Skip to content
2000
Volume 28, Issue 14
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

The plant kingdom offers a wealth of molecules with potential efficacy against various human, animal, and plant crop infections and illnesses. L. has garnered significant attention in recent decades within the scientific community due to its broad biological activity. Key bioactive compounds such as cannabinoids and phenolic compounds have been isolated from this plant, driving its bioactivity. Numerous studies have highlighted the impact of different agronomic practices, particularly fertilization, on the phytochemical composition, notably altering the percentage of various chemical groups. This review aims to present updated fertilization recommendations, crop requirements, and their implications for the chemical composition of plants, along with major biological properties documented in the literature over the past five years. Various databases were utilized to summarize information on fertilization and crop requirements, chemical composition, bioassays employed, natural products (extracts or isolated compounds), and bioactivity results. Through this review, it is evident that holds promise as a source of novel molecules for treating diverse human diseases. Nonetheless, careful consideration of agronomic practices is essential to optimize chemical composition and maximize therapeutic potential.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073319590240801112332
2024-08-13
2025-11-03
Loading full text...

Full text loading...

References

  1. Ángeles LópezG.E. BrindisF. Cristians NiizawaS. Ventura MartínezR. Cannabis sativa L., una planta singular.Rev. Mex. Cienc. Farm.201445416
    [Google Scholar]
  2. DalliM. AziziS. AzgharA. SaddariA. BenaissaE. LahlouY.B. ElouennassM. MalebA. Cannabis sativa L.: A comprehensive review on legislation, decriminalization, phytochemistry, antimicrobial activity, and safety.Yao Wu Shi Pin Fen Xi202331340843510.38212/2224‑6614.3471
    [Google Scholar]
  3. RobinsonB.B. Hemp. USDA Farmers.Bulletin No193516
    [Google Scholar]
  4. WilsieC.P. DyasE.S. NonnanA.G. Hemp a war crop for iowa.Iowa Agriculutral Experiment Station Bulletin P49Ames, Iowa: Iowa State College1942587600
    [Google Scholar]
  5. HacklemanJ.C. DomingoW.E. Hemp an Illinois war crop.University of Illinois Extension Circular19435478
    [Google Scholar]
  6. WilsieC.P. BlackC.A. AandahlA.R. Hemp production experiments cultural practices and soil requirements.Iowa Agricultural Experiment StationAmes, Iowa: Bulletin P63, Iowa State College1944
    [Google Scholar]
  7. AmaducciS. ErraniM. VenturiG. Response of hemp to plant population and nitrogen fertilisation.Ital. J. Agron.200262103112
    [Google Scholar]
  8. Sunoj Valiaparambil SebastianJ. DongX. TrostleC. PhamH. JoshiM.V. JessupR.W. BurowM.D. ProvinT.L. Hemp agronomy: Current advances, questions, challenges, and opportunities.Agronomy202313247510.3390/agronomy13020475
    [Google Scholar]
  9. GorelickJ. BernsteinN. Chemical and physical elicitation for enhanced cannabinoid production in cannabis.Cannabis sativa L. - Botany and Biotechnology. ChandraS. LataH. ElSohlyM.A. Cham, SwitzerlandSpringer201743945610.1007/978‑3‑319‑54564‑6_21
    [Google Scholar]
  10. RiobaN.B. ItulyaF.M. SaidiM. DudaiN. BernsteinN. Effects of nitrogen, phosphorus and irrigation frequency on essential oil content and composition of sage (Salvia officinalis L.).J. Appl. Res. Med. Aromat. Plants201521212910.1016/j.jarmap.2015.01.003
    [Google Scholar]
  11. SeiglerD.S. Plant Secondary Metabolism.Springer Science & Business Media2012759
    [Google Scholar]
  12. DudaiN. PutievskyE. RavidU. PalevitchD. HalevyA.H. Monoterpene content in Origanum syriacum as affected by environmental conditions and flowering.Physiol. Plant.199284345345910.1111/j.1399‑3054.1992.tb04690.x
    [Google Scholar]
  13. SalonerA. BernsteinN. Nitrogen source matters: High NH4/NO3 ratio reduces cannabinoids, terpenoids, and yield in medical cannabis.Front. Plant Sci.20221383022410.3389/fpls.2022.830224 35720524
    [Google Scholar]
  14. HawkesfordM. HorstW. KicheyT. LambersH. SchjoerringJ. Skrumsager MøllerI. WhiteP. Functions of macronutrients.Marschner’s Mineral Nutrition of Higher Plants. MarschnerP. Academic Press201213519010.1016/B978‑0‑12‑384905‑2.00006‑6
    [Google Scholar]
  15. LeaP. Morot-GaudryJ.F. Plant Nitrogen.BerlinSpringer, Springer-Verlag200110.1007/978‑3‑662‑04064‑5
    [Google Scholar]
  16. WylieS.E. RistveyA.G. FiorellinoN.M. Fertility management for industrial hemp production: Current knowledge and future research needs.Glob. Change Biol. Bioenergy202113451752410.1111/gcbb.12779
    [Google Scholar]
  17. AdesinaI. BhowmikA. SharmaH. ShahbaziA. A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the United States.Agriculture202010412910.3390/agriculture10040129
    [Google Scholar]
  18. OprescuR.M. BirişS.Ş. VoiceaI. VlăduțV. Considerations on hemp cultivation technology.Acta Tech. Corvin. Bull. Eng.201938588
    [Google Scholar]
  19. ChaconF.T. Raup-KonsavageW.M. VranaK.E. KelloggJ.J. Secondary terpenes in Cannabis sativa L.: Synthesis and synergy.Biomedicines20221012314210.3390/biomedicines10123142 36551898
    [Google Scholar]
  20. SchultesR.E. Random thoughts and queries on the botany of Cannabis.The Botany and Chemistry of Cannabis. JoyceC.R. CurryS.H. LondonJ. A. Churchill19701138
    [Google Scholar]
  21. KaurN. BrymZ. OyolaL.A.M. SharmaL.K. Nitrogen fertilization impact on hemp (Cannabis sativa L.) crop production: A review.Agron. J.202311541557157010.1002/agj2.21345
    [Google Scholar]
  22. WhiteP.J. BrownP.H. Plant nutrition for sustainable development and global health.Ann. Bot.201010571073108010.1093/aob/mcq085 20430785
    [Google Scholar]
  23. Van der WerfH.M. Agronomy and crop physiology of fibre hemp. A literature review.Cen. Agrobiol. Res. RepWageningen: Netherlands1991
    [Google Scholar]
  24. DempseyJ.M. Fiber Crops.GainesvilleUniversity Press of Florida19754688
    [Google Scholar]
  25. RobinsonB.B. USDA FarmersBulletin No. 1935: Hemp1952
    [Google Scholar]
  26. FarnisaM.M. Floral hemp (Cannabis sativa L.) responses to nitrogen fertilization under field conditions in the high desert.PLoS ONE2023185e028453710.1371/journal.pone.0284537
    [Google Scholar]
  27. KoustaA. PapastylianouP. TravlosI. MavroeidisA. KakaboukiI. Effect of fertilization and weed management practices on weed diversity and hemp agronomic performance.Agronomy2023134106010.3390/agronomy13041060
    [Google Scholar]
  28. AndersonS.L.II PearsonB. KjelgrenR. BrymZ. Response of essential oil hemp (Cannabis sativa L.) growth, biomass, and cannabinoid profiles to varying fertigation rates.PLoS One2021167e025298510.1371/journal.pone.0252985 34324496
    [Google Scholar]
  29. KakaboukiI. KoustaA. FolinaA. KarydogianniS. ZisiC. KouneliV. PapastylianouP. Effect of fertilization with urea and inhibitors on growth, yield and CBD concentration of hemp] (Cannabis sativa L.).Sustainability2021134215710.3390/su13042157
    [Google Scholar]
  30. PapastylianouP. KakaboukiI. TravlosI. Effect of nitrogen fertilization on growth and yield of industrial hemp (Cannabis] sativa L.).Not. Bot. Horti Agrobot. Cluj-Napoca201846119720110.15835/nbha46110862
    [Google Scholar]
  31. VeraC.L. MalhiS.S. PhelpsS.M. MayW.E. JohnsonE.N.N. P, and S fertilization effects on industrial hemp in Saskatchewan.Cancer J. Plant Sci.201090217918410.4141/CJPS09101
    [Google Scholar]
  32. VeraC.L. MalhiS.S. RaneyJ.P. WangZ.H. The effect of N and P fertilization on growth, seed yield and quality of industrial hemp in the parkland region of saskatchewan.Cancer J. Plant Sci.200484493994710.4141/P04‑022
    [Google Scholar]
  33. YangY. ZhaW. TangK. DengG. DuG. LiuF. Effect of nitrogen supply on growth and nitrogen utilization in hemp (Cannabis sativa L.).Agronomy20211111231010.3390/agronomy11112310
    [Google Scholar]
  34. SalonerA. BernsteinN. Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (Cannabis sativa L.).Ind. Crops Prod.202116711351610.1016/j.indcrop.2021.113516
    [Google Scholar]
  35. DilenaE. CloseD.C. HuntI. GarlandS.M. Investigating how nitrogen nutrition and pruning impacts on CBD and THC concentration and plant biomass of Cannabis sativa.Sci. Rep.20231311953310.1038/s41598‑023‑46369‑5 37945596
    [Google Scholar]
  36. AtoloyeI.A. AdesinaI. ShahbaziA. BhowmikA. Response of cannabidiol hemp (Cannabis sativa L.) varieties grown in the southeastern United States to nitrogen fertilization.Open Agric.20227137338110.1515/opag‑2022‑0094
    [Google Scholar]
  37. ShiponiS. BernsteinN. The highs and lows of p supply in medical cannabis: effects on cannabinoids, the ionome, and morpho-physiology.Front. Plant Sci.20211265732310.3389/fpls.2021.657323 34335641
    [Google Scholar]
  38. IslamM.M. RengelZ. StorerP. SiddiqueK.H.M. SolaimanZ.M. Phosphorus fertilisation differentially influences growth, morpho-physiological adaptations and nutrient uptake of industrial hemp (Cannabis sativa L.).Plant Soil20234921-230131410.1007/s11104‑023‑06171‑8
    [Google Scholar]
  39. CoffmanC.B. GentnerW.A. Responses of Greenhouse‐grown Cannabis sativa L. to nitrogen, phosphorus, and potassium.Agron. J.197769583283610.2134/agronj1977.00021962006900050026x
    [Google Scholar]
  40. FinnanJ. BurkeB. Nitrogen fertilization to optimize the greenhouse gas balance of hemp crops grown for biomass.Glob. Change Biol. Bioenergy20135670171210.1111/gcbb.12045
    [Google Scholar]
  41. IványiI. IzsákiZ. Effect of nitrogen, phosphorus, and potassium fertilization on nutritional status of fiber hemp.Commun. Soil Sci. Plant Anal.2009401-697498610.1080/00103620802693466
    [Google Scholar]
  42. LegrosS. PicaultS. CerrutiN. Factors affecting the yield of industrial hemp experimental results from france.Hemp: Industrial production and uses. BoulocP. CABI2013729710.1079/9781845937935.0072
    [Google Scholar]
  43. SalonerA. BernsteinN. Effect of potassium (K) supply on cannabinoids, terpenoids and plant function in medical cannabis.Agronomy2022125124210.3390/agronomy12051242
    [Google Scholar]
  44. SongC. SalonerA. FaitA. BernsteinN. Nitrogen deficiency stimulates cannabinoid biosynthesis in medical cannabis plants by inducing a metabolic shift towards production of low-N metabolites.Ind. Crops Prod.202320211696910.1016/j.indcrop.2023.116969
    [Google Scholar]
  45. JamesM.S. VannM.C. SuchoffD.H. McGinnisM. WhipkerB.E. EdmistenK.L. GatiboniL.C. Hemp yield and cannabinoid concentrations under variable nitrogen and potassium fertilizer rates.Crop Sci.20236331555156510.1002/csc2.20966
    [Google Scholar]
  46. De PratoL. AnsariO. HardyG.E.S.J. HowiesonJ. O’HaraG. RuthrofK.X. The cannabinoid profile and growth of hemp (Cannabis sativa L.) is influenced by tropical daylengths and temperatures, genotype and nitrogen nutrition.Ind. Crops Prod.202217811460510.1016/j.indcrop.2022.114605
    [Google Scholar]
  47. BruceD. ConnellyG. EllisonS. Different fertility approaches in organic hemp (Cannabis sativa L.) production alter floral biomass yield but not CBD:THC ratio.Sustainability20221410622210.3390/su14106222
    [Google Scholar]
  48. ShiponiS. BernsteinN. Response of medical cannabis (Cannabis sativa L.) genotypes to P supply under long photoperiod: Functional phenotyping and the ionome.Ind. Crops Prod.202116111315410.1016/j.indcrop.2020.113154
    [Google Scholar]
  49. BevanL. JonesM. ZhengY. Optimisation of nitrogen, phosphorus, and potassium for soilless production of Cannabis sativa in the flowering stage using response surface analysis.Front. Plant Sci.20211276410310.3389/fpls.2021.764103 34868163
    [Google Scholar]
  50. SalonerA. BernsteinN. Response of medical cannabis (Cannabis sativa L.) to nitrogen supply under long photoperiod.Front. Plant Sci.20201157229310.3389/fpls.2020.572293 33312185
    [Google Scholar]
  51. SalonerA. SacksM.M. BernsteinN. Response of medical cannabis (Cannabis sativa L.) genotypes to k supply under long photoperiod.Front. Plant Sci.201910136910.3389/fpls.2019.01369 31803198
    [Google Scholar]
  52. WogiatziE. GougouliasN. GiannoulisK.D. KamvoukouC.A. Effect of irrigation and fertilization levels on mineral composition of Cannabis sativa L. leaves.Not. Bot. Horti Agrobot. Cluj-Napoca20194741073108010.15835/nbha47411527
    [Google Scholar]
  53. DengG. DuG. YangY. BaoY. LiuF. Planting density and fertilization evidently influence the fiber yield of hemp (Cannabis sativa L.).Agronomy20199736810.3390/agronomy9070368
    [Google Scholar]
  54. CampigliaE. RadicettiE. MancinelliR. Plant density and nitrogen fertilization affect agronomic performance of industrial hemp (Cannabis sativa L.) in mediterranean environment.Ind. Crops Prod.201710024625410.1016/j.indcrop.2017.02.022
    [Google Scholar]
  55. CaplanD. DixonM. ZhengY. Optimal rate of organic fertilizer during the flowering stage for cannabis grown in two coir-based substrates.HortScience201752121796180310.21273/HORTSCI12401‑17
    [Google Scholar]
  56. CaplanD. DixonM. ZhengY. Optimal rate of organic fertilizer during the vegetative-stage for cannabis grown in two coir-based substrates.HortScience20175291307131210.21273/HORTSCI11903‑17
    [Google Scholar]
  57. TangK. StruikP.C. YinX. CalzolariD. MusioS. ThouminotC. BjelkováM. StramkaleV. MagagniniG. AmaducciS. A comprehensive study of planting density and nitrogen fertilization effect on dual-purpose hemp (Cannabis sativa L.) cultivation.Ind. Crops Prod.201710742743810.1016/j.indcrop.2017.06.033
    [Google Scholar]
  58. AubinM.P. SeguinP. VanasseA. TremblayG.F. MustafaA.F. CharronJ.B. Industrial hemp response to nitrogen, phosphorus, and potassium fertilization.Crop Forage Turfgrass Manage.20151111010.2134/cftm2015.0159
    [Google Scholar]
  59. FinnanJ. BurkeB. Potassium fertilization of hemp (Cannabis sativa).Ind. Crops Prod.20134141942210.1016/j.indcrop.2012.04.055
    [Google Scholar]
  60. MaļcevaM. StramkaleV. VikmaneM. Physiological aspects of nitrogen fertilizer impact on Latvian origin Cannabis sativa L. Environment. Technologies. Resources.Proceedings of the 8th International Scientific and Practical Conference201130531410.17770/etr2011vol2.986
    [Google Scholar]
  61. BócsaI. MáthéP. HangyelL. Effect of nitrogen on tetrahydrocannabinol (THC) content in hemp (Cannabis sativa L.) leaves at different positions.J. Int. Hemp Assoc.1997427879
    [Google Scholar]
  62. van der WerfH.M.G. van GeelW.C.A. van GilsL.J.C. HaverkortA.J. Nitrogen fertilization and row width affect self-thinning and productivity of fibre hemp (Cannabis sativa L.).Field Crops Res.1995421273710.1016/0378‑4290(95)00017‑K
    [Google Scholar]
  63. BlackC.A. VesselA.J. The response of hemp to fertilizers in Iowa.Soil Sci. Soc. Am. J.19459C17918410.2136/sssaj1945.036159950009000C0029x
    [Google Scholar]
  64. BlackC.A. Effect of commercial fertilizers on the sex expression of hemp.Bot. Gaz.1945107111412010.1086/335333
    [Google Scholar]
  65. RamanV. LataH. ChandraS. KhanI.A. ElSohlyM.A. Morpho-Anatomy of Marijuana (Cannabis sativa L.).Cannabis sativa L. - Botany and Biotechnology. ChandraS. LataH. ElSohlyM. ChamSpringer201710.1007/978‑3‑319‑54564‑6_5
    [Google Scholar]
  66. ChandraS. LataH. KhanI.A. ElSohlyM.A. Cannabis sativa L.: Botany and horticulture.Cannabis sativa L. - Botany and biotechnologyChandra. S. (Ed.)Springer: Cham201710.1007/978‑3‑319‑54564‑6_3
    [Google Scholar]
  67. AndreC.M. HausmanJ.F. GuerrieroG. Cannabis sativa: The plant of the thousand and one molecules.Front. Plant Sci.201671910.3389/fpls.2016.00019 26870049
    [Google Scholar]
  68. HammondC.T. MahlbergP.G. Morphogenesis of capitate glandular hairs of Cannabis sativa (Cannabaceae).Am. J. Bot.19776481023103110.1002/j.1537‑2197.1977.tb11948.x
    [Google Scholar]
  69. BeleggiaR. MengaV. FulvioF. FaresC. TronoD. Effect of genotype, year, and their interaction on the accumulation of bioactive compounds and the antioxidant activity in industrial hemp (Cannabis sativa L.) inflorescences.Int. J. Mol. Sci.20232410896910.3390/ijms24108969 37240314
    [Google Scholar]
  70. Alonso-EstebanJ.I. PinelaJ. ĆirićA. CalhelhaR.C. SokovićM. FerreiraI.C.F.R. BarrosL. Torija-IsasaE. Sánchez-MataM.C. Chemical composition and biological activities of whole and dehulled hemp (Cannabis sativa L.) seeds.Food Chem.202237413175410.1016/j.foodchem.2021.131754 34891087
    [Google Scholar]
  71. PalmieriS. MaggioF. PellegriniM. RicciA. SerioA. PaparellaA. Lo SterzoC. Effect of the distillation time on the chemical composition, antioxidant potential and antimicrobial activity of essential oils from different Cannabis sativa L. cultivars.Molecules20212616477010.3390/molecules26164770 34443356
    [Google Scholar]
  72. OrlandoG. AdorisioS. DelfinoD. ChiavaroliA. BrunettiL. RecinellaL. LeoneS. D’AntonioM. ZenginG. AcquavivaA. AnticoM. AngeliniP. Angeles FloresG. VenanzoniR. TacchiniM. Di SimoneS.C. MenghiniL. FerranteC. Comparative investigation of composition, antifungal, and anti-inflammatory effects of the essential oil from three industrial hemp varieties from italian cultivation.Antibiotics202110333410.3390/antibiotics10030334 33809983
    [Google Scholar]
  73. IrakliM. TsalikiE. KalivasA. KleisiarisF. SarrouE. CookC.M. Effect οf genotype and growing year on the nutritional, phytochemical, and antioxidant properties of industrial hemp (Cannabis sativa L.) seeds.Antioxidants201981049110.3390/antiox8100491 31627349
    [Google Scholar]
  74. Jornet-MartínezN. Biosca-MicóJ. Campíns-FalcóP. Herráez-HernándezR. A colorimetric method for the rapid estimation of the total cannabinoid content in cannabis samples.Molecules2023283130310.3390/molecules28031303 36770970
    [Google Scholar]
  75. DasP.C. VistaA.R. TabilL.G. BaikO.D. Postharvest operations of cannabis and their effect on cannabinoid content: A review.Bioengineering20229836410.3390/bioengineering9080364 36004888
    [Google Scholar]
  76. BabikerE.E. UsluN. Al JuhaimiF. Mohamed AhmedI.A. GhafoorK. ÖzcanM.M. AlmusallamI.A. Effect of roasting on antioxidative properties, polyphenol profile and fatty acids composition of hemp (Cannabis sativa L.) seeds.Lebensm. Wiss. Technol.202113911053710.1016/j.lwt.2020.110537
    [Google Scholar]
  77. MarzocchiS. CaboniM.F. Effect of harvesting time on hemp (Cannabis sativa L.) seed oil lipid composition.Ital. J. Food Sci.202032410.14674/IJFS.1898
    [Google Scholar]
  78. SiracusaL. RubertoG. CristinoL. Recent research on Cannabis sativa L.: Phytochemistry, new matrices, cultivation techniques, and recent updates on its brain-related effects (2018–2023).Molecules2023288338710.3390/molecules28083387 37110621
    [Google Scholar]
  79. SongY.X. FurtosA. FuocoD. BoumgharY. PatienceG.S. Meta‐analysis and review of cannabinoids extraction and purification techniques.Cancer J. Chem. Eng.202310163108313110.1002/cjce.24786
    [Google Scholar]
  80. AltyarA.E. YoussefF.S. KurdiM.M. BifariR.J. AshourM.L. The role of Cannabis sativa L. as a source of cannabinoids against coronavirus 2 (SARS-CoV-2): An in silico study to evaluate their activities and ADMET properties.Molecules2022279279710.3390/molecules27092797 35566148
    [Google Scholar]
  81. GallettaM. ReekieT.A. NagalingamG. BottomleyA.L. HarryE.J. KassiouM. TriccasJ.A. Rapid antibacterial activity of cannabichromenic acid against methicillin-resistant Staphylococcus aureus.Antibiotics20209852310.3390/antibiotics9080523 32824356
    [Google Scholar]
  82. ZivovinovicS. AlderR. AllenspachM.D. SteuerC. Determination of cannabinoids in Cannabis sativa L. samples for recreational, medical, and forensic purposes by reversed-phase liquid chromatography-ultraviolet detection.J. Anal. Sci. Technol.2018912710.1186/s40543‑018‑0159‑8
    [Google Scholar]
  83. Aizpurua-OlaizolaO. OmarJ. NavarroP. OlivaresM. EtxebarriaN. UsobiagaA. Identification and quantification of cannabinoids in Cannabis sativa L. plants by high performance liquid chromatography-mass spectrometry.Anal. Bioanal. Chem.2014406297549756010.1007/s00216‑014‑8177‑x 25338935
    [Google Scholar]
  84. RadwanM.M. WanasA.S. ChandraS. ElSohlyM.A. Natural cannabinoids of cannabis and methods of analysis.Cannabis sativa L. -Botany and Biotechnology. ChandraS. LataH. El-SohlyM.A. Cham, SwitzerlandSpringer International Publishing201710.1007/978‑3‑319‑54564‑6_7
    [Google Scholar]
  85. NazS. AhmedW. RamadanM.F. Cannabis sativa leaf essential oil fractions and bioactive compounds: Chemistry, functionality and health-enhancing traits.J. Food Meas. Charact.20231754575459310.1007/s11694‑023‑01963‑z
    [Google Scholar]
  86. AddoP.W. SagiliS.U.K.R. BilodeauS.E. Gladu-GallantF.A. MacKenzieD.A. BatesJ. McRaeG. MacPhersonS. ParisM. RaghavanV. OrsatV. LefsrudM. Cold ethanol extraction of cannabinoids and terpenes from cannabis using response surface methodology: Optimization and comparative study.Molecules20222724878010.3390/molecules27248780 36557913
    [Google Scholar]
  87. RadwanM.M. ChandraS. GulS. ElSohlyM.A. Cannabinoids, phenolics, terpenes and alkaloids of cannabis.Molecules2021269277410.3390/molecules26092774 34066753
    [Google Scholar]
  88. Dei CasM. ArnoldiS. MonguzziL. CasagniE. MoranoC. Vieira de ManincorE. BolchiC. PallaviciniM. GambaroV. RodaG. Characterization of chemotype-dependent terpenoids profile in cannabis by headspace gas-chromatography coupled to time-of-flight mass spectrometry.J. Pharm. Biomed. Anal.202120311418010.1016/j.jpba.2021.114180 34111731
    [Google Scholar]
  89. BoothJ.K. YuenM.M.S. JancsikS. MadilaoL.L. PageJ.E. BohlmannJ. Terpene synthases and terpene variation in Cannabis sativa.Plant Physiol.2020184113014710.1104/pp.20.00593 32591428
    [Google Scholar]
  90. Aizpurua-OlaizolaO. SoydanerU. ÖztürkE. SchibanoD. SimsirY. NavarroP. EtxebarriaN. UsobiagaA. Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes.J. Nat. Prod.201679232433110.1021/acs.jnatprod.5b00949 26836472
    [Google Scholar]
  91. Montserrat-de la PazS. Marín-AguilarF. García-GimenezM.D. Fernández-ArcheM.A. Hemp (Cannabis sativa L.) seed oil: Analytical and phytochemical characterization of the unsaponifiable fraction.J. Agric. Food Chem.20146251105111010.1021/jf404278q
    [Google Scholar]
  92. FischedickJ.T. HazekampA. ErkelensT. ChoiY.H. VerpoorteR. Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes.Phytochemistry20107117-182058207310.1016/j.phytochem.2010.10.001 21040939
    [Google Scholar]
  93. CaroliC. BrighentiV. CattivelliA. SalamoneS. PollastroF. TagliazucchiD. PellatiF. Identification of phenolic compounds from inflorescences of non-psychoactive Cannabis sativa L. by UHPLC-HRMS and in vitro assessment of the antiproliferative activity against colorectal cancer.J. Pharm. Biomed. Anal.202323611572310.1016/j.jpba.2023.115723 37748359
    [Google Scholar]
  94. BautistaJ.L. YuS. TianL. Flavonoids in Cannabis sativa: Biosynthesis, bioactivities, and biotechnology.ACS Omega2021685119512310.1021/acsomega.1c00318 33681553
    [Google Scholar]
  95. KornpointnerC. Sainz MartinezA. MarinovicS. Haselmair-GoschC. JamnikP. SchröderK. LöfkeC. HalbwirthH. Chemical composition and antioxidant potential of Cannabis sativa L. roots.Ind. Crops Prod.202116511342210.1016/j.indcrop.2021.113422
    [Google Scholar]
  96. LoweH. SteeleB. BryantJ. ToyangN. NgwaW. Non-cannabinoid metabolites of Cannabis sativa L. with therapeutic potential.Plants202110240010.3390/plants10020400 33672441
    [Google Scholar]
  97. IzzoL. CastaldoL. NarváezA. GrazianiG. GaspariA. Rodríguez-CarrascoY. RitieniA. Analysis of phenolic compounds in commercial Cannabis sativa L. Inflorescences using UHPLC-Q-Orbitrap HRMS.Molecules202025363110.3390/molecules25030631 32024009
    [Google Scholar]
  98. SmeriglioA. GalatiE.M. MonforteM.T. LanuzzaF. D’AngeloV. CircostaC. Polyphenolic compounds and antioxidant activity of cold‐pressed seed oil from finola cultivar of Cannabis sativa L.Phytother. Res.20163081298130710.1002/ptr.5623 27076277
    [Google Scholar]
  99. IsidoreE. KarimH. IoannouI. Extraction of phenolic compounds and terpenes from Cannabis sativa L. by-products: From conventional to intensified processes.Antioxidants202110694210.3390/antiox10060942 34200871
    [Google Scholar]
  100. Rea MartinezJ. Montserrat-de la PazS. De la PuertaR. García-GiménezM.D. Fernández-ArcheM.Á. Characterization of bioactive compounds in defatted hempseed (Cannabis sativa L.) by UHPLC-HRMS/MS and anti-inflammatory activity in primary human monocytes.Food Funct.20201154057406610.1039/D0FO00066C 32329481
    [Google Scholar]
  101. JinD. DaiK. XieZ. ChenJ. Secondary metabolites profiled in cannabis inflorescences, leaves, stem barks, and roots for medicinal purposes.Sci. Rep.2020101330910.1038/s41598‑020‑60172‑6 32094454
    [Google Scholar]
  102. RyzN.R. RemillardD.J. RussoE.B. Cannabis roots: A traditional therapy with future potential for treating inflammation and pain.Cannabis Cannabinoid Res.20172121021610.1089/can.2017.0028 29082318
    [Google Scholar]
  103. MotiejauskaitėD. UllahS. KundrotaitėA. ŽvirdauskienėR. BakšinskaitėA. BarčauskaitėK. Inflorescences by using different extraction solvents and evaluation of antimicrobial activity. Isolation of biologically active compounds from Cannabis sativa L.Antioxidants202312599810.3390/antiox12050998 37237864
    [Google Scholar]
  104. RazmaitėV. PileckasV. BliznikasS. ŠiukščiusA. Fatty acid composition of Cannabis sativa, Linum usitatissimum and Camelina sativa seeds harvested in lithuania for food use.Foods2021108190210.3390/foods10081902 34441681
    [Google Scholar]
  105. Alonso-EstebanJ.I. González-FernándezM.J. FabrikovD. Torija-IsasaE. Sánchez-MataM.C. Guil-GuerreroJ.L. Hemp (Cannabis sativa L.) varieties: Fatty acid profiles and upgrading of γ‐linolenic acid–containing hemp seed oils.Eur. J. Lipid Sci. Technol.20201227190044510.1002/ejlt.201900445
    [Google Scholar]
  106. LuD. PotterD.E. Cannabinoids and the cannabinoid receptors: An overview.Handbook of Cannabis and related pathologies: Biology, pharmacology, diagnosis, and treatmentPreedy V.R (Ed.)Handbook of Cannabis and Related Pathologies2017553563
    [Google Scholar]
  107. ShahS.B. SartajL. HussainS. UllahN. IdreesM. ShaheenA. JavedM.S. AslamM.K. In-vitro evaluation of antimicrobial, antioxidant, alpha-amylase inhibition and cytotoxicity properties of Cannabis sativa.Advances in Traditional Medicine202020218118710.1007/s13596‑019‑00414‑9
    [Google Scholar]
  108. BlaskovichM.A.T. KavanaghA.M. ElliottA.G. ZhangB. RamuS. AmadoM. LoweG.J. HintonA.O. PhamD.M.T. ZueggJ. BeareN. QuachD. SharpM.D. PoglianoJ. RogersA.P. LyrasD. TanL. WestN.P. CrawfordD.W. PetersonM.L. CallahanM. ThurnM. The antimicrobial potential of cannabidiol.Commun. Biol.202141710.1038/s42003‑020‑01530‑y 33469147
    [Google Scholar]
  109. IseppiR. BrighentiV. LicataM. LambertiniA. SabiaC. MessiP. PellatiF. BenvenutiS. Chemical characterization and evaluation of the antibacterial activity of essential oils from fibre-type Cannabis sativa L. (Hemp).Molecules20192412230210.3390/molecules24122302 31234360
    [Google Scholar]
  110. WassmannC.S. HøjrupP. KlitgaardJ.K. Cannabidiol is an effective helper compound in combination with bacitracin to kill Gram-positive bacteria.Sci. Rep.2020101411210.1038/s41598‑020‑60952‑0 32139776
    [Google Scholar]
  111. ServentiL. FloresG.A. CusumanoG. BarbaroD. TirilliniB. VenanzoniR. AngeliniP. AcquavivaA. Di SimoneS.C. OrlandoG. ZenginG. MenghiniL. FerranteC. Comparative investigation of antimicrobial and antioxidant effects of the extracts from the inflorescences and leaves of the Cannabis sativa L. cv. strawberry.Antioxidants202312221910.3390/antiox12020219 36829777
    [Google Scholar]
  112. FerranteC. RecinellaL. RonciM. MenghiniL. BrunettiL. ChiavaroliA. LeoneS. Di IorioL. CarradoriS. TirilliniB. AngeliniP. CovinoS. VenanzoniR. OrlandoG. Multiple pharmacognostic characterization on hemp commercial cultivars: Focus on inflorescence water extract activity.Food Chem. Toxicol.201912545246110.1016/j.fct.2019.01.035 30711720
    [Google Scholar]
  113. HaddouS. MounimeK. LoukiliE. Ou-YahiaD. HbikaA. IdrissiM.Y. LegssyerA. LgazH. AsehraouA. TouzaniR. HammoutiB. ChahineA. Investigating the biological activities of moroccan Cannabis sativa L., seed extracts: Antimicrobial, anti-inflammatory, and antioxidant effects with molecular docking analysis.Mor. J. Chem.20231104111410.48317/IMIST.PRSM/morjchem‑v11i04.42100
    [Google Scholar]
  114. Luz-VeigaM. AmorimM. Pinto-RibeiroI. OliveiraA.L.S. SilvaS. PimentelL.L. Rodríguez-AlcaláL.M. MadureiraR. PintadoM. Azevedo-SilvaJ. FernandesJ. Cannabidiol and cannabigerol exert antimicrobial activity without compromising skin microbiota.Int. J. Mol. Sci.2023243238910.3390/ijms24032389 36768709
    [Google Scholar]
  115. NafisA. KasratiA. JamaliC.A. MezriouiN. SetzerW. AbbadA. HassaniL. Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards.Ind. Crops Prod.201913739640010.1016/j.indcrop.2019.05.032
    [Google Scholar]
  116. ChouhanS. GuleriaS. Green synthesis of AgNPs using Cannabis sativa leaf extract: Characterization, antibacterial, anti-yeast and α-amylase inhibitory activity.Mater. Sci. Energy Technol.2020353654410.1016/j.mset.2020.05.004
    [Google Scholar]
  117. CsakvariA.C. MoisaC. RaduD.G. OlariuL.M. LupituA.I. PandaA.O. PopG. ChambreD. SocoliucV. CopoloviciL. CopoloviciD.M. Green synthesis, characterization, and antibacterial properties of silver nanoparticles obtained by using diverse varieties of Cannabis sativa leaf extracts.Molecules20212613404110.3390/molecules26134041 34279380
    [Google Scholar]
  118. SinghK. CoopoosamyR.M. NaidooK.K. AdamJ.K. Antibacterial activities and biosynthesis of nanoparticles using hemp extracts.J. Med. Plants Economic Develop.202261610.4102/jomped.v6i1.160
    [Google Scholar]
  119. ChauhanA. VermaR. KumariS. SharmaA. ShandilyaP. LiX. BatooK.M. ImranA. KulshresthaS. KumarR. Photocatalytic dye degradation and antimicrobial activities of pure and Ag-doped ZnO using Cannabis sativa leaf extract.Sci. Rep.2020101788110.1038/s41598‑020‑64419‑0 32398650
    [Google Scholar]
  120. RainaS. ThakurA. SharmaA. PoojaD. MinhasA.P. Bactericidal activity of Cannabis sativa phytochemicals from leaf extract and their derived carbon dots and Ag@Carbon Dots.Mater. Lett.202026212712210.1016/j.matlet.2019.127122
    [Google Scholar]
  121. ElhendawyM.A. WanasA.S. RadwanM.M. AzzazN.A. TosonE.S. ElSohlyM.A. Chemical and biological studies of <b><i>Cannabis sativa</i></b> roots.Med. Cannabis Cannabinoids20191210411110.1159/000495582 32296742
    [Google Scholar]
  122. KosgodageU.S. MateweleP. AwamariaB. KraevI. WardeP. MastroianniG. NunnA.V. GuyG.W. BellJ.D. InalJ.M. LangeS. Cannabidiol is a novel modulator of bacterial membrane vesicles.Front. Cell. Infect. Microbiol.2019932410.3389/fcimb.2019.00324 31552202
    [Google Scholar]
  123. GuZ. SinghS. NiyogiR.G. LamontG.J. WangH. LamontR.J. ScottD.A. Marijuana-derived cannabinoids trigger a CB2/PI3K axis of suppression of the innate response to oral pathogens.Front. Immunol.201910228810.3389/fimmu.2019.02288 31681262
    [Google Scholar]
  124. GiselleF. AzucenaI. DalilaO. FlorenciaF. FacundoR. GiuliaM. SandraF. MaggiM. RamirezC.L. Antibacterial activity of cannabis (Cannabis sativa L.) female inflorescence and root extract against Paenibacillus larvae, causal agent of American foulbrood.Biocatal. Agric. Biotechnol.20234710257510.1016/j.bcab.2022.102575
    [Google Scholar]
  125. MartinenghiL.D. JønssonR. LundT. JenssenH. Isolation, purification, and antimicrobial characterization of cannabidiolic acid and cannabidiol from Cannabis sativa L.Biomolecules202010690010.3390/biom10060900 32545687
    [Google Scholar]
  126. AntezanaP.E. MunicoyS. PérezC.J. DesimoneM.F. Collagen hydrogels loaded with silver nanoparticles and Cannabis sativa oil.Antibiotics20211011142010.3390/antibiotics10111420 34827358
    [Google Scholar]
  127. FrassinettiS. GabrieleM. MocciaE. LongoV. Di GioiaD. Antimicrobial and antibiofilm activity of Cannabis sativa L. seeds extract against Staphylococcus aureus and growth effects on probiotic Lactobacillus spp.Lebensm. Wiss. Technol.202012410914910.1016/j.lwt.2020.109149
    [Google Scholar]
  128. ŽitekT. LeitgebM. GolleA. DarišB. KnezŽ. Knez HrnčičM. The influence of hemp extract in combination with ginger on the metabolic activity of metastatic cells and microorganisms.Molecules20202521499210.3390/molecules25214992 33126621
    [Google Scholar]
  129. AnumuduC.K. AkpakaM.N. AnumuduI.C. Antimicrobial activity of Cannabis sativa extracts on lancefield group a streptococcus species associated with streptococcal pharyngitis (strep throat).African J. Biol. Sci.20202291510.33472/AFJBS.2.2.2020.9‑15
    [Google Scholar]
  130. FeldmanM. SionovR. SmoumR. MechoulamR. GinsburgI. SteinbergD. Comparative evaluation of combinatory interaction between endocannabinoid system compounds and Poly-L-lysine against Streptococcus mutans growth and biofilm formation.BioMed Res. Int.202020201710.1155/2020/7258380 32076613
    [Google Scholar]
  131. AqawiM. SionovR.V. GallilyR. FriedmanM. SteinbergD. Anti-bacterial properties of cannabigerol toward Streptococcus mutans.Front. Microbiol.20211265647110.3389/fmicb.2021.656471 33967995
    [Google Scholar]
  132. AqawiM. SionovR.V. GallilyR. FriedmanM. SteinbergD. Anti-biofilm activity of cannabigerol against Streptococcus mutans.Microorganisms2021910203110.3390/microorganisms9102031 34683353
    [Google Scholar]
  133. KursaW. JamiołkowskaA. WyrostekJ. KowalskiR. Attempts to use hemp (Cannabis sativa L. var. sativa) inflorescence extract to limit the growth of fungi occurring in agricultural crops.Appl. Sci.2024144168010.3390/app14041680
    [Google Scholar]
  134. Di SottoA. GullìM. AcquavivaA. TacchiniM. Di SimoneS.C. ChiavaroliA. RecinellaL. LeoneS. BrunettiL. OrlandoG. FloresG.A. VenanzoniR. AngeliniP. MenghiniL. FerranteC. Phytochemical and pharmacological profiles of the essential oil from the inflorescences of the Cannabis sativa L.Ind. Crops Prod.202218311498010.1016/j.indcrop.2022.114980
    [Google Scholar]
  135. KhanI.H. JavaidA. Antifungal activity of leaf extract of Cannabis sativa AGAINST Aspergillus flavipes.Pak. J. Weed Sci. Res.202127244745310.28941/pjwsr.v26i4.883
    [Google Scholar]
  136. Al KhouryA. SleimanR. AtouiA. HindiehP. MarounR.G. BaillyJ.D. El KhouryA. Antifungal and anti-aflatoxigenic properties of organs of Cannabis sativa L.: Relation to phenolic content and antioxidant capacities.Arch. Microbiol.202120374485449210.1007/s00203‑021‑02444‑x 34143269
    [Google Scholar]
  137. FeldmanM. SionovR.V. MechoulamR. SteinbergD. Anti-biofilm activity of cannabidiol against Candida albicans.Microorganisms20219244110.3390/microorganisms9020441 33672633
    [Google Scholar]
  138. MenossiM. TejadaG. ColmanS.L. NercessianD. MendietaJ.R. IslanG.A. AlvarezV.A. Cannabis extract-loaded lipid and chitosan-coated lipid nanoparticles with antifungal activity.Colloids Surf. A Physicochem. Eng. Asp.202468513320710.1016/j.colsurfa.2024.133207
    [Google Scholar]
  139. NguyenL.C. YangD. NicolaescuV. BestT.J. OhtsukiT. ChenS-N. FriesenJ.B. DraymanN. MohamedA. DannC. SilvaD. GulaH. JonesK.A. MillisJ.M. DickinsonB.C. TayS. OakesS.A. PauliG.F. MeltzerD.O. RandallG. RosnerM.R. Cannabidiol inhibits sars-cov-2 replication and promotes the host innate immune response.bioRxiv202110.1101/2021.03.10.432967
    [Google Scholar]
  140. PitakbutT. NguyenG.N. KayserO. Activity of THC, CBD, and CBN on human ACE2 and SARS-CoV1/2 main protease to understand antiviral defense mechanism.Planta Med.202288121047105910.1055/a‑1581‑3707 34638139
    [Google Scholar]
  141. RajV. ParkJ.G. ChoK.H. ChoiP. KimT. HamJ. LeeJ. Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in vitro approaches.Int. J. Biol. Macromol.202116847448510.1016/j.ijbiomac.2020.12.020 33290767
    [Google Scholar]
  142. van BreemenR.B. MuchiriR.N. BatesT.A. WeinsteinJ.B. LeierH.C. FarleyS. TafesseF.G. Cannabinoids block cellular entry of SARS-CoV-2 and the emerging variants.J. Nat. Prod.202285117618410.1021/acs.jnatprod.1c00946 35007072
    [Google Scholar]
  143. TamburelloM. SalamoneS. AnceschiL. GovernaP. BrighentiV. MorelliniA. RossiniG. ManettiF. GallinellaG. PollastroF. PellatiF. Antiviral activity of cannabidiolic acid and its methyl ester against SARS-CoV-2.J. Nat. Prod.20238671698170710.1021/acs.jnatprod.3c00111 37402317
    [Google Scholar]
  144. KajalV. BooraS. WadhwaS. SoniyaK. YadavS. KaushikS. KaushikS. In silico approaches for study the therapeutic potential of Cannabis sativa (Bhang) against HIV.Adv. Tradit. Med.202311910.1007/s13596‑023‑00697‑z
    [Google Scholar]
  145. TomerS. MuW. SuryawanshiG. NgH. WangL. WennerbergW. RezekV. MartinH. ChenI. KitchenS. ZhenA. Cannabidiol modulates expression of type I IFN response genes and HIV infection in macrophages.Front. Immunol.20221392669610.3389/fimmu.2022.926696 36248834
    [Google Scholar]
  146. MarquezA.B. VicenteJ. CastroE. VotaD. Rodríguez-VarelaM.S. Lanza CastronuovoP.A. FuentesG.M. PariseA.R. RomoriniL. AlvarezD.E. BuenoC.A. RamirezC.L. AlaimoA. GarcíaC.C. Broad-spectrum antiviral effect of cannabidiol against enveloped and nonenveloped viruses.Cannabis Cannabinoid Res.202310.1089/can.2023.0103 37682578
    [Google Scholar]
  147. PatelD.C. WallisG. FujinamiR.S. WilcoxK.S. SmithM.D. Cannabidiol reduces seizures following CNS infection with Theiler’s murine encephalomyelitis virus.Epilepsia Open20194343144210.1002/epi4.12351 31440724
    [Google Scholar]
  148. WanasA.S. RadwanM.M. ChandraS. LataH. MehmedicZ. AliA. BaserK. DemirciB. ElSohlyM.A. Chemical composition of volatile oils of fresh and air-dried buds of cannabis chemovars, their insecticidal and repellent activities.Nat. Prod. Commun20201551934578X2092672910.1177/1934578X20926729
    [Google Scholar]
  149. RossiP. CappelliA. MarinelliO. ValzanoM. PavoniL. BonacucinaG. PetrelliR. PompeiP. MazzaraE. RicciI. MaggiF. NabissiM. Mosquitocidal and anti-inflammatory properties of the essential oils obtained from monoecious, male, and female inflorescences of hemp (Cannabis sativa L.) and their encapsulation in nanoemulsions.Molecules20202515345110.3390/molecules25153451 32751258
    [Google Scholar]
  150. SoaresE.F.M.S. CarlosD.F.L.P. EpifanioN.M.M. CoumendourosK. CidY.P. ChavesD.S.A. CamposD.R. Insecticidal activity of essential oil of Cannabis sativa against the immature and adult stages of Ctenocephalides felis felis.Rev. Bras. Parasitol. Vet.2023321e01512210.1590/s1984‑29612023003 36651425
    [Google Scholar]
  151. MazzaraE. SpinozziE. MaggiF. PetrelliR. FioriniD. ScortichiniS. PerinelliD.R. BonacucinaG. RicciardiR. PavelaR. BenelliG. Hemp (Cannabis sativa cv. Kompolti) essential oil and its nanoemulsion: Prospects for insecticide development and impact on non-target microcrustaceans.Ind. Crops Prod.202320311716110.1016/j.indcrop.2023.117161
    [Google Scholar]
  152. TabariM.A. KhodashenasA. JafariM. PetrelliR. CappellacciL. NabissiM. MaggiF. PavelaR. YoussefiM.R. Acaricidal properties of hemp (Cannabis sativa L.) essential oil against Dermanyssus gallinae and Hyalomma dromedarii.Ind. Crops Prod.202014711223810.1016/j.indcrop.2020.112238
    [Google Scholar]
  153. MantzoukasS. NtoukasA. LagogiannisI. KalyvasN. EliopoulosP. PoulasK. Larvicidal action of cannabidiol oil and neem oil against three stored product insect pests: Effect on survival time and in progeny.Biology202091032110.3390/biology9100321 33019756
    [Google Scholar]
  154. PrvulovićD. GvozdenacS. LatkovićD. Peić TukuljacM. SikoraV. KiprovskiB. MišanA. ChrysargyrisA. TzortzakisN. OvukaJ. Phytotoxic and insecticidal activity of industrial hemp (Cannabis sativa L.) extracts against plodia interpunctella hübner—a potential sunflower grain protectant.Agronomy20231310245610.3390/agronomy13102456
    [Google Scholar]
  155. NasreenN. NiazS. KhanA. ZamanM.A. AyazS. NaeemH. KhanN. ElgorbanA.M. The potential of Allium sativum and Cannabis sativa extracts for anti-tick activities against Rhipicephalus (Boophilus) microplus.Exp. Appl. Acarol.202082228129410.1007/s10493‑020‑00540‑z 32886258
    [Google Scholar]
  156. CanteleC. BertolinoM. BakroF. GiordanoM. JędryczkaM. CardeniaV. Antioxidant effects of hemp (Cannabis sativa L.) inflorescence extract in stripped linseed oil.Antioxidants2020911113110.3390/antiox9111131 33202647
    [Google Scholar]
  157. SmeriglioA. TrombettaD. AlloisioS. CornaraL. DenaroM. GarbatiP. GrassiG. CircostaC. Promising in vitro antioxidant, anti‐acetylcholinesterase and neuroactive effects of essential oil from two non‐psychotropicCANNABIS SATIVA L. biotypes.Phytother. Res.20203492287230210.1002/ptr.6678 32309898
    [Google Scholar]
  158. PalmieriS. PellegriniM. RicciA. CompagnoneD. Lo SterzoC. Chemical compsition and antioxidant activity of thyme, hemp and coriander extracts: A comparison study of maceration, soxhlet, UAE, and RSLDE techniques.Foods202099122110.3390/foods9091221 32887367
    [Google Scholar]
  159. AhidarN. LabharA. BenamariO. AhariM. SalhiA. ElyoussfiA. AmhamdiH. Phenolic content and antioxidant activity of Cannabis sativa L, flowers from the ketama region in northern morocco. Ecolog. Engineer.Environmen Technol.202425120921510.12912/27197050/175125
    [Google Scholar]
  160. KalinowskaM. PłońskaA. TrusiakM. GołębiewskaE. Gorlewska-PietluszenkoA. Comparing the extraction methods, chemical composition, phenolic contents and antioxidant activity of edible oils from Cannabis sativa and Silybum marianu seeds.Sci. Rep.20221212060910.1038/s41598‑022‑25030‑7 36446937
    [Google Scholar]
  161. AndréA. LeupinM. KneubühlM. PedanV. ChetschikI. Evolution of the polyphenol and terpene content, antioxidant activity and plant morphology of eight different fiber-type cultivars of Cannabis sativa L. cultivated at three sowing densities.Plants2020912174010.3390/plants9121740 33317167
    [Google Scholar]
  162. VitorovićJ. JokovićN. RadulovićN. Mihajilov-KrstevT. CvetkovićV.J. JovanovićN. MitrovićT. AleksićA. StankovićN. BernsteinN. Antioxidant activity of hemp (Cannabis sativa L.) seed oil in Drosophila melanogaster larvae under non-stress and H2O2-induced oxidative stress conditions.Antioxidants202110683010.3390/antiox10060830 34067432
    [Google Scholar]
  163. BenkiraneC. Ben MoumenA. FauconnierM.L. BelhajK. AbidM. CaidH.S. ElamraniA. MansouriF. Bioactive compounds from hemp (Cannabis sativa L.) seeds: Optimization of phenolic antioxidant extraction using simplex lattice mixture design and HPLC-DAD/ESI-MS 2 analysis.RSC Advances20221239257642577710.1039/D2RA04081F 36199301
    [Google Scholar]
  164. LeonardW. ZhangP. YingD. XiongY. FangZ. Extrusion improves the phenolic profile and biological activities of hempseed (Cannabis sativa L.) hull.Food Chem.202134612860610.1016/j.foodchem.2020.128606 33388667
    [Google Scholar]
  165. Esmaeilzadeh KenariR. DehghanB. Optimization of ultrasound‐assisted solvent extraction of hemp (Cannabis sativa L.) seed oil using RSM: Evaluation of oxidative stability and physicochemical properties of oil.Food Sci. Nutr.2020894976498610.1002/fsn3.1796 32994959
    [Google Scholar]
  166. BenkiraneC. MansouriF. Ben MoumenA. TaaifiY. MelhaouiR. CaidH.S. FauconnierM.L. ElamraniA. AbidM. Phenolic profiles of non‐industrial hemp (Cannabis sativa L.) seed varieties collected from four different moroccan regions.Int. J. Food Sci. Technol.20235831367138110.1111/ijfs.16298
    [Google Scholar]
  167. Stasiłowicz-KrzemieńA. SipS. SzulcP. Cielecka-PiontekJ. Determining antioxidant activity of cannabis leaves extracts from different varieties—unveiling nature’s treasure trove.Antioxidants2023127139010.3390/antiox12071390 37507928
    [Google Scholar]
  168. OjezeleM.O. EwhreL.O. AdeosunA.M. OjezeleO.J. Phytochemical content of Cannabis sativa methanol extract and in vitro antioxidant activities of its solvent fractions.J. Phytomed. Ther.2019182328337
    [Google Scholar]
  169. ChangY. ZhengC. ChinnathambiA. AlahmadiT.A. AlharbiS.A. Cytotoxicity, anti-acute leukemia, and antioxidant properties of gold nanoparticles green-synthesized using Cannabis sativa L leaf aqueous extract.Arab. J. Chem.202114410306010.1016/j.arabjc.2021.103060
    [Google Scholar]
  170. HussainS.A. AbbasS.R. SabirS.M. KhanR.T. AliS. NafeesM.A. KhanS.W. HussainA. AbbasQ. AliM. BukhariS.A.E. The inhibitory effect of Cannabis sativa L. and Morus nigra L. against lipid peroxidation in goat liver and brain homogenates.Braz. J. Biol.20218310.1590/1519‑6984.247190
    [Google Scholar]
  171. ErukainureO.L. MatsabisaM.G. SalauV.F. ErhaborJ.O. IslamM.S. Cannabis sativa L. Mitigates oxidative stress and cholinergic dysfunction; and modulates carbohydrate metabolic perturbation in oxidative testicular injury.Comp. Clin. Pathol.202130224125310.1007/s00580‑021‑03200‑9
    [Google Scholar]
  172. FerriniF. Donati ZeppaS. FraternaleD. CarrabsV. AnnibaliniG. VerardoG. GorassiniA. AlbertiniM.C. IsmailT. FimognariC. SestiliP. Characterization of the biological activity of the ethanolic extract from the roots of Cannabis sativa L. Grown in aeroponics.Antioxidants202211586010.3390/antiox11050860 35624724
    [Google Scholar]
  173. MirzamohammadE. AlirezaluA. AlirezaluK. NoroziA. AnsariA. Improvement of the antioxidant activity, phytochemicals, and cannabinoid compounds of Cannabis sativa by salicylic acid elicitor.Food Sci. Nutr.20219126873688110.1002/fsn3.2643 34925815
    [Google Scholar]
  174. KubilieneA. MickuteK. BaranauskaiteJ. MarksaM. LiekisA. SadauskieneI. The Effects of Cannabis sativa L. extract on oxidative stress markers in vivo.Life202111764710.3390/life11070647 34357019
    [Google Scholar]
  175. DrinićZ. VladićJ. KorenA. ZeremskiT. StojanovN. KiprovskiB. VidovićS. Microwave‐assisted extraction of cannabinoids and antioxidants from Cannabis sativa aerial parts and process modeling.J. Chem. Technol. Biotechnol.202095383183910.1002/jctb.6273
    [Google Scholar]
  176. DilshadR. BatoolR. Antibacterial and antioxidant characteristics of Cannabis sativa: A medicinal herb from gilgit-baltistan.Pak. J. Sci.20207228310.57041/pjs.v72i2.168
    [Google Scholar]
  177. PetroviciA.R. SimionescuN. SanduA.I. ParaschivV. SilionM. PintealaM. New insights on hemp oil enriched in cannabidiol: Decarboxylation, antioxidant properties and in vitro anticancer effect.Antioxidants202110573810.3390/antiox10050738 34067035
    [Google Scholar]
  178. JudžentienėA. GarjonytėR. BūdienėJ. Phytochemical composition and antioxidant activity of various extracts of fibre hemp (Cannabis sativa L.) Cultivated in lithuania.Molecules20232813492810.3390/molecules28134928 37446590
    [Google Scholar]
  179. TremlováB. MikuláškováH.K. HajduchováK. JancikovaS. KaczorováD. Ćavar ZeljkovićS. DordevicD. Influence of technological maturity on the secondary metabolites of hemp concentrate (Cannabis sativa L.).Foods2021106141810.3390/foods10061418 34207353
    [Google Scholar]
  180. Stasiłowicz-KrzemieńA. SipS. SzulcP. WalkowiakJ. Cielecka-PiontekJ. The antioxidant and neuroprotective potential of leaves and inflorescences extracts of selected hemp varieties obtained with scCO2.Antioxidants20231210182710.3390/antiox12101827 37891906
    [Google Scholar]
  181. LanzoniD. SkřivanováE. RebucciR. CrottiA. BaldiA. MarchettiL. GirominiC. Total phenolic content and antioxidant activity of in vitro digested hemp-based products.Foods202312360110.3390/foods12030601 36766131
    [Google Scholar]
  182. MastelloneG. MarengoA. SgorbiniB. ScagliaF. CapettiF. GaiF. PeirettiP.G. RubioloP. CaglieroC. Characterization and biological activity of fiber-type Cannabis sativa L. aerial parts at different growth stages.Plants202211341910.3390/plants11030419 35161400
    [Google Scholar]
  183. ManosroiA. ChankhampanC. KietthanakornB.O. RuksiriwanichW. ChaikulP. BoonpisuttinantK. SainakhamM. ManosroiW. TangjiaiT. ManosroiJ. Pharmaceutical and cosmeceutical biological activities of hemp (Cannabis sativa L. var. sativa) leaf and seed extracts.Warasan Khana Witthayasat Maha Witthayalai Chiang Mai2019462180195
    [Google Scholar]
  184. AazzaS. Application of multivariate optimization for phenolic compounds and antioxidants extraction from Moroccan Cannabis sativa waste.J. Chem.2021202111110.1155/2021/9738656
    [Google Scholar]
  185. Zagórska-DziokM. BujakT. ZiemlewskaA. Nizioł-ŁukaszewskaZ. Positive effect of Cannabis sativa L. herb extracts on skin cells and assessment of cannabinoid-based hydrogels properties.Molecules202126480210.3390/molecules26040802 33557174
    [Google Scholar]
  186. MocciaS. SianoF. RussoG.L. VolpeM.G. La CaraF. PacificoS. PiccolellaS. PicarielloG. Antiproliferative and antioxidant effect of polar hemp extracts (Cannabis sativa L., Fedora cv.) in human colorectal cell lines.Int. J. Food Sci. Nutr.202071441042310.1080/09637486.2019.1666804 31544542
    [Google Scholar]
  187. DawidowiczA.L. Olszowy-TomczykM. TypekR. CBG, CBD, Δ9-THC, CBN, CBGA, CBDA and Δ9-THCA as antioxidant agents and their intervention abilities in antioxidant action.Fitoterapia202115210491510.1016/j.fitote.2021.104915 33964342
    [Google Scholar]
  188. RajaA. AhmadiS. de CostaF. LiN. KermanK. Attenuation of oxidative stress by cannabinoids and cannabis extracts in differentiated neuronal cells.Pharmaceuticals2020131132810.3390/ph13110328 33105840
    [Google Scholar]
  189. ElgorashiE.E. McGawL.J. African plants with in vitro anti-inflammatory activities: A review.S. Afr. J. Bot.201912614216910.1016/j.sajb.2019.06.034
    [Google Scholar]
  190. HenshawF.R. DewsburyL.S. LimC.K. SteinerG.Z. The effects of cannabinoids on pro-and anti-inflammatory cytokines: A systematic review of in vivo studies.Cannabis Cannabinoid Res.20216317719510.1089/can.2020.0105 33998900
    [Google Scholar]
  191. SangiovanniE. FumagalliM. PacchettiB. PiazzaS. MagnavaccaA. KhalilpourS. MelziG. MartinelliG. Dell’AgliM. CANNABIS SATIVA L. extract and cannabidiol inhibit in vitro mediators of skin inflammation and wound injury.Phytother. Res.20193382083209310.1002/ptr.6400 31250491
    [Google Scholar]
  192. KongkadeeK. WisuitiprotW. IngkaninanK. WaranuchN. Anti-inflammation and gingival wound healing activities of Cannabis sativa L. subsp. sativa (hemp) extract and cannabidiol: An in vitro study.Arch. Oral Biol.202214010546410.1016/j.archoralbio.2022.105464 35623115
    [Google Scholar]
  193. HuangS. LiH. XuJ. ZhouH. SeeramN.P. MaH. GuQ. Chemical constituents of industrial hemp roots and their anti-inflammatory activities.J. Cannabis Res.202351110.1186/s42238‑022‑00168‑3 36642726
    [Google Scholar]
  194. ZaiachukM. SuryavanshiS.V. PryimakN. KovalchukI. KovalchukO. The anti-inflammatory effects of Cannabis sativa extracts on lps-induced cytokines release in human macrophages.Molecules20232813499110.3390/molecules28134991 37446655
    [Google Scholar]
  195. BarbalaceM.C. FreschiM. RinaldiI. MazzaraE. MaraldiT. MalagutiM. PrataC. MaggiF. PetrelliR. HreliaS. AngeloniC. Identification of anti-neuroinflammatory bioactive compounds in essential oils and aqueous distillation residues obtained from commercial varieties of Cannabis sativa L.Int. J. Mol. Sci.202324231660110.3390/ijms242316601 38068924
    [Google Scholar]
  196. de Oliveira CarvalhoH. GonçalvesD.E.S. PicançoK.R.T. de Lima Teixeira dos SantosA.V.T. LuciaM. HuX. FernandesC.P. FerreiraI.M. CarvalhoJ.C.T. Actions of Cannabis sativa L. fixed oil and nano-emulsion on venom-induced inflammation of bothrops moojeni snake in rats.Inflammopharmacology202129112313510.1007/s10787‑020‑00754‑y 32924074
    [Google Scholar]
  197. PerezE. FernandezJ.R. FitzgeraldC. RouzardK. TamuraM. SavileC. In Vitro and clinical evaluation of cannabigerol (CBG) produced via yeast biosynthesis: A cannabinoid with a broad range of anti-inflammatory and skin health-boosting properties.Molecules202227249110.3390/molecules27020491 35056807
    [Google Scholar]
  198. BunmanS. MuengtaweepongsaS. PiyayotaiD. CharlermrojR. KanjanaK. Kaew-AmdeeS. MakornwattanaM. KimS. Analgesic and anti-inflammatory effects of 1% topical cannabidiol gel in animal models.Cannabis Cannabinoid Res.202310.1089/can.2023.0070 37669453
    [Google Scholar]
  199. Robaina CabreraC.L. Keir-RudmanS. HornimanN. ClarksonN. PageC. The anti-inflammatory effects of cannabidiol and cannabigerol alone, and in combination.Pulm. Pharmacol. Ther.20216910204710.1016/j.pupt.2021.102047 34082108
    [Google Scholar]
  200. DennisD.G. AnandS.D. LopezA.J. PetrovčičJ. DasA. SarlahD. Synthesis of the cannabimovone and cannabifuran class of minor phytocannabinoids and their anti-inflammatory activity.J. Org. Chem.20228796075608610.1021/acs.joc.2c00336 35476908
    [Google Scholar]
  201. JanatováA. DoskočilI. BožikM. FraňkováA. TlustošP. KloučekP. The chemical composition of ethanolic extracts from six genotypes of medical cannabis (Cannabis sativa L.) and their selective cytotoxic activity.Chem. Biol. Interact.202235310980010.1016/j.cbi.2022.109800 34995571
    [Google Scholar]
  202. Fraguas-SánchezA.I. Fernández-CarballidoA. Simancas-HerbadaR. Martin-SabrosoC. Torres-SuárezA.I. CBD loaded microparticles as a potential formulation to improve paclitaxel and doxorubicin-based chemotherapy in breast cancer.Int. J. Pharm.202057411891610.1016/j.ijpharm.2019.118916 31811927
    [Google Scholar]
  203. García-MoralesL. CastilloA.M. Tapia RamírezJ. Zamudio-MezaH. Domínguez-RoblesM.C. MezaI. CBD reverts the mesenchymal invasive phenotype of breast cancer cells induced by the inflammatory cytokine IL-1β.Int. J. Mol. Sci.2020217242910.3390/ijms21072429 32244518
    [Google Scholar]
  204. BaramL. PeledE. BermanP. YellinB. BesserE. BenamiM. Louria-HayonI. LewitusG.M. MeiriD. The heterogeneity and complexity of Cannabis extracts as antitumor agents.Oncotarget201910414091410610.18632/oncotarget.26983 31289609
    [Google Scholar]
  205. KorkmazN. KısaD. CeylanY. GüçlüE. ŞenF. KaradağA. Synthesis of CeO2 nanoparticles from hemp leaf Extract: Evaluation of Antibacterial, anticancer and enzymatic activities.Inorg. Chem. Commun.202415911179710.1016/j.inoche.2023.111797
    [Google Scholar]
  206. LiD. IlnytskyyY. Ghasemi GojaniE. KovalchukO. KovalchukI. Analysis of anti-cancer and anti-inflammatory properties of 25 High-THC Cannabis extracts.Molecules20222718605710.3390/molecules27186057 36144796
    [Google Scholar]
  207. PeeriH. ShalevN. VinayakaA.C. NizarR. KazimirskyG. NamdarD. AnilS.M. BelausovE. BrodieC. KoltaiH. Specific compositions of Cannabis sativa compounds have cytotoxic activity and inhibit motility and colony formation of human glioblastoma cells in vitro.Cancers2021137172010.3390/cancers13071720 33916466
    [Google Scholar]
  208. EsfandiaryF. RajabzadehA. MojarradM. DelavarA. SoukhtanlooM. Cannabis sativa ethanolic extract demonstrated significant anti-tumor effects associated with elevated expression of AXIN1 protein in glioblastoma U87-MG cell line.Gene Rep.20233010171510.1016/j.genrep.2022.101715
    [Google Scholar]
  209. Ellert-MiklaszewskaA. CiechomskaI.A. KaminskaB. Synthetic cannabinoids induce autophagy and mitochondrial apoptotic pathways in human glioblastoma cells independently of deficiency in TP53 or PTEN tumor suppressors.Cancers202113341910.3390/cancers13030419 33499365
    [Google Scholar]
  210. AlharrisE. SinghN.P. NagarkattiP.S. NagarkattiM. Role of miRNA in the regulation of cannabidiol-mediated apoptosis in neuroblastoma cells.Oncotarget2019101455910.18632/oncotarget.26534 30713602
    [Google Scholar]
  211. OvidiE. Laghezza MasciV. TaddeiA.R. TorresiJ. TomassiW. IannoneM. TiezziA. MaggiF. GarzoliS. Hemp (Cannabis sativa L., kompolti cv.) and hop (Humulus lupulus L., chinook cv.) essential oil and hydrolate: HS-GC-MS chemical investigation and apoptotic activity evaluation.Pharmaceuticals202215897610.3390/ph15080976 36015124
    [Google Scholar]
  212. JeongS. YunH.K. JeongY.A. JoM.J. KangS.H. KimJ.L. KimD.Y. ParkS.H. KimB.R. NaY.J. LeeS.I. KimH.D. KimD.H. OhS.C. LeeD.H. Cannabidiol-induced apoptosis is mediated by activation of noxa in human colorectal cancer cells.Cancer Lett.2019447122310.1016/j.canlet.2019.01.011 30660647
    [Google Scholar]
  213. MangoatoI.M. MahadevappaC.P. MatsabisaM.G. Cannabis sativa L. Extracts can reverse drug resistance in colorectal carcinoma cells in vitro.Synergy2019910005610.1016/j.synres.2019.100056
    [Google Scholar]
  214. MunJ.G. JeonH.D. YoonD.H. LeeY.S. ParkS.Y. JinJ.S. ParkN.J. KeeJ.Y. Supercritical extract of Cannabis sativa inhibits lung metastasis in colorectal cancer cells by increasing AMPK and MAPKs-mediated apoptosis and cell cycle arrest.Nutrients20221421454810.3390/nu14214548 36364815
    [Google Scholar]
  215. SimmermanE. QinX. YuJ.C. BabanB. Cannabinoids as a potentially new and novel treatment for melanoma: A pilot study in a murine model.J. Surg. Res.201923521021510.1016/j.jss.2018.08.055 30691796
    [Google Scholar]
  216. NaderiJ. DanaN. JavanmardS. AmooheidariA. YahayM. VaseghiG. Effects of standardized Cannabis sativa extract and ionizing radiation in melanoma cells in vitro.J. Cancer Res. Ther.20201661495149910.4103/jcrt.JCRT_1394_16 33342819
    [Google Scholar]
  217. MukosiM. MotadiL.R. Cannabis sativa a potential anticancer treatment in melanoma cancer cells.Nat. Prod. Commun20231891934578X23117668010.1177/1934578X231176680
    [Google Scholar]
  218. LeelawatS. LeelawatK. WannakupT. SaingamW. KhamthongN. MadakaF. MahaA. PathompakP. SuereeL. SongsakT. Anticancer activity of Δ 9 -tetrahydrocannabinol and cannabinol in vitro and in human lung cancer xenograft.Asian Pac. J. Trop. Biomed.202212832333210.4103/2221‑1691.350180
    [Google Scholar]
  219. TodorovaJ. LazarovL.I. PetrovaM. TzintzarovA. UgrinovaI. The antitumor activity of cannabidiol on lung cancer cell lines A549 and H1299: The role of apoptosis.Biotechnol. Biotechnol. Equip.202135187387910.1080/13102818.2021.1915870
    [Google Scholar]
  220. HosamiF. ManayiA. SalimiV. KhodakhahF. NourbakhshM. NakstadB. Tavakoli-YarakiM. The pro-apoptosis effects of Echinacea purpurea and Cannabis sativa extracts in human lung cancer cells through caspase-dependent pathway.BMC Complementary Medicine and Therapies20212113710.1186/s12906‑021‑03204‑6 33446187
    [Google Scholar]
  221. TajikT. BaghaeiK. MoghadamV.E. FarrokhiN. SalamiS.A. Extracellular vesicles of cannabis with high CBD content induce anticancer signaling in human hepatocellular carcinoma.Biomed. Pharmacother.202215211320910.1016/j.biopha.2022.113209 35667235
    [Google Scholar]
  222. SharmaU.R. SharmaN. Green synthesis, anti-cancer and corrosion inhibition activity of Cr2O3 nanoparticles.Biointerface Res. Appl. Chem.20201118402841210.33263/BRIAC111.84028412
    [Google Scholar]
  223. AnisO. VinayakaA.C. ShalevN. NamdarD. NadarajanS. AnilS.M. CohenO. BelausovE. RamonJ. Mayzlish GatiE. KoltaiH. Cannabis-derived compounds cannabichromene and Δ9-tetrahydrocannabinol interact and exhibit cytotoxic activity against urothelial cell carcinoma correlated with inhibition of cell migration and cytoskeleton organization.Molecules202126246510.3390/molecules26020465 33477303
    [Google Scholar]
  224. LoubakiL. RouabhiaM. ZahraniM.A. AmriA.A. SemlaliA. Oxidative stress and autophagy mediate anti-cancer properties of Cannabis derivatives in human oral cancer cells.Cancers20221419492410.3390/cancers14194924 36230847
    [Google Scholar]
  225. BlalK. BesserE. ProcacciaS. SchwobO. LerenthalY. Abu TairJ. MeiriD. BennyO. The effect of Cannabis plant extracts on head and neck squamous cell carcinoma and the quest for cannabis-based personalized therapy.Cancers202315249710.3390/cancers15020497 36672446
    [Google Scholar]
  226. Olivas-AguirreM. Torres-LópezL. Valle-ReyesJ.S. Hernández-CruzA. PottosinI. DobrovinskayaO. Cannabidiol directly targets mitochondria and disturbs calcium homeostasis in acute lymphoblastic leukemia.Cell Death Dis.2019101077910.1038/s41419‑019‑2024‑0 31611561
    [Google Scholar]
  227. Ribeiro GrijóD. Lazarin BidoiaD. Vataru NakamuraC. Vieitez OsorioI. Cardozo-FilhoL. Analysis of the antitumor activity of bioactive compounds of Cannabis flowers extracted by green solvents.J. Supercrit. Fluids2019149202510.1016/j.supflu.2019.03.012
    [Google Scholar]
  228. RussoC. LavorgnaM. NugnesR. OrloE. IsidoriM. Comparative assessment of antimicrobial, antiradical and cytotoxic activities of cannabidiol and its propyl analogue cannabidivarin.Sci. Rep.20211112249410.1038/s41598‑021‑01975‑z 34795379
    [Google Scholar]
  229. CamargoF.D.G. Santamaria-TorresM. CalaM.P. Guevara-SuarezM. RestrepoS.R. Sánchez-CamargoA. Fernández-NiñoM. CorujoM. Gallo MolinaA.C. CifuentesJ. SernaJ.A. CruzJ.C. Muñoz-CamargoC. Gonzalez BarriosA.F. Genome-scale metabolic reconstruction, non-targeted lc-qtof-ms based metabolomics data, and evaluation of anticancer activity of Cannabis sativa leaf extracts.Metabolites202313778810.3390/metabo13070788 37512495
    [Google Scholar]
  230. VinciguerraV. Di MartileM. Del BufaloD. GarzoliS. Phytochemical characterization and cytotoxic potential of extracts from roots and inflorescences of Cannabis sativa L. cv.Eletta Campana. Sustain. Chem. Pharm.20233610126910.1016/j.scp.2023.101269
    [Google Scholar]
  231. ErukainureO.L. MatsabisaM.G. SalauV.F. OyedemiS.O. OyenihiO.R. IbejiC.U. IslamM.S. Cannabis sativa L. (var. indica) exhibits hepatoprotective effects by modulating hepatic lipid profile and mitigating gluconeogenesis and cholinergic dysfunction in oxidative hepatic injury.Front. Pharmacol.2021121270540210.3389/fphar.2021.705402 34992528
    [Google Scholar]
  232. NazS. AhmedW. RamadanM.F. Raman spectroscopy characterization and hepato-protective traits of bioactive phytochemicals in Cannabis sativa essential oil fractions.Chem. Pap.2023202311610.1007/s11696‑023‑03248‑7
    [Google Scholar]
  233. QushawyM. MortagiY. AlshamanR. MokhtarH.I. HishamF.A. AlattarA. LiangD. EnanE.T. EltrawyA.H. AlamraniZ.H. AlshmraniS.A. ZaitoneS.A. Formulation and characterization of O/W nanoemulsions of hemp seed oil for protection from steatohepatitis: Analysis of hepatic free fatty acids and oxidation markers.Pharmaceuticals202215786410.3390/ph15070864 35890162
    [Google Scholar]
  234. Guzmán-FloresJ.M. Pérez-VázquezV. Martínez-EsquiviasF. Isiordia-EspinozaM.A. Viveros-ParedesJ.M. Molecular docking integrated with network pharmacology explores the therapeutic mechanism of Cannabis sativa against type 2 diabetes.Curr. Issues Mol. Biol.20234597228724110.3390/cimb45090457 37754241
    [Google Scholar]
  235. NazS. KashifA.R. TawabA. RasoolM.Z. RaufA. HussainS. KhanU. Raman spectroscopy characterization and hepato-protective traits of bioactive phytochemicals in.Cannabis sativa essential oil fractions; Pap.Chem2023116
    [Google Scholar]
  236. HaddouS. ElrherabiA. LoukiliE.H. AbdnimR. HbikaA. BouhrimM. Al KamalyO. SalehA. ShahatA.A. BnouhamM. HammoutiB. ChahineA. Chemical analysis of the antihyperglycemic, and pancreatic α-amylase, lipase, and intestinal α-glucosidase inhibitory activities of Cannabis sativa L. seed extracts.Molecules20232919310.3390/molecules29010093 38202676
    [Google Scholar]
  237. KimY. KimW. KimS.H. SimK.S. KimK.H. ChoK.H. KwonG.S. LeeJ.B. KimJ.H. Protective effects of hemp (Cannabis sativa) root extracts against insulin-deficient diabetes mellitus in mice.Molecules2023289381410.3390/molecules28093814 37175224
    [Google Scholar]
  238. SuttithumsatidW. ShahM.A. BibiS. PanichayupakaranantP. α-Glucosidase inhibitory activity of cannabidiol, tetrahydrocannabinol and standardized cannabinoid extracts from Cannabis sativa.Curr. Res. Food Sci.202251091109710.1016/j.crfs.2022.07.002 35856057
    [Google Scholar]
  239. CaiL. WuS. JiaC. CuiC. Hydrolysates of hemp (Cannabis sativa L.) seed meal: Characterization and their inhibitory effect on α-glucosidase activity and glucose transport in Caco-2 cells.Ind. Crops Prod.202320511755910.1016/j.indcrop.2023.117559
    [Google Scholar]
  240. BorgonettiV. BiagiM. GaleottiN. ManettiF. GovernaP. Investigation on the neuroprotective effect of a cannabidiol-enriched non-psychotropic Cannabis sativa L. extract in an in vitro model of excitotoxicity.Fitoterapia202216310531510.1016/j.fitote.2022.105315 36179898
    [Google Scholar]
  241. di GiacomoV. ChiavaroliA. OrlandoG. CataldiA. RapinoM. Di ValerioV. LeoneS. BrunettiL. MenghiniL. RecinellaL. FerranteC. Neuroprotective and neuromodulatory effects induced by cannabidiol and cannabigerol in rat hypo-E22 cells and isolated hypothalamus.Antioxidants2020917110.3390/antiox9010071 31941059
    [Google Scholar]
  242. di GiacomoV. ChiavaroliA. RecinellaL. OrlandoG. CataldiA. RapinoM. Di ValerioV. RonciM. LeoneS. BrunettiL. MenghiniL. ZenginG. AkG. AbdallahH.H. FerranteC. Antioxidant and neuroprotective effects induced by cannabidiol and cannabigerol in rat CTX-TNA2 astrocytes and isolated cortexes.Int. J. Mol. Sci.20202110357510.3390/ijms21103575 32443623
    [Google Scholar]
  243. EcheverryC. PrunellG. NarbondoC. de MedinaV.S. NadalX. Reyes-ParadaM. ScorzaC. A Comparative In Vitro Study of the neuroprotective effect induced by cannabidiol, cannabigerol, and their respective acid forms: Relevance of the 5-HT1A receptors.Neurotox. Res.202139233534810.1007/s12640‑020‑00277‑y 32886342
    [Google Scholar]
  244. GiulianoC. FrancavillaM. OngariG. PeteseA. GhezziC. RossiniN. BlandiniF. CerriS. Neuroprotective and symptomatic effects of cannabidiol in an animal model of Parkinson’s disease.Int. J. Mol. Sci.20212216892010.3390/ijms22168920 34445626
    [Google Scholar]
  245. MuhammadF. LiuY. WangN. ZhaoL. ZhouY. YangH. LiH. Neuroprotective effects of cannabidiol on dopaminergic neurodegeneration and α-synuclein accumulation in C. elegans models of Parkinson’s disease.Neurotoxicology20229312813910.1016/j.neuro.2022.09.001 36108815
    [Google Scholar]
  246. EspadasI. KeifmanE. Palomo-GaroC. BurgazS. GarcíaC. Fernández-RuizJ. MoratallaR. Beneficial effects of the phytocannabinoid Δ9-THCV in L-DOPA-induced dyskinesia in Parkinson’s disease.Neurobiol. Dis.202014110489210.1016/j.nbd.2020.104892 32387338
    [Google Scholar]
  247. MookoT. BalaA. TripathyS. KumarC.S. MahadevappaC.P. ChaudharyS.K. MatsabisaM.G. Cannabis sativa L. flower and bud extracts inhibited in vitro cholinesterases and β-secretase enzymes activities: possible mechanisms of cannabis use in alzheimer disease.Endocr. Metab. Immune Disord. Drug Targets202222329730910.2174/1871530321666210222124349 33618651
    [Google Scholar]
  248. VaninA.P. TamagnoW.A. AlvesC. MesacasaL. SantinL.F. SutorilloN.T. BilibioD. MüllerC. GalonL. KaizerR.R. Neuroprotective potential of Cannabis sativa-based oils in Caenorhabditis elegans.Sci. Rep.20221211537610.1038/s41598‑022‑19598‑3 36100636
    [Google Scholar]
  249. KabdyH. BaslamA. BabaA.A. LaaradiaM.A. AboufatimaR. BelbachirA. ChaitA. Anxiolytic and antidepressant effects of the essential oil of Moroccan Cannabis sativa in mice exposed to unpredictable chronic mild stress: Behavioral and biochemical evidences.S. Afr. J. Bot.2024165707810.1016/j.sajb.2023.12.012
    [Google Scholar]
  250. AhnY. HanS.H. KimM.G. HongK.B. KimW.J. SuhH.J. JoK. Anti-depressant effects of ethanol extract from Cannabis sativa (hemp) seed in chlorpromazine-induced Drosophila melanogaster depression model.Pharm. Biol.2021591996100510.1080/13880209.2021.1949356 34362287
    [Google Scholar]
  251. AbameM.A. HeY. WuS. XieZ. ZhangJ. GongX. WuC. ShenJ. Chronic administration of synthetic cannabidiol induces antidepressant effects involving modulation of serotonin and noradrenaline levels in the hippocampus.Neurosci. Lett.202174474413559410.1016/j.neulet.2020.135594 33388355
    [Google Scholar]
  252. SalesA.J. FogaçaM.V. SartimA.G. PereiraV.S. WegenerG. GuimarãesF.S. JocaS.R.L. Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex.Mol. Neurobiol.20195621070108110.1007/s12035‑018‑1143‑4 29869197
    [Google Scholar]
  253. Florensa-ZanuyE. Garro-MartínezE. AdellA. CastroE. DíazÁ. PazosÁ. Mac-DowellK.S. Martín-HernándezD. Pilar-CuéllarF. Cannabidiol antidepressant-like effect in the lipopolysaccharide model in mice: Modulation of inflammatory pathways.Biochem. Pharmacol.202118511443310.1016/j.bcp.2021.114433 33513342
    [Google Scholar]
  254. GállZ. FarkasS. AlbertÁ. FerenczE. VanceaS. UrkonM. KolcsárM. Effects of chronic cannabidiol treatment in the rat chronic unpredictable mild stress model of depression.Biomolecules202010580110.3390/biom10050801 32455953
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073319590240801112332
Loading
/content/journals/cchts/10.2174/0113862073319590240801112332
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test