019‑1526‑3
    [Google Scholar]
  40. GirardiA. MagnoniF. ViciniE. KoulouraA. La VecchiaC. VeronesiP. CorsoG. CDH1 germline mutations in families with hereditary lobular breast cancer.Eur. J. Cancer Prev.2022313274278
    [Google Scholar]
  41. GambleL.A. HellerT. DavisJ.L. Hereditary diffuse gastric cancer syndrome and the role of CDH1.JAMA Surg.2021156438739210.1001/jamasurg.2020.6155
    [Google Scholar]
  42. CorsoG. MagnoniF. NicastroV. BagnardiV. TrovatoC.M. VeronesiP. Global distribution of prophylactic total gastrectomy in E-cadherin (CDH1) mutations.Semin. Oncol.202249213013510.1053/j.seminoncol.2022.03.001
    [Google Scholar]
  43. BlagihJ. BuckM.D. VousdenK.H. p53, cancer and the immune response.J. Cell Sci.20201335jcs23745310.1242/jcs.237453
    [Google Scholar]
  44. PardollD. Cancer and the immune system: Basic concepts and targets for intervention.Semin. Oncol.201542452353810.1053/j.seminoncol.2015.05.003
    [Google Scholar]
  45. KingJ. MirH. SinghS. Association of cytokines and chemokines in pathogenesis of breast cancer.Prog. Mol. Biol. Transl. Sci.201715111313610.1016/bs.pmbts.2017.07.003
    [Google Scholar]
  46. BoraschiD. What Is IL-1 for? The Functions of Interleukin-1 Across Evolution.Front. Immunol.20221387215510.3389/fimmu.2022.872155
    [Google Scholar]
  47. BentE.H. Millán-BareaL.R. ZhuangI. GouletD.R. FröseJ. HemannM.T. Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy.Nat. Commun.2021121621810.1038/s41467‑021‑26407‑4
    [Google Scholar]
  48. MirlekarB. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy.SAGE Open Med.2022102050312121106901210.1177/20503121211069012
    [Google Scholar]
  49. CaoY. FengY.H. GaoL.W. LiX.Y. JinQ.X. WangY.Y. XuY.Y. JinF. LuS.L. WeiM.J. Artemisinin enhances the anti-tumor immune response in 4T1 breast cancer cells in vitro and in vivo.Int. Immunopharmacol.20197011011610.1016/j.intimp.2019.01.041
    [Google Scholar]
  50. ZhuD. XuX. ZhangM. WangT. Enhanced expression of KIF4A in osteosarcoma predicts a poor prognosis and facilitates tumor growth by activation of the MAPK pathway.Exp. Ther. Med.2021225133910.3892/etm.2021.10774
    [Google Scholar]
  51. HuangY. WangH. LianY. WuX. ZhouL. WangJ. DengM. HuangY. Upregulation of kinesin family member 4A enhanced cell proliferation via activation of Akt signaling and predicted a poor prognosis in hepatocellular carcinoma.Cell Death Dis.20189214110.1038/s41419‑017‑0114‑4
    [Google Scholar]
  52. XuY. XueG. ZhouL. WuG. HuL. MaS. ZhangJ. LiX. KIF4A promotes epithelial–mesenchymal transition by activating the TGF-β/SMAD signaling pathway in glioma cells.Mol. Cell. Biochem.202410.1007/s11010‑024‑04943‑z
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073356925241122055343
Loading
/content/journals/cchts/10.2174/0113862073356925241122055343
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test