Skip to content
2000
Volume 28, Issue 14
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

A major factor in type 1 diabetes mortality is Ischemic Heart Disease (IHD). In order to treat IHD, blood flow must be restored to the heart, which results in myocardial ischemia-reperfusion (MI/R) damage. While rosmanol inhibits MI/R damage, its role in streptozotocin-MI/R (STZ-MI/R) injury remains unclear. Both microRNA (miR) 126 and the PI3K/AKT signaling pathway have been linked to preventing MI/R damage.

Objective

The aim of this investigation was to determine whether rosmanol decreases STZ-MI/R-injury in diabetic rats and whether the protective effect is associated with the miR-126-phosphatidylinositol 3-kinase (PI3K)/protein kinase B axis (miR-126-PI3K/AKT).

Methods

For 30 days, diabetic rats received either distilled water or the drug rosmanol (40 mg/kg, orally) before being subjected to MI/R.

Results

The findings from the current study demonstrated how rosmanol reduced MI/R damage in rats with diabetes caused by streptozotocin (STZ). Using spectrophotometry, it was possible to measure the decrease in myocardial enzyme levels, the rise in cardiac viability, the inhibition of myocardial oxidative stress, the increase in cardiac function, and the detection of these changes using a hemodynamic monitoring system. In addition, rosmanol augmented the miR-126-PI3K/AKT in the hearts of ischemic rats. After stimulating the myocardial miR-126-PI3K/AKT axis, our results showed that rosmanol protected the heart against MI/R in STZ-induced diabetic rats.

Conclusion

According to the most recent research, rosmanol may be a useful tool in the therapy of diabetic IHD since it is an effective agent against STZ-MI/R damage.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073285839240808113152
2024-08-26
2025-11-06
Loading full text...

Full text loading...

References

  1. SeverinoP. D’AmatoA. PucciM. InfusinoF. AdamoF. BirtoloL.I. NettiL. MontefuscoG. ChimentiC. LavalleC. MaestriniV. ManconeM. ChilianW.M. FedeleF. Ischemic heart disease pathophysiology paradigms overview: From plaque activation to microvascular dysfunction.Int. J. Mol. Sci.20202121811810.3390/ijms21218118 33143256
    [Google Scholar]
  2. HausenloyD.J. YellonD.M. Myocardial ischemia-reperfusion injury: A neglected therapeutic target.J. Clin. Invest.201312319210010.1172/JCI62874 23281415
    [Google Scholar]
  3. NaitoH. NojimaT. FujisakiN. TsukaharaK. YamamotoH. YamadaT. AokageT. YumotoT. OsakoT. NakaoA. Therapeutic strategies for ischemia reperfusion injury in emergency medicine.Acute Med. Surg.202071e50110.1002/ams2.501 32431842
    [Google Scholar]
  4. NordlieM.A. WoldL.E. SimkhovichB.Z. SestiC. KlonerR.A. Molecular aspects of ischemic heart disease: Ischemia/reperfusion-induced genetic changes and potential applications of gene and RNA interference therapy.J. Cardiovasc. Pharmacol. Ther.2006111173010.1177/107424840601100102 16703217
    [Google Scholar]
  5. FeyzizadehS. BadalzadehR. Application of ischemic postconditioning’s algorithms in tissues protection: Response to methodological gaps in preclinical and clinical studies.J. Cell. Mol. Med.201721102257226710.1111/jcmm.13159 28402080
    [Google Scholar]
  6. OrchardT.J. CostacouT. When are type 1 diabetic patients at risk for cardiovascular disease?Curr. Diab. Rep.2010101485410.1007/s11892‑009‑0089‑3 20425067
    [Google Scholar]
  7. GharraviA.M. JafarA. EbrahimiM. MahmodiA. PourhashemiE. HaseliN. TalaieN. HajiasgarliP. Current status of stem cell therapy, scaffolds for the treatment of diabetes mellitus.Diabetes Metab. Syndr.20181261133113910.1016/j.dsx.2018.06.021 30168429
    [Google Scholar]
  8. LeonB.M. MaddoxT.M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research.World J. Diabetes20156131246125810.4239/wjd.v6.i13.1246 26468341
    [Google Scholar]
  9. CuiJ. LiuY. LiY. XuF. LiuY. Type 2 diabetes and myocardial infarction: Recent clinical evidence and perspective.Front. Cardiovasc. Med.2021864418910.3389/fcvm.2021.644189 33718461
    [Google Scholar]
  10. LejayA. FangF. JohnR. VanJ.A.D. BarrM. ThaveauF. ChakfeN. GenyB. ScholeyJ.W. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus.J. Mol. Cell. Cardiol.201691112210.1016/j.yjmcc.2015.12.020 26718721
    [Google Scholar]
  11. DekaH. ChoudhuryA. DeyB.K. An overview on plant derived phenolic compounds and their role in treatment and management of diabetes.J. Pharmacopuncture202225319920810.3831/KPI.2022.25.3.199 36186092
    [Google Scholar]
  12. YahfoufiN. AlsadiN. JambiM. MatarC. The immunomodulatory and anti-inflammatory role of polyphenols.Nutrients20181011161810.3390/nu10111618 30400131
    [Google Scholar]
  13. NietoG. RosG. CastilloJ. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review.Medicines2018539810.3390/medicines5030098 30181448
    [Google Scholar]
  14. KimD.H. ChungJ.H. YoonJ.S. HaY.M. BaeS. LeeE.K. JungK.J. KimM.S. KimY.J. KimM.K. ChungH.Y. Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-κB in LPS-stimulated RAW264.7 cells and mouse liver.J. Ginseng Res.2013371546310.5142/jgr.2013.37.54 23717157
    [Google Scholar]
  15. JiangD. XuJ. LiuS. NasserM. WeiW. MaoT. LiuX. ZouX. LiJ. LiX. Rosmanol induces breast cancer cells apoptosis by regulating PI3K/AKT and STAT3/JAK2 signaling pathways.Oncol. Lett.202122263110.3892/ol.2021.12892 34267823
    [Google Scholar]
  16. AllegraA. TonacciA. PioggiaG. MusolinoC. GangemiS. Anticancer activity of Rosmarinus officinalis L.: Mechanisms of action and therapeutic potentials.Nutrients2020126173910.3390/nu12061739 32532056
    [Google Scholar]
  17. ShenD. ChenR. ZhangL. RaoZ. RuanY. LiL. ChuM. ZhangY. Sulodexide attenuates endoplasmic reticulum stress induced by myocardial ischaemia/reperfusion by activating the PI3K/Akt pathway.J. Cell. Mol. Med.20192385063507510.1111/jcmm.14367 31120192
    [Google Scholar]
  18. HeX. LiY. DengB. LinA. ZhangG. MaM. WangY. YangY. KangX. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities.Cell Prolif.2022559e1327510.1111/cpr.13275 35754255
    [Google Scholar]
  19. NongA. LiQ. HuangZ. XuY. HeK. JiaY. CenZ. LiaoL. HuangY. MicroRNA miR-126 attenuates brain injury in septic rats via NF-κB signaling pathway.Bioengineered20211212639264810.1080/21655979.2021.1937905 34115555
    [Google Scholar]
  20. ZhangD. LiZ. WangZ. ZengF. XiaoW. YuA. MicroRNA-126: A promising biomarker for angiogenesis of diabetic wounds treated with negative pressure wound therapy.Diabetes Metab. Syndr. Obes.2019121685169610.2147/DMSO.S199705 31564936
    [Google Scholar]
  21. AkbariJ. ShirvaniH. ShamsoddiniA. BazgirB. SamadiM. Investigation of expression of myocardial miR-126, miR-29a and miR-222 as a potential marker in STZ- induced diabetic rats following interval and continuous exercise training.J. Diabetes Metab. Disord.202221118919510.1007/s40200‑021‑00957‑2 35673452
    [Google Scholar]
  22. LiS.H. WangM.S. KeW.L. WangM.R. Naringenin alleviates myocardial ischemia reperfusion injury by enhancing the myocardial miR-126-PI3K/AKT axis in streptozotocin-induced diabetic rats.Exp. Ther. Med.202122281010.3892/etm.2021.10242 34093766
    [Google Scholar]
  23. Clements-JeweryH. HearseD.J. CurtisM.J. The isolated blood ‐perfused rat heart: An inappropriate model for the study of ischaemia‐ and infarction‐related ventricular fibrillation.Br. J. Pharmacol.200213771089109910.1038/sj.bjp.0704977 12429582
    [Google Scholar]
  24. XiaoC. XiaM.L. WangJ. ZhouX.R. LouY.Y. TangL.H. ZhangF.J. YangJ.T. QianL.B. Luteolin attenuates cardiac ischemia/reperfusion injury in diabetic rats by modulating Nrf2 antioxidative function.Oxid. Med. Cell. Longev.201920191910.1155/2019/2719252 31089405
    [Google Scholar]
  25. BrusiniR. TranN.L.L. CailleauC. DomergueV. NicolasV. DormontF. CaletS. CajotC. JouranA. Lepetre-MouelhiS. LaloyJ. CouvreurP. VarnaM. Assessment of squalene-adenosine nanoparticles in two rodent models of cardiac ischemia-reperfusion.Pharmaceutics2023157179010.3390/pharmaceutics15071790 37513977
    [Google Scholar]
  26. GhasemiM. TurnbullT. SebastianS. KempsonI. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis.Int. J. Mol. Sci.202122231282710.3390/ijms222312827 34884632
    [Google Scholar]
  27. YangY. DuanW. JinZ. YiW. YanJ. ZhangS. WangN. LiangZ. LiY. ChenW. YiD. YuS. JAK 2/STAT 3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury.J. Pineal Res.201355327528610.1111/jpi.12070 23796350
    [Google Scholar]
  28. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)).Method. Methods200125440240810.1006/meth.2001.1262 11846609
    [Google Scholar]
  29. MehdadA. BrumanaG. SouzaA.A. BarbosaJ.A.R.G. VenturaM.M. de FreitasS.M. A Bowman–Birk inhibitor induces apoptosis in human breast adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition.Cell Death Discov.2016211506710.1038/cddiscovery.2015.67 27551492
    [Google Scholar]
  30. LimS. KaldisP. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation.Development2013140153079309310.1242/dev.091744 23861057
    [Google Scholar]
  31. DuL. ZhangH. ZhaoH. ChengX. QinJ. TengT. YangQ. XuZ. The critical role of the zinc transporter Zip2 (SLC39A2) in ischemia/reperfusion injury in mouse hearts.J. Mol. Cell. Cardiol.201913213614510.1016/j.yjmcc.2019.05.011 31095941
    [Google Scholar]
  32. YangM. KongD.Y. ChenJ.C. Inhibition of miR‐148b ameliorates myocardial ischemia/reperfusion injury via regulation of Wnt/β‐catenin signaling pathway.J. Cell. Physiol.201923410177571776610.1002/jcp.28401 30820984
    [Google Scholar]
  33. MamamtavrishviliN.D. SharashidzeN.S. AbashidzeR.I. KvirkveliiaA.A. Metabolic issues of ischemia induced myocardial dysfunction.Georgian Med. News20111954043
    [Google Scholar]
  34. SinningC. WestermannD. ClemmensenP. Oxidative stress in ischemia and reperfusion: current concepts, novel ideas and future perspectives.Biomarkers Med.20171111110311104010.2217/bmm‑2017‑0110 29039206
    [Google Scholar]
  35. TaysiS. TascanA.S. UgurM.G. DemirM. Radicals, oxidative/nitrosative stress and preeclampsia.Mini Rev. Med. Chem.201919317819310.2174/1389557518666181015151350 30324879
    [Google Scholar]
  36. KołodziejU. MaciejczykM. MiąskoA. MatczukJ. KnaśM. ŻukowskiP. Żendzian-PiotrowskaM. BorysJ. ZalewskaA. Oxidative modification in the salivary glands of high fat-diet induced insulin resistant rats.Front. Physiol.201782010.3389/fphys.2017.00020 28184199
    [Google Scholar]
  37. ZhaoH. ZhaoM. WangY. LiF. ZhangZ. Glycyrrhizic acid prevents sepsis-induced acute lung injury and mortality in rats.J. Histochem. Cytochem.20211318209952100610.1021/acsami.1c02755 26385569
    [Google Scholar]
  38. CanakciC.F. CicekY. YildirimA. SezerU. CanakciV. Increased levels of 8-hydroxydeoxyguanosine and malondialdehyde and its relationship with antioxidant enzymes in saliva of periodontitis patients.Eur. J. Dent.20093210010610.1055/s‑0039‑1697415 19421389
    [Google Scholar]
  39. WangH. ZhaoY.T. ZhangS. DubieleckaP.M. DuJ. YanoN. ChinY.E. ZhuangS. QinG. ZhaoT.C. Irisin plays a pivotal role to protect the heart against ischemia and reperfusion injury.J. Cell. Physiol.2017232123775378510.1002/jcp.25857 28181692
    [Google Scholar]
  40. YuD. LiM. TianY. LiuJ. ShangJ. Luteolin inhibits ROS-activated MAPK pathway in myocardial ischemia/reperfusion injury.Life Sci.2015122152510.1016/j.lfs.2014.11.014 25476833
    [Google Scholar]
  41. YuanQ. ChenR. ZhengX. MengM. KaoY. LiuJ. GanX. ShiM. FuJ. JiangS. YuH. Chinese herbal medicine Xinji pill protects the heart from ischemia/reperfusion injury through the Akt/Nrf2 pathway.Mol. Med. Rep.20171621551155810.3892/mmr.2017.6732 28627591
    [Google Scholar]
  42. HanJ. WangD. YeL. LiP. HaoW. ChenX. MaJ. WangB. ShangJ. LiD. ZhengQ. Rosmarinic acid protects against inflammation and cardiomyocyte apoptosis during myocardial ischemia/reperfusion injury by activating peroxisome proliferator-activated receptor gamma.Front. Pharmacol.2017845610.3389/fphar.2017.00456 28744220
    [Google Scholar]
  43. GrahamM.L. JanecekJ.L. KittredgeJ.A. HeringB.J. SchuurmanH.J. The streptozotocin-induced diabetic nude mouse model: Differences between animals from different sources.Comp. Med.2011614356360 22330251
    [Google Scholar]
  44. KarimiR. BakhshiA. DayatiP. AbazariO. ShahidiM. SavaeeM. KafiE. RahmanianM. NaghibS.M. Silymarin reduces retinal microvascular damage in streptozotocin-induced diabetic rats.Sci. Rep.20221211587210.1038/s41598‑022‑20297‑2 36151457
    [Google Scholar]
  45. WalkowskiB. KleibertM. MajkaM. WojciechowskaM. Insight into the role of the PI3K/Akt pathway in ischemic injury and post-infarct left ventricular remodeling in normal and diabetic heart.Cells2022119155310.3390/cells11091553 35563860
    [Google Scholar]
  46. GaiH.Y. WuC. ZhangY. WangD. Long non-coding RNA CHRF modulates the progression of cerebral ischemia/reperfusion injury via miR-126/SOX6 signaling pathway.Biochem. Biophys. Res. Commun.2019514255055710.1016/j.bbrc.2019.04.161 31060778
    [Google Scholar]
  47. PishavarE. BehravanJ. miR-126 as a therapeutic agent for diabetes mellitus.Curr. Pharm. Des.201723223309331410.2174/1381612823666170424120121 28440196
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073285839240808113152
Loading
/content/journals/cchts/10.2174/0113862073285839240808113152
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): microRNA; myocardial ischemia; PI3K/AKT signaling; Rosmanol; streptozotocin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test