Skip to content
2000
Volume 28, Issue 16
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Objective

This study aimed to investigate the potential therapeutic efficacy of rutin in the management of psoriasis and elucidate its underlying molecular mechanisms.

Methods

A systems biology approach, utilizing network pharmacology, was employed to identify and analyze putative targets of rutin relevant to psoriasis. The impact of rutin on the Psoriasis Area and Severity Index (PASI) scores was assessed in an imiquimod (IMQ)-induced murine psoriasis model. Histopathological alterations in the skin lesions were examined using hematoxylin and eosin (H&E) staining. Expression levels of key inflammatory mediators, including Tnf, Hif1a, Ptgs2, Tlr4, Nfkb1, Mtor, and Il2, were quantified using quantitative real-time polymerase chain reaction (qRT-PCR).

Results

A comprehensive analysis revealed 62 potential targets of rutin in the context of psoriasis, with these targets being part of 72 interconnected signaling pathways. studies demonstrated a significant reduction in PASI scores in rutin-treated mice compared to those in the control group. Additionally, rutin treatment was associated with marked improvements in skin lesions, characterized by reduced crust formation and epidermal thickness. qRT-PCR analysis indicated that rutin administration downregulated the mRNA expression of and in the lesional skin.

Conclusion

These findings suggest that rutin holds promise as a therapeutic agent for psoriasis, as it effectively ameliorates IMQ-induced psoriasis-like skin inflammation in mice through modulation of multiple signaling pathways and inflammatory mediators.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073336573240909113013
2024-09-26
2025-12-30
Loading full text...

Full text loading...

References

  1. SinghT.P. ZhangH.H. BorekI. WolfP. HedrickM.N. SinghS.P. KelsallB.L. ClausenB.E. FarberJ.M. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation.Nat. Commun.2016711358110.1038/ncomms13581 27982014
    [Google Scholar]
  2. ZhangZ. ZiZ. LeeE.E. ZhaoJ. ContrerasD.C. SouthA.P. AbelE.D. ChongB.F. VandergriffT. HoslerG.A. SchererP.E. MettlenM. RathmellJ.C. DeBerardinisR.J. WangR.C. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis.Nat. Med.201824561762710.1038/s41591‑018‑0003‑0 29662201
    [Google Scholar]
  3. LiuC. LiuH. LuC. DengJ. YanY. ChenH. WangY. LiangC-L. WeiJ. HanL. DaiZ. Kaempferol attenuates imiquimod-induced psoriatic skin inflammation in a mouse model.Clin. Exp. Immunol.2019198340341510.1111/cei.13363 31407330
    [Google Scholar]
  4. FeldmanS.R. Psoriasis causes as much disability as other major medical diseases.J. Am. Acad. Dermatol.202082125625710.1016/j.jaad.2018.07.059 31837740
    [Google Scholar]
  5. ElkhawagaO.Y. ElletyM.M. MoftyS.O. GhanemM.S. MohamedA.O. Review of natural compounds for potential psoriasis treatment.Inflammopharmacology20233131183119810.1007/s10787‑023‑01178‑0 36995575
    [Google Scholar]
  6. BodnárK. FehérP. UjhelyiZ. BácskayI. JózsaL. Recent Approaches for the Topical Treatment of Psoriasis Using Nanoparticles.Pharmaceutics202416444910.3390/pharmaceutics16040449 38675110
    [Google Scholar]
  7. ChoyK.W. MuruganD. LeongX.F. AbasR. AliasA. MustafaM.R. Flavonoids as Natural Anti-Inflammatory Agents Targeting Nuclear Factor-Kappa B (NFκB) Signaling in Cardiovascular Diseases: A Mini Review.Front. Pharmacol.201910129510.3389/fphar.2019.01295 31749703
    [Google Scholar]
  8. NafeesS. RashidS. AliN. HasanS.K. SultanaS. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NFκB/MAPK pathway.Chem. Biol. Interact.20152319810710.1016/j.cbi.2015.02.021 25753322
    [Google Scholar]
  9. MhaskeA. SharmaS. ShuklaR. Nanotheranostic: The futuristic therapy for copper mediated neurological sequelae.J. Drug Deliv. Sci. Technol.20238010419310.1016/j.jddst.2023.104193
    [Google Scholar]
  10. AbdolahadM. JanmalekiM. MohajerzadehS. AkhavanO. AbbasiS. Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells.Mater. Sci. Eng. C20133331498150510.1016/j.msec.2012.12.052 23827601
    [Google Scholar]
  11. AkhavanO. KalaeeM. AlaviZ.S. GhiasiS.M.A. EsfandiarA. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide.Carbon20125083015302510.1016/j.carbon.2012.02.087
    [Google Scholar]
  12. AraújoJ.R. GonçalvesP. MartelF. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines.Nutr. Res.2011312778710.1016/j.nutres.2011.01.006 21419311
    [Google Scholar]
  13. JeongJ.J. HaY.M. JinY.C. LeeE.J. KimJ.S. KimH.J. SeoH.G. LeeJ.H. KangS.S. KimY.S. ChangK.C. Rutin from Lonicera japonica inhibits myocardial ischemia/reperfusion-induced apoptosis in vivo and protects H9c2 cells against hydrogen peroxide-mediated injury via ERK1/2 and PI3K/Akt signals in vitro.Food Chem. Toxicol.20094771569157610.1016/j.fct.2009.03.044 19362115
    [Google Scholar]
  14. GaneshpurkarA. SalujaA.K. Protective effect of rutin on humoral and cell mediated immunity in rat model.Chem. Biol. Interact.201727315415910.1016/j.cbi.2017.06.006 28606468
    [Google Scholar]
  15. GęgotekA. DominguesP. SkrzydlewskaE. Natural Exogenous Antioxidant Defense against Changes in Human Skin Fibroblast Proteome Disturbed by UVA Radiation.Oxid. Med. Cell. Longev.2020202011210.1155/2020/3216415 33204393
    [Google Scholar]
  16. Di DomenicoM. FeolaA. AmbrosioP. PintoF. GalassoG. ZarrelliA. Di FabioG. PorcelliM. ScaccoS. InchingoloF. QuagliuoloL. BalliniA. BoccellinoM. Antioxidant effect of beer polyphenols and their bioavailability in dental-derived stem cells (D-dSCs) and human intestinal epithelial lines (Caco-2) Cells.Stem Cells Int.2020202011310.1155/2020/8835813 33101420
    [Google Scholar]
  17. NkpaaK.W. OnyesoG.I. Rutin attenuates neurobehavioral deficits, oxidative stress, neuro-inflammation and apoptosis in fluoride treated rats.Neurosci. Lett.2018682929910.1016/j.neulet.2018.06.023 29908257
    [Google Scholar]
  18. MaghsoudiS. Taghavi ShahrakiB. RamehF. NazarabiM. FatahiY. AkhavanO. RabieeM. MostafaviE. LimaE.C. SaebM.R. RabieeN. A review on computer-aided chemogenomics and drug repositioning for rational COVID-19 drug discovery.Chem. Biol. Drug Des.2022100569972110.1111/cbdd.14136 36002440
    [Google Scholar]
  19. NewendorpA.K. SanaeiM. PerronA.J. SabouniH. JavadpourN. SellsM. NelsonK. DorneichM. GilbertS.B. Apple’s Knowledge Navigator: Why Doesn’t that Conversational Agent Exist Yet?Proc. CHI Conf. Human Factors Comp. Syst.20241531.1410.1145/3613904.3642739
    [Google Scholar]
  20. Khodabandeh YalabadiA. Yazdani-JahromiM. YousefiN. TayebiA. AbdidizajiS. GaribayO.O. FragXsiteDTI: Revealing Responsible Segments in Drug-Target Interaction with Transformer-Driven Interpretation.arXiv:2311023262023
    [Google Scholar]
  21. SanaeiM. GilbertS.B. JavadpourN. SabouniH. DorneichM.C. KellyJ.W. The Correlations of Scene Complexity, Workload, Presence, and Cybersickness in a Task-Based VR Game.Virtual, Augmented and Mixed Reality.ChamSpringer Nature2024
    [Google Scholar]
  22. DarvishiniaN. ClarkS. Empowering Rural Education: Exploring the Integration of Robotics and Remote Sensing Technologies.Society for Information Technology & Teacher Education International Conference,25 March, 2024 Las Vegas, Nevada, United States2024
    [Google Scholar]
  23. SwanK. GarrisonD.R. RichardsonJ.C. A Constructivist Approach to Online Learning: The Community of Inquiry Framework.Information Technology and Constructivism in Higher Education: Progressive Learning Frameworks.Hershey, PA, USAIGI Global2009
    [Google Scholar]
  24. KazeminejadM. KaramifardM. SheibaniA. Reconfiguration of distribution network-based wind energy resource allocation considering time-varying load using hybrid optimization method.Wind Eng.2024202424124723010.1177/0309524X241247230
    [Google Scholar]
  25. SiqueirosL.A. DarvishiniaN. SkeltonS.B. Three Windows Into Authentic Dialogical Practice: Autoethnographic Studies in Critical Discourse(s).Hershey, PA, USAIGI Global2023587410.4018/978‑1‑6684‑8296‑4.ch004
    [Google Scholar]
  26. SalehiM. JavadpourN. BeisnerB. SanaeiM.H. GilbertS.B. Cybersickness Detection through Head Movement Patterns: A Promising Approach.arXiv:2402027252024
    [Google Scholar]
  27. BenhadouF. GlitznerE. BrisebarreA. SwedlundB. SongY. DuboisC. RozziM. PaulissenC. del MarmolV. SibiliaM. BlanpainC. Epidermal autonomous VEGFA/Flt1/Nrp1 functions mediate psoriasis-like disease.Sci. Adv.202062eaax584910.1126/sciadv.aax5849 31934626
    [Google Scholar]
  28. LiH. YaoQ. MariscalA.G. WuX. HülseJ. PedersenE. HelinK. WaismanA. VinkelC. ThomsenS.F. AvgustinovaA. BenitahS.A. LovatoP. NorsgaardH. MortensenM.S. VengL. RozellB. BrakebuschC. Epigenetic control of IL-23 expression in keratinocytes is important for chronic skin inflammation.Nat. Commun.201891142010.1038/s41467‑018‑03704‑z 29650963
    [Google Scholar]
  29. KruegerJ.G. EyerichK. KuchrooV.K. RitchlinC.T. AbreuM.T. EllosoM.M. FourieA. FakharzadehS. SherlockJ.P. YangY.W. CuaD.J. McInnesI.B. IL-23 past, present, and future: A roadmap to advancing IL-23 science and therapy.Front. Immunol.202415133121710.3389/fimmu.2024.1331217 38686385
    [Google Scholar]
  30. SongY. ZhaoX. QuH. SuY. HeR. ChenL. FangL. LiJ. ZouZ. HeJ. LiZ. XuY. ChenX. ChengH. XuY. WangQ. LaiL. Epigenetic regulation of IL-23 by E3 ligase FBXW7 in dendritic cells is critical for psoriasis-like inflammation.J. Immunol.2023211111701171310.4049/jimmunol.2300023 37843504
    [Google Scholar]
  31. HuthL. AmannP.M. MarquardtY. JansenM. BaronJ.M. HuthS. Understanding the impact of risankizumab on keratinocyte-derived IL-23A in a novel organotypic 3D skin model containing IL-23A responsive and IL-17A producing γδ-T-cells.Cutan. Ocul. Toxicol.202443212412810.1080/15569527.2024.2310243 38284163
    [Google Scholar]
  32. SinclairC. BommakantiG. GardinassiL. LoebbermannJ. JohnsonM.J. HakimpourP. HaganT. BenitezL. TodorA. MachiahD. OrissT. RayA. BosingerS. RavindranR. LiS. PulendranB. mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation.Science201735763551014102110.1126/science.aaj2155 28798047
    [Google Scholar]
  33. LangT. LeeJ.P.W. ElgassK. PinarA.A. TateM.D. AitkenE.H. FanH. CreedS.J. DeenN.S. TraoreD.A.K. MuellerI. StanisicD. BaiwogF.S. SkeneC. WilceM.C.J. MansellA. MorandE.F. HarrisJ. Macrophage migration inhibitory factor is required for NLRP3 inflammasome activation.Nat. Commun.201891222310.1038/s41467‑018‑04581‑2 29884801
    [Google Scholar]
  34. HanY. MoraJ. HuardA. da SilvaP. WiechmannS. PutyrskiM. SchusterC. ElwakeelE. LangG. ScholzA. ScholzT. SchmidT. de BruinN. BilluartP. SalaC. BurkhardtH. ParnhamM.J. ErnstA. BrüneB. WeigertA. IL-38 Ameliorates Skin Inflammation and Limits IL-17 Production from γδ T Cells.Cell Rep.2019273835846.e510.1016/j.celrep.2019.03.082 30995480
    [Google Scholar]
  35. MakuchS. KupczykP. MakarecA. ChodaczekG. ZiółkowskiP. WoźniakM. The impact of proinflammatory cytokines and imiquimod on GLUT1 in HaCaT keratinocytes - a potential anti-psoriatic therapeutic target?Cell. Physiol. Biochem.20235725462 36945896
    [Google Scholar]
  36. IbraheimM.K. NorthJ.P. Utility of IL-36 immunostaining in distinguishing psoriasis from pityriasis rosea and pityriasis lichenoides.J. Cutan. Pathol.202451861862310.1111/cup.14633 38689501
    [Google Scholar]
  37. MandalA. KumbhojkarN. ReillyC. DharamdasaniV. UkidveA. IngberD.E. MitragotriS. Treatment of psoriasis with NFKBIZ siRNA using topical ionic liquid formulations.Sci. Adv.2020630eabb604910.1126/sciadv.abb6049 32832675
    [Google Scholar]
  38. HøjenJ.F. KristensenM.L.V. McKeeA.S. WadeM.T. AzamT. LundingL.P. de GraafD.M. SwartzwelterB.J. WegmannM. TolstrupM. BeckmanK. FujitaM. FischerS. DinarelloC.A. IL-1R3 blockade broadly attenuates the functions of six members of the IL-1 family, revealing their contribution to models of disease.Nat. Immunol.20192091138114910.1038/s41590‑019‑0467‑1 31427775
    [Google Scholar]
  39. NguyenH.N. NossE.H. MizoguchiF. HuppertzC. WeiK.S. WattsG.F.M. BrennerM.B. Autocrine loop involving IL-6 family member LIF, LIF receptor, and STAT4 drives sustained fibroblast production of inflammatory mediators.Immunity201746222023210.1016/j.immuni.2017.01.004 28228280
    [Google Scholar]
  40. WuL. CenY. FengM. ZhouY. TangH. LiaoX. WangY. WangM. ZhouM. Metformin activates the protective effects of the AMPK pathway in acute lung injury caused by paraquat poisoning.Oxid. Med. Cell. Longev.2019201911010.1155/2019/1709718 31781324
    [Google Scholar]
  41. DidonaD. MaglieR. EmingR. HertlM. Pemphigus: Current and future therapeutic strategies.Front. Immunol.201910141810.3389/fimmu.2019.01418 31293582
    [Google Scholar]
  42. JakobsenM. StenderupK. RosadaC. MoldtB. KampS. DamT.N. JensenT.G. MikkelsenJ.G. Amelioration of psoriasis by anti-TNF-alpha RNAi in the xenograft transplantation model.Mol. Ther.200917101743175310.1038/mt.2009.141 19568223
    [Google Scholar]
  43. PatelA.B. TsilioniI. WengZ. TheoharidesT.C. TNF stimulates IL-6, CXCL 8 and VEGF secretion from human keratinocytes via activation of MTOR, inhibited by tetramethoxyluteolin.Exp. Dermatol.201827213514310.1111/exd.13461 29105195
    [Google Scholar]
  44. XingN. YangJ. WangH. PengL. LiuX. ChenJ. LiuY. Stromal vascular fraction gel promoted wound healing and peripheral nerve repair in diabetic rats via TLRs/MyD88/NF-κB signaling pathway.J. Biomater. Appl.202338114615610.1177/08853282231179634 37341245
    [Google Scholar]
  45. TanakaM. ShirakuraK. TakayamaY. MatsuiM. WatanabeY. YamamotoT. TakahashiJ. TanakaS. HinoN. DoiT. ObanaM. FujioY. TakayamaK. OkadaY. Endothelial ROBO4 suppresses PTGS2/COX-2 expression and inflammatory diseases.Commun. Biol.20247159910.1038/s42003‑024‑06317‑z 38762541
    [Google Scholar]
  46. FuL. LiM. WangP. ChenL. HuangJ. ZhangH. Tanshinone IIA, a component of the self-made Xiao-Yin decoction, ameliorates psoriasis by inhibiting IL-17/IL-23 and PTGS2/NF-κB/AP-1 pathways.Skin Res. Technol.2024302e1357710.1111/srt.13577 38284293
    [Google Scholar]
  47. ShouY. YangL. YangY. XuJ. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation.Cell Death Dis.20211211100910.1038/s41419‑021‑04284‑5 34707088
    [Google Scholar]
  48. ZhuW.J. LiP. WangL. XuY.C. Hypoxia-inducible factor-1: A potential pharmacological target to manage psoriasis.Int. Immunopharmacol.20208610668910.1016/j.intimp.2020.106689 32585606
    [Google Scholar]
  49. SychK. NoldS.P. PfeilschifterJ. VutukuriR. MeisterknechtJ. WittigI. FrankS. GorenI. Expression of PKM2 in wound keratinocytes is coupled to angiogenesis during skin repair in vivo and in HaCaT keratinocytes in vitro.J. Mol. Med. (Berl.)20231011-215116910.1007/s00109‑022‑02280‑6 36633604
    [Google Scholar]
  50. WangM. MaX. GaoC. LuoY. FeiX. ZhengQ. MaX. KuaiL. LiB. WangR. SongJ. Rutin attenuates inflammation by downregulating AGE-RAGE signaling pathway in psoriasis: Network pharmacology analysis and experimental evidence.Int. Immunopharmacol.2023125Pt A11103310.1016/j.intimp.2023.111033 38149569
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073336573240909113013
Loading
/content/journals/cchts/10.2174/0113862073336573240909113013
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): autoimmune disorder; cytokines; inflammation; network pharmacology; psoriasis; Rutin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test