Skip to content
2000
Volume 28, Issue 18
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Extracts from have been detected to have antioxidant activity and tyrosinase (TYR) inhibitory activity. However, bioactive peptides (BPs) released from proteins (PPs) have not been comprehensively reported.

Objective

The aim of this study is to rapidly identify bifunctional peptides with antioxidant and TYR inhibitory activities from a large number of digested peptides from PPs.

Methods

In this study, a total of 3,288 proteins from six main species of were collected, and the antioxidant potential (AP) was evaluated. Hydrolyzed peptides with 2–8 amino acid lengths were collected and known antioxidants were removed. Next, these peptides were further screened using ADMET analysis. Finally, the DPPH· scavenging potential (IC) and TYR inhibition potential (TIP) of these peptides were further predicted by QSAR models and molecular docking based pharmacophore models, respectively.

Results

The most released antioxidant peptides after digestion of all types of PPs were dipeptides with sequences EL, IR and AY. In addition, 44,689 short non-repeatable peptides were swirled in these hydrolysates, which have not yet been reported to have antioxidant activity. Next, 337 of these digested peptides were predicted to be absorbed without hepato-renal toxicity and had virtual metabolic scores > 0.01%. Finally, 138 peptides were predicted to have AP and TIP.

Conclusion

is a kind of promising source rich in bifunctional peptides. Present study adopted an innovative method with some free scripts to rapid discovery of bifunctional peptides from a large number of unknown PPs.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073341023250113053959
2025-04-29
2025-12-25
Loading full text...

Full text loading...

References

  1. PunampalamR. KhooK.S. Evaluation of antioxidant properties of phycobiliproteins and phenolic compounds extracted from Bangia atropurpurea.Mal. J. Fund. Appl. Sci.201814228910.11113/mjfas.v14n2.1096
    [Google Scholar]
  2. HuangC.H. ChenW.C. GaoY-H. ChenG-W. LinH-T.V. PanC-L. Enzyme-assisted method for phycobiliproteins extraction from Porphyra and evaluation of their bioactivity.Processes20219356010.3390/pr9030560
    [Google Scholar]
  3. FengY. LuH. HuJ. ZhengB. ZhangY. Anti-aging effects of R-Phycocyanin from Porphyra haitanensis on HUVEC cells and Drosophila melanogaster.Mar. Drugs202220846810.3390/md20080468 35892936
    [Google Scholar]
  4. WangX. WangP. ZhangZ. FarréJ.C. LiX. WangR. XiaZ. SubramaniS. MaC. The autophagic degradation of cytosolic pools of peroxisomal proteins by a new selective pathway.Autophagy202016115416610.1080/15548627.2019.1603546 31007124
    [Google Scholar]
  5. FengY-x. WangZ-c. Separation, identification, and molecular docking of tyrosinase inhibitory peptides from the hydrolysates of defatted walnut (Juglans regia L.) meal.Food Chem202035312947110.1016/j.foodchem.2021.129471.
    [Google Scholar]
  6. VenkatramanK.L. MehtaA. Health benefits and pharmacological effects of Porphyra species.Plant Foods Hum. Nutr.2019741101710.1007/s11130‑018‑0707‑9 30543042
    [Google Scholar]
  7. YabutaY. FujimuraH. KwakC.S. EnomotoT. WatanabeF. Antioxidant activity of the phycoerythrobilin compound formed from a dried korean purple laver (Porphyra sp.) during in Vitro Digestion.Food Sci. Technol. Res.201016434735210.3136/fstr.16.347
    [Google Scholar]
  8. SenevirathneM. AhnC.B. JeJ-Y. Enzymatic extracts from edible red algae, Porphyra tenera, and their antioxidant, anti-acetylcholinesterase, and anti-inflammatory activities.Food Sci. Biotechnol.20101961551155710.1007/s10068‑010‑0220‑x
    [Google Scholar]
  9. TamuraY. TakenakaS. SugiyamaS. NakayamaR. Occurrence of anserine as an antioxidative dipeptide in a Red Alga, Porphyra yezoensis.Biosci. Biotechnol. Biochem.199862356156310.1271/bbb.62.561 27315933
    [Google Scholar]
  10. ZhangX. ZhuangH. WuS. MaoC. DaiY. YanH. Marine bioactive peptides: Anti-photoaging mechanisms and potential skin protective effects.Curr. Issues Mol. Biol.2024462990100910.3390/cimb46020063 38392181
    [Google Scholar]
  11. IshiharaK. WatanabeR. UchidaH. SuzukiT. YamashitaM. TakenakaH. NazifiE. MatsugoS. YamabaM. Novel glycosylated mycosporine-like amino acid, 13-O-(β-galactosyl)-porphyra-334, from the edible cyanobacterium Nostoc sphaericum-protective activity on human keratinocytes from UV light.J. Photochem. Photobiol. B2017172102108
    [Google Scholar]
  12. LeeC. JangJ.H. AhnE-M. ParkC-I. Inhibitory effects of marine natural products on melanogenesis in B16 melanoma cells.Kor. J. Herbology2012274738010.6116/kjh.2012.27.4.73
    [Google Scholar]
  13. IwaniakA. DarewiczM. Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods.J. Funct. Foods20196110348610.1016/j.jff.2019.103486
    [Google Scholar]
  14. AgyeiD. TsopmoA. UdenigweC.C. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides.Anal. Bioanal. Chem.2018410153463347210.1007/s00216‑018‑0974‑1 29516135
    [Google Scholar]
  15. IwaniakA. MinkiewiczP. BIOPEP-UWM database-present and future.Curr. Opin. Food Sci.20245510110810.1016/j.cofs.2023.101108
    [Google Scholar]
  16. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  17. PerkinsR. FangH. TongW. WelshW.J. Quantitative structure‐activity relationship methods: Perspectives on drug discovery and toxicology.Environ. Toxicol. Chem.20032281666167910.1897/01‑171 12924569
    [Google Scholar]
  18. PrasannaS. DoerksenR. Topological polar surface area: A useful descriptor in 2D-QSAR.Curr. Med. Chem.2009161214110.2174/092986709787002817 19149561
    [Google Scholar]
  19. MitchellJ.B.O. Machine learning methods in chemoinformatics.Wiley Interdiscip. Rev. Comput. Mol. Sci.20144546848110.1002/wcms.1183 25285160
    [Google Scholar]
  20. WiederM. GaronA. PerriconeU. BoreschS. SeidelT. AlmericoA.M. LangerT. Common hits approach: Combining pharmacophore modeling and molecular dynamics simulations.J. Chem. Inf. Model.201757236538510.1021/acs.jcim.6b00674 28072524
    [Google Scholar]
  21. PolishchukP. KutlushinaA. BashirovaD. MokshynaO. MadzhidovT. Virtual screening using pharmacophore models retrieved from molecular dynamic simulations.Int. J. Mol. Sci.20192023583410.3390/ijms20235834 31757043
    [Google Scholar]
  22. CaiB. WanP. ChenH. HuangJ. YeZ. ChenD. PanJ. Purification and identification of novel myeloperoxidase inhibitory antioxidant peptides from Tuna (Thunnas albacares) protein hydrolysates.Molecules2022279268110.3390/molecules27092681 35566036
    [Google Scholar]
  23. WeiG. ZhaoQ. Novel ACE inhibitory, antioxidant and α-glucosidase inhibitory peptides identified from fermented rubing cheese through peptidomic and molecular docking.LWT202215911319610.1016/j.lwt.2022.113196
    [Google Scholar]
  24. YangH. LouC. SunL. LiJ. CaiY. WangZ. LiW. LiuG. TangY. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties.Bioinformatics20193561067106910.1093/bioinformatics/bty707 30165565
    [Google Scholar]
  25. FuL. ShiS. YiJ. WangN. HeY. WuZ. PengJ. DengY. WangW. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support.Nucleic Acids Res.202452W422W43110.1093/nar/gkae236
    [Google Scholar]
  26. YousofshahiM. ManteigaS. WuC. LeeK. HassounS. PROXIMAL: A method for prediction of xenobiotic metabolism.BMC Syst. Biol.2015919410.1186/s12918‑015‑0241‑4 26695483
    [Google Scholar]
  27. KimS. ChoK-H. PyQSAR: A Fast QSAR modeling platform using machine learning and Jupyter Notebook.Bull. Korean Chem. Soc.201840394410.1002/bkcs.11638
    [Google Scholar]
  28. MohammedN.N. Gene classification based on multi-class SVMs with systematic sampling and hierarchical clustering (SSHC) algorithm.Genedis 2020: Computational Biology and Bioinformaticspp. VlamosP. Springer202123123710.1007/978‑3‑030‑78775‑2_28
    [Google Scholar]
  29. LeeJ. JangH. HaS. YoonY. Android malware detection using machine learning with feature selection based on the genetic algorithm.Mathematics2021921281310.3390/math9212813
    [Google Scholar]
  30. ShenZ. WangY. GuoZ. TanT. ZhangY. Novel tyrosinase inhibitory peptide with free radical scavenging ability.J. Enzyme Inhib. Med. Chem.20193411633164010.1080/14756366.2019.1661401 31496313
    [Google Scholar]
  31. MysingerM.M. CarchiaM. IrwinJ.J. ShoichetB.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking.J. Med. Chem.201255146582659410.1021/jm300687e 22716043
    [Google Scholar]
  32. RanaR.M. RampoguS. AbidN.B. ZebA. ParateS. LeeG. YoonS. KimY. KimD. LeeK.W. In silico study identified methotrexate analog as potential inhibitor of drug resistant human dihydrofolate reductase for cancer therapeutics.Molecules20202515351010.3390/molecules25153510 32752079
    [Google Scholar]
  33. Hajian-TilakiK. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation.Caspian J. Intern. Med.201342627635 24009950
    [Google Scholar]
  34. MohammedH.O. O’GradyM.N. O’SullivanM.G. HamillR.M. KilcawleyK.N. KerryJ.P. An assessment of selected nutritional, bioactive, thermal and technological properties of brown and red irish seaweed species.Foods20211011278410.3390/foods10112784 34829067
    [Google Scholar]
  35. SzerszunowiczI. KłobukowskiJ. Characteristics of potential protein nutraceuticals of plant origin with antioxidant activity.Molecules2020257162110.3390/molecules25071621 32244766
    [Google Scholar]
  36. SuetsunaK. UkedaH. OchiH. Isolation and characterization of free radical scavenging activities peptides derived from casein.J. Nutr. Biochem.200011312813110.1016/S0955‑2863(99)00083‑2 10742656
    [Google Scholar]
  37. ChiC.F. WangB. HuF-Y. WangY-M. ZhangB. DengS-G. WuC-W. Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) skin.Food Res. Int.20157312412910.1016/j.foodres.2014.08.038
    [Google Scholar]
  38. Astorga-EspañaM.S. Rodríguez-GaldónB. Rodríguez-RodríguezE.M. Díaz-RomeroC. Amino acid content in seaweeds from the Magellan Straits (Chile).J. Food Compos. Anal.201653778410.1016/j.jfca.2016.09.004
    [Google Scholar]
  39. De BhowmickG. HayesM. In vitro protein digestibility of selected seaweeds.Foods202211328910.3390/foods11030289 35159443
    [Google Scholar]
  40. WahlströmN. HarryssonH. UndelandI. EdlundU. A strategy for the sequential recovery of biomacromolecules from Red Macroalgae Porphyra umbilicalis Kützing.Ind. Eng. Chem. Res.2018571425310.1021/acs.iecr.7b03768
    [Google Scholar]
  41. TyagiA. ChelliahR. Banan-Mwine DaliriE. SultanG. MadarI.H. KimN. ShabbirU. OhD.H. Antioxidant activities of novel peptides from Limosilactobacillus reuteri fermented brown rice: A combined in vitro and in silico. study.Food Chem.202340413474710.1016/j.foodchem.2022.134747
    [Google Scholar]
  42. BonferoniM.C. RassuG. GaviniE. SorrentiM. CatenacciL. GiunchediP. Nose-to-brain delivery of antioxidants as a potential tool for the therapy of neurological diseases.Pharmaceutics20201212124610.3390/pharmaceutics12121246 33371285
    [Google Scholar]
  43. VarpeB.D. JadhavS. 3D-QSAR and Pharmacophore modeling of 3,5-disubstituted indole derivatives as Pim kinase inhibitors.Struct. Chem.202031511610.1007/s11224‑020‑01503‑1
    [Google Scholar]
  44. ParikhR. MathaiA. ParikhS. Chandra SekharG. ThomasR. Understanding and using sensitivity, specificity and predictive values.Indian J. Ophthalmol.2008561455010.4103/0301‑4738.37595 18158403
    [Google Scholar]
  45. KoesD.R. Pharmacophore modeling: Methods and applications.In: Computer-Aided Drug Discovery. ZhangW. New YorkSpringer2016167188
    [Google Scholar]
  46. SandersM.P.A. BarbosaA.J.M. ZarzyckaB. NicolaesG.A.F. KlompJ.P.G. de VliegJ. Del RioA. Comparative analysis of pharmacophore screening tools.J. Chem. Inf. Model.20125261607162010.1021/ci2005274 22646988
    [Google Scholar]
  47. KaabiI. AmamraS. Unveiling the dual role of a novel azomethine: Corrosion inhibition and antioxidant potency: A multifaceted study integrating experimental and theoretical approaches.J. Taiwan Inst. Chem. Eng.202416110553510.1016/j.jtice.2024.105535
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073341023250113053959
Loading
/content/journals/cchts/10.2174/0113862073341023250113053959
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AMDET; bioactive peptides; bioinformatics; in silico; pharmacophore; Porphyra proteins; QSAR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test