Skip to content
2000
Volume 28, Issue 14
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction/Objective

The incidence of metabolic-associated fatty liver disease (MAFLD) increases annually. Modified Zexie Decoction (MZXD) can treat this disease; however, their mechanisms of action are uncertain. This study evaluated the mechanisms of MZXD against MAFLD based on network pharmacology, molecular docking, and experiments.

Methods

The main active compounds, targets and signaling pathways of MZXD against MAFLD were obtained using network pharmacological analysis. Underlying mechanisms were validated by molecular docking and assays.

Results

Forty-one active ingredients and 197 intersection targets were identified. The main active ingredients include quercetin, luteolin, isorhamnetin, 3-methylhexane, and 3β-acetoxyatractylone. The main targets were TP53, JUN, HSP90AA1, MAPK1, MAPK3, AKT1, NF-κB p65, TNF, ESR1, FOS, and IL-6. The pathway enrichment analysis indicated that MZXD was related to the IL-17, TNF, and PI3K-AKT signaling pathways. Molecular docking suggested that these active ingredients bound strongly to TNF, IL-6, and NF-κB p65, which are integral components of the TNF pathway. In the rat MAFLD model, MZXD attenuated high-fat diet(HFD)-induced liver injury and lipid accumulation, decreased the serum levels of the inflammatory mediators TNF-α, IL6, and IL-1β, and inhibited the protein expression of TNF-α, IL6, p-IKB-α and p-NF-κB p65. Furthermore, immunohistochemistry results showed that MZXD attenuated the F4/80 staining intensity of the liver compared with the model group.

Conclusion

Collectively, our results suggested that MZXD could improve MAFLD by downregulating TNF/NF-κB signaling mediated macrophage activation.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073344422240906051007
2024-09-06
2025-11-03
Loading full text...

Full text loading...

References

  1. EslamM. NewsomeP.N. SarinS.K. AnsteeQ.M. TargherG. Romero-GomezM. Zelber-SagiS. Wai-Sun WongV. DufourJ.F. SchattenbergJ.M. KawaguchiT. ArreseM. ValentiL. ShihaG. TiribelliC. Yki-JärvinenH. FanJ.G. GrønbækH. YilmazY. Cortez-PintoH. OliveiraC.P. BedossaP. AdamsL.A. ZhengM.H. FouadY. ChanW.K. Mendez-SanchezN. AhnS.H. CasteraL. BugianesiE. RatziuV. GeorgeJ. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement.J. Hepatol.202073120220910.1016/j.jhep.2020.03.039 32278004
    [Google Scholar]
  2. AyadaI. van KleefL.A. AlferinkL.J.M. LiP. de KnegtR.J. PanQ. Systematically comparing epidemiological and clinical features of MAFLD and NAFLD by meta‐analysis: Focusing on the non‐overlap groups.Liver Int.202242227728710.1111/liv.15139 34953098
    [Google Scholar]
  3. KayaE. YilmazY. Epidemiology, natural history, and diagnosis of metabolic dysfunction-associated fatty liver disease: a comparative review with nonalcoholic fatty liver disease.Ther. Adv. Endocrinol. Metab.20221310.1177/20420188221139650 36533185
    [Google Scholar]
  4. RenZ. WesseliusA. StehouwerC.D.A. BrouwersM.C.G.J. Cardiovascular Implications of Metabolic Dysfunction-Associated Fatty Liver Disease.Endocrinol. Metab. Clin. North Am.202352345946810.1016/j.ecl.2023.01.002 37495337
    [Google Scholar]
  5. WangT.Y. WangR.F. BuZ.Y. TargherG. ByrneC.D. SunD.Q. ZhengM.H. Association of metabolic dysfunction-associated fatty liver disease with kidney disease.Nat. Rev. Nephrol.202218425926810.1038/s41581‑021‑00519‑y 35013596
    [Google Scholar]
  6. KimD. DennisB.B. CholankerilG. AhmedA. Association between depression and metabolic dysfunction-associated fatty liver disease/significant fibrosis.J. Affect. Disord.202332918419110.1016/j.jad.2023.02.101 36841305
    [Google Scholar]
  7. KayaE. YilmazY. Metabolic-associated Fatty Liver Disease (MAFLD): A Multi-systemic Disease Beyond the Liver.J. Clin. Transl. Hepatol.202210232933810.14218/JCTH.2021.00178 35528971
    [Google Scholar]
  8. YounossiZ.M. MarchesiniG. Pinto-CortezH. PettaS. Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: Implications for Liver Transplantation.Transplantation20191031222710.1097/TP.0000000000002484 30335697
    [Google Scholar]
  9. DysonJ. JaquesB. ChattopadyhayD. LochanR. GrahamJ. DasD. AslamT. PatanwalaI. GaggarS. ColeM. SumpterK. StewartS. RoseJ. HudsonM. ManasD. ReevesH.L. Hepatocellular cancer: The impact of obesity, type 2 diabetes and a multidisciplinary team.J. Hepatol.201460111011710.1016/j.jhep.2013.08.011 23978719
    [Google Scholar]
  10. PiñeroF. PagesJ. MarcianoS. FernándezN. SilvaJ. AndersM. ZeregaA. RidruejoE. AmeigeirasB. D’AmicoC. GaiteL. BermúdezC. CobosM. RosalesC. RomeroG. McCormackL. ReggiardoV. ColombatoL. GadanoA. SilvaM. Fatty liver disease, an emerging etiology of hepatocellular carcinoma in Argentina.World J. Hepatol.2018101415010.4254/wjh.v10.i1.41 29399277
    [Google Scholar]
  11. SagnelliE. MaceraM. RussoA. CoppolaN. SagnelliC. Epidemiological and etiological variations in hepatocellular carcinoma.Infection202048171710.1007/s15010‑019‑01345‑y 31347138
    [Google Scholar]
  12. CaoY. ShiJ. SongL. XuJ. LuH. SunJ. HouJ. ChenJ. WuW. GongL. Multi-Omics Integration Analysis Identifies Lipid Disorder of a Non-Alcoholic Fatty Liver Disease (NAFLD) Mouse Model Improved by Zexie–Baizhu Decoction.Front. Pharmacol.20221385879510.3389/fphar.2022.858795 35795562
    [Google Scholar]
  13. KoyamaY. BrennerD.A. Liver inflammation and fibrosis.J. Clin. Invest.20171271556410.1172/JCI88881 28045404
    [Google Scholar]
  14. SchusterS. CabreraD. ArreseM. FeldsteinA.E. Triggering and resolution of inflammation in NASH.Nat. Rev. Gastroenterol. Hepatol.201815634936410.1038/s41575‑018‑0009‑6 29740166
    [Google Scholar]
  15. ScorlettiE. CarrR.M. A new perspective on NAFLD: Focusing on lipid droplets.J. Hepatol.202276493494510.1016/j.jhep.2021.11.009 34793866
    [Google Scholar]
  16. SuttiS. AlbanoE. Adaptive immunity: an emerging player in the progression of NAFLD.Nat. Rev. Gastroenterol. Hepatol.2020172819210.1038/s41575‑019‑0210‑2 31605031
    [Google Scholar]
  17. RileyJ.S. TaitS.W.G. Mitochondrial DNA in inflammation and immunity.EMBO Rep.2020214e4979910.15252/embr.201949799 32202065
    [Google Scholar]
  18. KumarS. DuanQ. WuR. HarrisE.N. SuQ. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis.Adv. Drug Deliv. Rev.202117611386910.1016/j.addr.2021.113869 34280515
    [Google Scholar]
  19. ParkS.J. Garcia DiazJ. UmE. HahnY.S. Major roles of kupffer cells and macrophages in NAFLD development.Front. Endocrinol. (Lausanne)202314115011810.3389/fendo.2023.1150118 37274349
    [Google Scholar]
  20. AkashM.S.H. RehmanK. LiaqatA. Tumor Necrosis Factor‐Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus.J. Cell. Biochem.2018119110511010.1002/jcb.26174 28569437
    [Google Scholar]
  21. AsrihM. JornayvazF.R. Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance.J. Endocrinol.20132183R25R3610.1530/JOE‑13‑0201 23833274
    [Google Scholar]
  22. WenY. LambrechtJ. JuC. TackeF. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities.Cell. Mol. Immunol.2021181455610.1038/s41423‑020‑00558‑8 33041338
    [Google Scholar]
  23. Tosello-TrampontA.C. LandesS.G. NguyenV. NovobrantsevaT.I. HahnY.S. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production.J. Biol. Chem.201228748401614017210.1074/jbc.M112.417014 23066023
    [Google Scholar]
  24. XuX. PoulsenK.L. WuL. LiuS. MiyataT. SongQ. WeiQ. ZhaoC. LinC. YangJ. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH).Signal Transduct. Target. Ther.20227128710.1038/s41392‑022‑01119‑3 35963848
    [Google Scholar]
  25. YabutJ.M. DruckerD.J. Glucagon-like Peptide-1 Receptor-based Therapeutics for Metabolic Liver Disease.Endocr. Rev.2023441143210.1210/endrev/bnac018 35907261
    [Google Scholar]
  26. LoombaR. SanyalA.J. KowdleyK.V. BhattD.L. AlkhouriN. FriasJ.P. BedossaP. HarrisonS.A. LazasD. BarishR. GottwaldM.D. FengS. AgollahG.D. HartsfieldC.L. MansbachH. MargalitM. AbdelmalekM.F. Randomized, Controlled Trial of the FGF21 Analogue Pegozafermin in NASH.N. Engl. J. Med.202338911998100810.1056/NEJMoa2304286 37356033
    [Google Scholar]
  27. FrancqueS.M. BedossaP. RatziuV. AnsteeQ.M. BugianesiE. SanyalA.J. LoombaR. HarrisonS.A. BalabanskaR. MatevaL. LanthierN. AlkhouriN. MorenoC. SchattenbergJ.M. Stefanova-PetrovaD. VonghiaL. RouzierR. GuillaumeM. HodgeA. Romero-GómezM. Huot-MarchandP. BaudinM. RichardM.P. AbitbolJ.L. BroquaP. JunienJ.L. AbdelmalekM.F. RandomizedA.A. Randomized, Controlled Trial of the Pan-PPAR Agonist Lanifibranor in NASH.N. Engl. J. Med.2021385171547155810.1056/NEJMoa2036205 34670042
    [Google Scholar]
  28. HarrisonS.A. TaubR. NeffG.W. LucasK.J. LabriolaD. MoussaS.E. AlkhouriN. BashirM.R. Resmetirom for nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled phase 3 trial.Nat. Med.202329112919292810.1038/s41591‑023‑02603‑1 37845512
    [Google Scholar]
  29. PaternostroR. TraunerM. Current treatment of non‐alcoholic fatty liver disease.J. Intern. Med.2022292219020410.1111/joim.13531 35796150
    [Google Scholar]
  30. YaoH. QiaoY.J. ZhaoY.L. TaoX.F. XuL.N. YinL.H. QiY. PengJ.Y. Herbal medicines and nonalcoholic fatty liver disease.World J. Gastroenterol.201622306890690510.3748/wjg.v22.i30.6890 27570425
    [Google Scholar]
  31. ChenM. XieY. GongS. WangY. YuH. ZhouT. HuangF. GuoX. ZhangH. HuangR. HanZ. XingY. LiuQ. TongG. ZhouH. Traditional Chinese medicine in the treatment of nonalcoholic steatohepatitis.Pharmacol. Res.202117210584910.1016/j.phrs.2021.105849 34450307
    [Google Scholar]
  32. Notice of the State Administration of Traditional Chinese Medicine on the Release of the Catalogue of Ancient Classic Prescriptions (First Batch) Available from: http://www.natcm.gov.cn/kejisi/zhengcewenjian/2018-04-16/7107.html
  33. ChangX.Y. LiZ.Z. WuJ.S. JinW.Y. ShiY. Identification of the Triterpenoids in the Extracts of ZeXie Decoction and Investigation of Their Effects on Nonalcoholic Fatty Liver.Prog. Mod. Biomed.20212111210.13241/j.cnki.pmb.2021.01.001
    [Google Scholar]
  34. WuJ. ZhangF. RuanH. ChangX. WangJ. LiZ. JinW. ShiY. Integrating Network Pharmacology and RT-qPCR Analysis to Investigate the Mechanisms Underlying ZeXie Decoction-Mediated Treatment of Non-alcoholic Fatty Liver Disease.Front. Pharmacol.20211272201610.3389/fphar.2021.722016 34566646
    [Google Scholar]
  35. WuJ.S. ChangX.Y. LiZ.Z. JinW.Y. ShiR. Research Progress on Molecular Mechanism of Lipid-lowering and Anti-inflammatory Effect of Zexietang.Zhongguo Shiyan Fangjixue Zazhi2021270222423210.13422/j.cnki.syfjx.20210236
    [Google Scholar]
  36. BiX. WangP. MaQ. HanL. WangX. MuY. GuanP. QuX. WangZ. HuangX. Anti-inflammatory activities and liver protection of alisol F and 25-Anhydroalisol F through the Inhibition of MAPK, STAT3, and NF-κB activation in vitro and in vivo.Molecules201722695110.3390/molecules22060951 28594379
    [Google Scholar]
  37. GuoY.Y. FangN.Y. XueB.Y. Data Mining for Exploring Syndrome Differentiation and Treatment Thinking of Nonalcoholic Fatty Liver Disease.Liaoning J. Tradit. Chin. Med.2017440223323610.13192/j.issn.1000‑1719.2017.02.003
    [Google Scholar]
  38. JeongJ.W. LeeH.H. HanM.H. KimG.Y. HongS.H. ParkC. ChoiY.H. Ethanol extract of Poria cocos reduces the production of inflammatory mediators by suppressing the NF-kappaB signaling pathway in lipopolysaccharide-stimulated RAW 264.7 macrophages.BMC Complement. Altern. Med.201414110110.1186/1472‑6882‑14‑101 24628870
    [Google Scholar]
  39. LuoC. ZhuC.Y. PanY.P. WuW.B. Protective effect of polysaccharides from Pinelliae Rhizoma on human pulmonary microvascular endothelial cells induced by lipopolysaccharide.Zhongguo Yaolixue Yu Dulixue Zazhi20183206455461
    [Google Scholar]
  40. KimB.M. ChoB. JangS. Anti-obesity effects of Diospyros lotus leaf extract in mice with high-fat diet-induced obesity.Int. J. Mol. Med.201843160361310.3892/ijmm.2018.3941 30365061
    [Google Scholar]
  41. GaoX.J. LuoS.Y. TangK.J. LuoQ.S. Effect of crude hawthorn glycoprotein on hypolipidemic and an-tioxidant activity in high-fat mice.Shipin Yu Fajiao Gongye2021470113814210.13995/j.cnki.11‑1802/ts.024873
    [Google Scholar]
  42. Al-RezaS.M. RahmanA. SattarM.A. RahmanM.O. FidaH.M. Essential oil composition and antioxidant activities of Curcuma aromatica Salisb.Food Chem. Toxicol.20104861757176010.1016/j.fct.2010.04.008 20385198
    [Google Scholar]
  43. LiuZ.H. SunX.B. [Network pharmacology: new opportunity for the modernization of traditional Chinese medicine].Yao Xue Xue Bao201247669670310.16438/j.0513‑4870.2012.06.001 22919715
    [Google Scholar]
  44. YuanH. MaQ. CuiH. LiuG. ZhaoX. LiW. PiaoG. How Can Synergism of Traditional Medicines Benefit from Network Pharmacology?Molecules2017227113510.3390/molecules22071135 28686181
    [Google Scholar]
  45. SaikiaS. BordoloiM. Molecular Docking: Challenges, Advances and its Use in Drug Discovery Perspective.Curr. Drug Targets201920550152110.2174/1389450119666181022153016 30360733
    [Google Scholar]
  46. YanT. WangH. CaoL. WangQ. TakahashiS. YagaiT. LiG. KrauszK.W. WangG. GonzalezF.J. HaoH. Glycyrrhizin Alleviates Nonalcoholic Steatohepatitis via Modulating Bile Acids and Meta-Inflammation.Drug Metab. Dispos.20184691310131910.1124/dmd.118.082008 29959134
    [Google Scholar]
  47. SunX. DuanX. WangC. LiuZ. SunP. HuoX. MaX. SunH. LiuK. MengQ. Protective effects of glycyrrhizic acid against non-alcoholic fatty liver disease in mice.Eur. J. Pharmacol.2017806758210.1016/j.ejphar.2017.04.021 28414056
    [Google Scholar]
  48. FanY. DongW. WangY. ZhuS. ChaiR. XuZ. ZhangX. YanY. YangL. BianY. Glycyrrhetinic acid regulates impaired macrophage autophagic flux in the treatment of non-alcoholic fatty liver disease.Front. Immunol.20221395949510.3389/fimmu.2022.959495 35967372
    [Google Scholar]
  49. LiangX. HongF.F. YangS.L. AstragalosideI.V. AstragalosideI.V. Alleviates Liver Inflammation, Oxidative Stress and Apoptosis to Protect Against Experimental Non-Alcoholic Fatty Liver Disease.Diabetes Metab. Syndr. Obes.2021141871188310.2147/DMSO.S304817 33953586
    [Google Scholar]
  50. ZhouJ. ZhangN. AldhahraniA. SolimanM.M. ZhangL. ZhouF. Puerarin ameliorates nonalcoholic fatty liver in rats by regulating hepatic lipid accumulation, oxidative stress, and inflammation.Front. Immunol.20221395668810.3389/fimmu.2022.956688 35958617
    [Google Scholar]
  51. WangY. TaiY.L. ZhaoD. ZhangY. YanJ. KakiyamaG. WangX. GurleyE.C. LiuJ. LiuJ. LiuJ. LaiG. HylemonP.B. PandakW.M. ChenW. ZhouH. Berberine Prevents Disease Progression of Nonalcoholic Steatohepatitis through Modulating Multiple Pathways.Cells202110221010.3390/cells10020210 33494295
    [Google Scholar]
  52. ChenT. YuanF. WangH. TianY. HeL. ShaoY. LiN. LiuZ. Perilla oil supplementation ameliorates high-fat/high-cholesterol diet induced nonalcoholic fatty liver disease in rats via enhanced fecal cholesterol and bile acid excretion.BioMed Res. Int.2016201611010.1155/2016/2384561 27642591
    [Google Scholar]
  53. CuiH. LiY. WangY. JinL. YangL. WangL. LiaoJ. WangH. PengY. ZhangZ. WangH. LiuX. Da-Chai-Hu decoction ameliorates high fat diet-induced nonalcoholic fatty liver disease through remodeling the gut microbiota and modulating the serum metabolism.Front. Pharmacol.20201158409010.3389/fphar.2020.584090 33328987
    [Google Scholar]
  54. WangR. ZhangL. ChenL. WangJ. ZhangL. XuY. YangP. JiG. LiuB. Structural and Functional Modulation of Gut Microbiota by Jiangzhi Granules during the Amelioration of Nonalcoholic Fatty Liver Disease.Oxid. Med. Cell. Longev.202120211223469510.1155/2021/2234695 34966475
    [Google Scholar]
  55. WangY. LiuL. ZhaoW. LiJ. Intervening TNF- αvia PPAR γ with Gegenqinlian Decoction in Experimental Nonalcoholic Fatty Liver Disease.Evid. Based Complement. Alternat. Med.2015201511010.1155/2015/715638 26221176
    [Google Scholar]
  56. JiangW.N. LiD. JiangT. GuoJ. ChenY.F. WangJ. ZhouY. YangC.Y. TangC.P. Protective Effects of Chaihu Shugan San () on Nonalcoholic Fatty Liver Disease in Rats with Insulin Resistance.Chin. J. Integr. Med.201824212513210.1007/s11655‑016‑2252‑4 27164963
    [Google Scholar]
  57. ZhuM. HaoS. LiuT. YangL. ZhengP. ZhangL. JiG. Lingguizhugan decoction improves non-alcoholic fatty liver disease by altering insulin resistance and lipid metabolism related genes: a whole trancriptome study by RNA-Seq.Oncotarget2017847826218263110.18632/oncotarget.19734 29137289
    [Google Scholar]
  58. SunR. XuD. WeiQ. ZhangB. AaJ. WangG. XieY. Silybin ameliorates hepatic lipid accumulation and modulates global metabolism in an NAFLD mouse model.Biomed. Pharmacother.202012310972110.1016/j.biopha.2019.109721 31865143
    [Google Scholar]
  59. LaiY. ZhangQ. LongH. HanT. LiG. ZhanS. LiY. LiZ. JiangY. LiuX. Ganghuo Kanggan decoction in influenza: Integrating network pharmacology and in vivo pharmacological evaluation.Front. Pharmacol.20201160702710.3389/fphar.2020.607027 33362562
    [Google Scholar]
  60. FriedmanS.L. Neuschwander-TetriB.A. RinellaM. SanyalA.J. Mechanisms of NAFLD development and therapeutic strategies.Nat. Med.201824790892210.1038/s41591‑018‑0104‑9 29967350
    [Google Scholar]
  61. ZhouW. ZhuZ. XiaoX. LiC. ZhangL. DangY. GeG. JiG. ZhuM. XuH. Jiangzhi Granule attenuates non-alcoholic steatohepatitis by suppressing TNF/NFκB signaling pathway-a study based on network pharmacology.Biomed. Pharmacother.202114311218110.1016/j.biopha.2021.112181 34649337
    [Google Scholar]
  62. JiangH. MaoT. LiuY. TanX. SunZ. ChengY. HanX. ZhangY. WangJ. ShiL. GuoY. LiJ. HanH. Protective Effects and Mechanisms of Yinchen Linggui Zhugan Decoction in HFD-Induced Nonalcoholic Fatty Liver Disease Rats Based on Network Pharmacology and Experimental Verification.Front. Pharmacol.20221390812810.3389/fphar.2022.908128 35721171
    [Google Scholar]
  63. LiL. QinY. XinX. WangS. LiuZ. FengX. The great potential of flavonoids as candidate drugs for NAFLD.Biomed. Pharmacother.202316411499110.1016/j.biopha.2023.114991 37302319
    [Google Scholar]
  64. FarrellG.C. RooyenD. GanL. ChitturiS. NASH is an Infl ammatory Disorder: Pathogenic, Prognostic and Therapeutic Implications.Gut Liver20126214917110.5009/gnl.2012.6.2.149 22570745
    [Google Scholar]
  65. NelsonJ.E. HandaP. AouizeratB. WilsonL. VemulakondaL.A. YehM.M. KowdleyK.V. Increased parenchymal damage and steatohepatitis in Caucasian non-alcoholic fatty liver disease patients with common IL1B and IL6 polymorphisms.Aliment. Pharmacol. Ther.20164411-121253126410.1111/apt.13824 27730688
    [Google Scholar]
  66. GonzálezR. BallesterI. López-PosadasR. SuárezM.D. ZarzueloA. Martínez-AugustinO. MedinaF.S.D. Effects of flavonoids and other polyphenols on inflammation.Crit. Rev. Food Sci. Nutr.201151433136210.1080/10408390903584094 21432698
    [Google Scholar]
  67. PasparakisM. Regulation of tissue homeostasis by NF-κB signalling: implications for inflammatory diseases.Nat. Rev. Immunol.200991177878810.1038/nri2655 19855404
    [Google Scholar]
  68. LiJ. KimY. JinH. Effects and mechanism of atractylone from rhizomes of Atractylodes macrocephala Koidzumi in LPS-induced neuro-inflammation in BV2 microglial cells.Nat. Prod. Res. Dev.202032582683010.16333/j.1001‑6880.2020.5.015
    [Google Scholar]
  69. LiuJ. SuJ. WuW. JinX. ZhengJ. LvG. JiangL. Effect of ATRACTYLODIS MACROCEPHALAE RHIZOMA Extracts on Non-Alcoholic Fatty Liver Disease Model Mice.Pharmacol. Clin. Chin. Materia. Medica.2023395758210.13412/j.cnki.zyyl.20230510.001
    [Google Scholar]
  70. TackeF. ZimmermannH.W. Macrophage heterogeneity in liver injury and fibrosis.J. Hepatol.20146051090109610.1016/j.jhep.2013.12.025 24412603
    [Google Scholar]
  71. LuoX. LiH. MaL. ZhouJ. GuoX. WooS.L. PeiY. KnightL.R. DeveauM. ChenY. QianX. XiaoX. LiQ. ChenX. HuoY. McDanielK. FrancisH. GlaserS. MengF. AlpiniG. WuC. Expression of STING Is Increased in Liver Tissues From Patients With NAFLD and Promotes Macrophage-Mediated Hepatic Inflammation and Fibrosis in Mice.Gastroenterology2018155619711984.e410.1053/j.gastro.2018.09.010 30213555
    [Google Scholar]
  72. ChenJ. DengX. LiuY. TanQ. HuangG. CheQ. GuoJ. SuZ. Kupffer Cells in Non-alcoholic Fatty Liver Disease: Friend or Foe?Int. J. Biol. Sci.202016132367237810.7150/ijbs.47143 32760204
    [Google Scholar]
  73. TilgH. MoschenA.R. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis.Hepatology20105251836184610.1002/hep.24001 21038418
    [Google Scholar]
  74. ParkJ.W. JeongG. KimS.J. KimM.K. ParkS.M. Predictors reflecting the pathological severity of non‐alcoholic fatty liver disease: Comprehensive study of clinical and immunohistochemical findings in younger Asian patients.J. Gastroenterol. Hepatol.200722449149710.1111/j.1440‑1746.2006.04758.x 17376039
    [Google Scholar]
  75. LiZ. FengP.P. ZhaoZ.B. ZhuW. GongJ.P. DuH.M. Liraglutide protects against inflammatory stress in non-alcoholic fatty liver by modulating Kupffer cells M2 polarization via cAMP-PKA-STAT3 signaling pathway.Biochem. Biophys. Res. Commun.20195101202610.1016/j.bbrc.2018.12.149 30683312
    [Google Scholar]
  76. YangB. LuoW. WangM. TangY. ZhuW. JinL. WangM. WangY. ZhangY. ZuoW. HuangL. ZhaoY. LiangG. Macrophage-specific MyD88 deletion and pharmacological inhibition prevents liver damage in non-alcoholic fatty liver disease via reducing inflammatory response.Biochim. Biophys. Acta Mol. Basis Dis.202218681016648010.1016/j.bbadis.2022.166480 35811033
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073344422240906051007
Loading
/content/journals/cchts/10.2174/0113862073344422240906051007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test