Skip to content
2000
image of Exploring Potential Bifunctional Peptides with Anti-tyrosinase and Antioxidant Activities from Porphyra Protolysate Using in Silico Analysis

Abstract

Background

Extracts from have been detected to have antioxidant activity and tyrosinase (TYR) inhibitory activity. However, bioactive peptides (BPs) released from proteins (PPs) have not been comprehensively reported.

Objective

The aim of this study is to rapidly identify bifunctional peptides with antioxidant and TYR inhibitory activities from a large number of digested peptides from PPs.

Methods

In this study, a total of 3,288 proteins from six main species of were collected, and the antioxidant potential (AP) was evaluated. Hydrolyzed peptides with 2–8 amino acid lengths were collected and known antioxidants were removed. Next, these peptides were further screened using ADMET analysis. Finally, the DPPH· scavenging potential (IC) and TYR inhibition potential (TIP) of these peptides were further predicted by QSAR models and molecular docking based pharmacophore models, respectively.

Results

The most released antioxidant peptides after digestion of all types of PPs were dipeptides with sequences EL, IR and AY. In addition, 44,689 short non-repeatable peptides were swirled in these hydrolysates, which have not yet been reported to have antioxidant activity. Next, 337 of these digested peptides were predicted to be absorbed without hepato-renal toxicity and had virtual metabolic scores > 0.01%. Finally, 138 peptides were predicted to have AP and TIP.

Conclusion

is a kind of promising source rich in bifunctional peptides. Present study adopted an innovative method with some free scripts to rapid discovery of bifunctional peptides from a large number of unknown PPs.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073341023250113053959
2025-04-29
2025-09-14
Loading full text...

Full text loading...

References

  1. Punampalam R. Khoo K.S. Evaluation of antioxidant properties of phycobiliproteins and phenolic compounds extracted from Bangia atropurpurea. Mal. J. Fund. Appl. Sci. 2018 14 2 289 10.11113/mjfas.v14n2.1096
    [Google Scholar]
  2. Huang C.H. Chen W.C. Gao Y-H. Chen G-W. Lin H-T.V. Pan C-L. Enzyme-assisted method for phycobiliproteins extraction from Porphyra and evaluation of their bioactivity. Processes 2021 9 3 560 10.3390/pr9030560
    [Google Scholar]
  3. Feng Y. Lu H. Hu J. Zheng B. Zhang Y. Anti-aging effects of R-Phycocyanin from Porphyra haitanensis on HUVEC cells and Drosophila melanogaster. Mar. Drugs 2022 20 8 468 10.3390/md20080468 35892936
    [Google Scholar]
  4. Wang X. Wang P. Zhang Z. Farré J.C. Li X. Wang R. Xia Z. Subramani S. Ma C. The autophagic degradation of cytosolic pools of peroxisomal proteins by a new selective pathway. Autophagy 2020 16 1 154 166 10.1080/15548627.2019.1603546 31007124
    [Google Scholar]
  5. Feng Y-x. Wang Z-c. Separation, identification, and molecular docking of tyrosinase inhibitory peptides from the hydrolysates of defatted walnut (Juglans regia L.) meal. Food Chem 2021 353 129471 10.1016/j.foodchem.2021.129471.
    [Google Scholar]
  6. Venkatraman K.L. Mehta A. Health benefits and pharmacological effects of Porphyra species. Plant Foods Hum. Nutr. 2019 74 1 10 17 10.1007/s11130‑018‑0707‑9 30543042
    [Google Scholar]
  7. Yabuta Y. Fujimura H. Kwak C.S. Enomoto T. Watanabe F. Antioxidant activity of the phycoerythrobilin compound formed from a dried korean purple laver (Porphyra sp.) during in Vitro Digestion. Food Sci. Technol. Res. 2010 16 4 347 352 10.3136/fstr.16.347
    [Google Scholar]
  8. Senevirathne M. Ahn C.B. Je J-Y. Enzymatic extracts from edible red algae, Porphyra tenera, and their antioxidant, anti-acetylcholinesterase, and anti-inflammatory activities. Food Sci. Biotechnol. 2010 19 6 1551 1557 10.1007/s10068‑010‑0220‑x
    [Google Scholar]
  9. Tamura Y. Takenaka S. Sugiyama S. Nakayama R. Occurrence of anserine as an antioxidative dipeptide in a Red Alga, Porphyra yezoensis. Biosci. Biotechnol. Biochem. 1998 62 3 561 563 10.1271/bbb.62.561 27315933
    [Google Scholar]
  10. Zhang X. Zhuang H. Wu S. Mao C. Dai Y. Yan H. Marine bioactive peptides: Anti-photoaging mechanisms and potential skin protective effects. Curr. Issues Mol. Biol. 2024 46 2 990 1009 10.3390/cimb46020063 38392181
    [Google Scholar]
  11. Ishihara K. Watanabe R. Uchida H. Suzuki T. Yamashita M. Takenaka H. Nazifi E. Matsugo S. Yamaba M. Novel glycosylated mycosporine-like amino acid, 13-O-(β-galactosyl)-porphyra-334, from the edible cyanobacterium Nostoc sphaericum-protective activity on human keratinocytes from UV light. J Photochem Photobiol B. 2017 172 102 108
    [Google Scholar]
  12. Lee C. Jang J.H. Ahn E-M. Park C-I. Inhibitory effects of marine natural products on melanogenesis in B16 melanoma cells. Kor. J. Herbology 2012 27 4 73 80 10.6116/kjh.2012.27.4.73
    [Google Scholar]
  13. Iwaniak A. Darewicz M. Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. J Funct Foods 2019 61 103486 10.1016/j.jff.2019.103486
    [Google Scholar]
  14. Agyei D. Tsopmo A. Udenigwe C.C. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal. Bioanal. Chem. 2018 410 15 3463 3472 10.1007/s00216‑018‑0974‑1 29516135
    [Google Scholar]
  15. Iwaniak A. Minkiewicz P. BIOPEP-UWM database-present and future. Curr. Opin. Food Sci. 2024 55 101108 10.1016/j.cofs.2023.101108.
    [Google Scholar]
  16. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  17. Perkins R. Fang H. Tong W. Welsh W.J. Quantitative structure‐activity relationship methods: Perspectives on drug discovery and toxicology. Environ. Toxicol. Chem. 2003 22 8 1666 1679 10.1897/01‑171 12924569
    [Google Scholar]
  18. Prasanna S. Doerksen R. Topological polar surface area: A useful descriptor in 2D-QSAR. Curr. Med. Chem. 2009 16 1 21 41 10.2174/092986709787002817 19149561
    [Google Scholar]
  19. Mitchell J.B.O. Machine learning methods in chemoinformatics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014 4 5 468 481 10.1002/wcms.1183 25285160
    [Google Scholar]
  20. Wieder M. Garon A. Perricone U. Boresch S. Seidel T. Almerico A.M. Langer T. Common hits approach: Combining pharmacophore modeling and molecular dynamics simulations. J. Chem. Inf. Model. 2017 57 2 365 385 10.1021/acs.jcim.6b00674 28072524
    [Google Scholar]
  21. Polishchuk P. Kutlushina A. Bashirova D. Mokshyna O. Madzhidov T. Virtual screening using pharmacophore models retrieved from molecular dynamic simulations. Int. J. Mol. Sci. 2019 20 23 5834 10.3390/ijms20235834 31757043
    [Google Scholar]
  22. Cai B. Wan P. Chen H. Huang J. Ye Z. Chen D. Pan J. Purification and identification of novel myeloperoxidase inhibitory antioxidant peptides from Tuna (Thunnas albacares) protein hydrolysates. Molecules 2022 27 9 2681 10.3390/molecules27092681 35566036
    [Google Scholar]
  23. Wei G. Zhao Q. Novel ACE inhibitory, antioxidant and α-glucosidase inhibitory peptides identified from fermented rubing cheese through peptidomic and molecular docking. LWT 2022 159 113196 10.1016/j.lwt.2022.113196
    [Google Scholar]
  24. Yang H. Lou C. Sun L. Li J. Cai Y. Wang Z. Li W. Liu G. Tang Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019 35 6 1067 1069 10.1093/bioinformatics/bty707 30165565
    [Google Scholar]
  25. Fu L. Shi S. Yi J. Wang N. He Y. Wu Z. Peng J. Deng Y. Wang W. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024 52 W422 W431 10.1093/nar/gkae236
    [Google Scholar]
  26. Yousofshahi M. Manteiga S. Wu C. Lee K. Hassoun S. PROXIMAL: A method for prediction of xenobiotic metabolism. BMC Syst. Biol. 2015 9 1 94 10.1186/s12918‑015‑0241‑4 26695483
    [Google Scholar]
  27. Kim S. Cho K-H. PyQSAR: A Fast QSAR modeling platform using machine learning and Jupyter Notebook. Bull. Korean Chem. Soc. 2018 40 39 44 10.1002/bkcs.11638
    [Google Scholar]
  28. Mohammed N.N. Gene classification based on multi-class SVMs with systematic sampling and hierarchical clustering (SSHC) algorithm. Genedis 2020: Computational Biology and Bioinformaticspp. Vlamos P. Springer 2021 231 237 10.1007/978‑3‑030‑78775‑2_28
    [Google Scholar]
  29. Lee J. Jang H. Ha S. Yoon Y. Android malware detection using machine learning with feature selection based on the genetic algorithm. Mathematics 2021 9 21 2813 10.3390/math9212813
    [Google Scholar]
  30. Shen Z. Wang Y. Guo Z. Tan T. Zhang Y. Novel tyrosinase inhibitory peptide with free radical scavenging ability. J. Enzyme Inhib. Med. Chem. 2019 34 1 1633 1640 10.1080/14756366.2019.1661401 31496313
    [Google Scholar]
  31. Mysinger M.M. Carchia M. Irwin J.J. Shoichet B.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem. 2012 55 14 6582 6594 10.1021/jm300687e 22716043
    [Google Scholar]
  32. Rana R.M. Rampogu S. Abid N.B. Zeb A. Parate S. Lee G. Yoon S. Kim Y. Kim D. Lee K.W. In silico study identified methotrexate analog as potential inhibitor of drug resistant human dihydrofolate reductase for cancer therapeutics. Molecules 2020 25 15 3510 10.3390/molecules25153510 32752079
    [Google Scholar]
  33. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Intern. Med. 2013 4 2 627 635 24009950
    [Google Scholar]
  34. Mohammed H.O. O’Grady M.N. O’Sullivan M.G. Hamill R.M. Kilcawley K.N. Kerry J.P. An assessment of selected nutritional, bioactive, thermal and technological properties of brown and red irish seaweed species. Foods 2021 10 11 2784 10.3390/foods10112784 34829067
    [Google Scholar]
  35. Szerszunowicz I. Kłobukowski J. Characteristics of potential protein nutraceuticals of plant origin with antioxidant activity. Molecules 2020 25 7 1621 10.3390/molecules25071621 32244766
    [Google Scholar]
  36. Suetsuna K. Ukeda H. Ochi H. Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 2000 11 3 128 131 10.1016/S0955‑2863(99)00083‑2 10742656
    [Google Scholar]
  37. Chi C.F. Wang B. Hu F-Y. Wang Y-M. Zhang B. Deng S-G. Wu C-W. Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) skin. Food Res. Int. 2015 73 124 129 10.1016/j.foodres.2014.08.038
    [Google Scholar]
  38. Astorga-España M.S. Rodríguez-Galdón B. Rodríguez-Rodríguez E.M. Díaz-Romero C. Amino acid content in seaweeds from the Magellan Straits (Chile). J. Food Compos. Anal. 2016 53 77 84 10.1016/j.jfca.2016.09.004
    [Google Scholar]
  39. De Bhowmick G. Hayes M. In vitro protein digestibility of selected seaweeds. Foods 2022 11 3 289 10.3390/foods11030289 35159443
    [Google Scholar]
  40. Wahlström N. Harrysson H. Undeland I. Edlund U. A strategy for the sequential recovery of biomacromolecules from Red Macroalgae Porphyra umbilicalis Kützing. Ind. Eng. Chem. Res. 2018 57 1 42 53 10.1021/acs.iecr.7b03768
    [Google Scholar]
  41. Tyagi A. Chelliah R. Banan-Mwine Daliri E. Sultan G. Madar I.H. Kim N. Shabbir U. Oh D.H. Antioxidant activities of novel peptides from Limosilactobacillus reuteri fermented brown rice: A combined in vitro and in silico. study. Food Chem 2023 404 134747 10.1016/j.foodchem.2022.134747
    [Google Scholar]
  42. Bonferoni M.C. Rassu G. Gavini E. Sorrenti M. Catenacci L. Giunchedi P. Nose-to-brain delivery of antioxidants as a potential tool for the therapy of neurological diseases. Pharmaceutics 2020 12 12 1246 10.3390/pharmaceutics12121246 33371285
    [Google Scholar]
  43. Varpe BD Jadhav S ?3D-QSAR and Pharmacophore modeling of 3,5-disubstituted indole derivatives as Pim kinase inhibitors. Struct. Chem. 2020 31 5 1 16 10.1007/s11224‑020‑01503‑1
    [Google Scholar]
  44. Parikh R. Mathai A. Parikh S. Chandra Sekhar G. Thomas R. Understanding and using sensitivity, specificity and predictive values. Indian J. Ophthalmol. 2008 56 1 45 50 10.4103/0301‑4738.37595 18158403
    [Google Scholar]
  45. Koes D.R. Pharmacophore modeling: Methods and applications. Computer-Aided Drug Discovery Zhang W. Springer New York 2016 167 188
    [Google Scholar]
  46. Sanders M.P.A. Barbosa A.J.M. Zarzycka B. Nicolaes G.A.F. Klomp J.P.G. de Vlieg J. Del Rio A. Comparative analysis of pharmacophore screening tools. J. Chem. Inf. Model. 2012 52 6 1607 1620 10.1021/ci2005274 22646988
    [Google Scholar]
  47. Kaabi I. Amamra S. Unveiling the dual role of a novel azomethine: Corrosion inhibition and antioxidant potency: A multifaceted study integrating experimental and theoretical approaches. J. Taiwan Inst. Chem. Eng. 2024 161 105535 10.1016/j.jtice.2024.105535
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073341023250113053959
Loading
/content/journals/cchts/10.2174/0113862073341023250113053959
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: QSAR ; bioactive peptides ; in silico ; Porphyra proteins ; AMDET ; bioinformatics ; pharmacophore
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test