Skip to content
2000
Volume 28, Issue 16
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Purpose

This study aimed to initially clarify the potential mechanism of quercetin in the treatment of non-small cell lung cancer (NSCLC) based on network pharmacology, molecular docking and experiments.

Method

TCMSP, SwissTargetPrediction, TCMIP, STITCH, and ETCM databases were applied to obtain the targets of quercetin. NSCLC-related targets were retrieved from GeneCards, OMIM, PharmGKB, TTD, and NCBI databases. Their intersection targets were imported into the STRING database to construct a protein-protein interaction (PPI) network and core targets were identified through the Cytoscape 3.10.0 soft and the CytoHubba tool. Furthermore, Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on the intersection targets. A compound-targets-pathways network was subsequently constructed to screen for key targets and pathways. Molecular docking was performed with Discovery Studio software to verify the interactions between quercetin and core targets. validations were conducted employing CCK-8 assays, flow cytometry, and Western blotting (WB).

Results

193 potential targets of quercetin for treating NSCLC were obtained. The top ten core targets identified within the PPI network included TP53, HSP90AA1, AKT1, JUN, SRC, EGFR, ACTB, TNF, MAPK1, and VEGFA. GO analysis yielded 2319 items, and KEGG analysis resulted in 211 enriched pathways. Molecular docking results demonstrated a high affinity of quercetin towards the core targets. Based on the compound-targets-pathways network and molecular docking, the PI3K/AKT/P53 pathway and its key-related proteins (PIK3R1, AKT1, and TP53) were selected for further validation. Quercetin(20 and 40 μg/mL) significantly decreased the viability of A549 NSCLC cells but not BEAS-2B normal cells CCK-8 assays. Flow cytometry and WB analyses further corroborated that quercetin could promote apoptosis of A549 cells by downregulating and upregulating the expression of Bcl-2 and Bax (<0.05), respectively. Notably, quercetin did not significantly alter the total protein levels of PI3K, AKT, and P53 but downregulated the phosphorylation levels of PI3K and AKT (<0.05) and upregulated the phosphorylation level of P53 (<0.05).

Conclusion

Quercetin exhibits therapeutic potential in NSCLC by regulating the PI3K/AKT/P53 pathway to promote cell apoptosis.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073332751241008072644
2024-10-21
2025-12-30
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  2. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  3. LeiterA. VeluswamyR.R. WisniveskyJ.P. The global burden of lung cancer: Current status and future trends.Nat. Rev. Clin. Oncol.202320962463910.1038/s41571‑023‑00798‑3 37479810
    [Google Scholar]
  4. CaoW. ChenH.D. YuY.W. LiN. ChenW.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020.Chin. Med. J. (Engl.)2021134778379110.1097/CM9.0000000000001474 33734139
    [Google Scholar]
  5. BajboujK. Al-AliA. RamakrishnanR.K. Saber-AyadM. HamidQ. histone modification in NSCLC: molecular mechanisms and therapeutic targets.Int. J. Mol. Sci.202122211170110.3390/ijms222111701 34769131
    [Google Scholar]
  6. ZhouF. YuanZ. Gong, Y Pharmacological targeting of MTHFD2 suppresses NSCLC via the regulation of ILK signaling pathway.Biomed. Pharmacother.2023161114412
    [Google Scholar]
  7. AraghiM. MannaniR. Heidarnejad maleki, A.; Hamidi, A.; Rostami, S.; Safa, S.H.; Faramarzi, F.; Khorasani, S.; Alimohammadi, M.; Tahmasebi, S.; Akhavan-Sigari, R. Recent advances in non-small cell lung cancer targeted therapy; an update review.Cancer Cell Int.202323116210.1186/s12935‑023‑02990‑y 37568193
    [Google Scholar]
  8. AlexanderM. KimS.Y. ChengH. Update 2020: Management of Non-Small Cell Lung Cancer.Lung2020198689790710.1007/s00408‑020‑00407‑5 33175991
    [Google Scholar]
  9. OsmaniL. AskinF. GabrielsonE. LiQ.K. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy.Semin. Cancer Biol.201852Pt 110310910.1016/j.semcancer.2017.11.019 29183778
    [Google Scholar]
  10. WangM. HerbstR.S. BoshoffC. Toward personalized treatment approaches for non-small-cell lung cancer.Nat. Med.20212781345135610.1038/s41591‑021‑01450‑2 34385702
    [Google Scholar]
  11. XieS. WuZ. QiY. The metastasizing mechanisms of lung cancer: Recent advances and therapeutic challenges.Biomed. Pharmacother.2021138111450
    [Google Scholar]
  12. RielyG.J. WoodD.E. EttingerD.S. AisnerD.L. AkerleyW. BaumanJ.R. BharatA. BrunoD.S. ChangJ.Y. ChirieacL.R. DeCampM. DesaiA.P. DillingT.J. DowellJ. DurmG.A. GettingerS. GrotzT.E. GubensM.A. JulooriA. LacknerR.P. LanutiM. LinJ. LooB.W. LovlyC.M. MaldonadoF. MassarelliE. MorgenszternD. MullikinT.C. NgT. OwenD. OwenD.H. PatelS.P. PatilT. PolancoP.M. RiessJ. ShapiroT.A. SinghA.P. StevensonJ. TamA. TanvetyanonT. YanagawaJ. YangS.C. YauE. GregoryK.M. HangL. Non–Small Cell Lung Cancer, Version 4.2024.J. Natl. Compr. Canc. Netw.202422424927410.6004/jnccn.2204.0023 38754467
    [Google Scholar]
  13. StowerH. Effective treatment of NSCLC.Nat. Med.202026101512 33029022
    [Google Scholar]
  14. RotowJ. BivonaT.G. Understanding and targeting resistance mechanisms in NSCLC.Nat. Rev. Cancer2017171163765810.1038/nrc.2017.84 29068003
    [Google Scholar]
  15. YeB. ChenP. LinC. ZhangC. LiL. Study on the material basis and action mechanisms of sophora davidii (Franch.) skeels flower extract in the treatment of non-small cell lung cancer.J. Ethnopharmacol.202331711681510.1016/j.jep.2023.116815 37400006
    [Google Scholar]
  16. HosseiniA. RazaviB.M. BanachM. HosseinzadehH. Quercetin and metabolic syndrome: A review.Phytother. Res.202135105352536410.1002/ptr.7144 34101925
    [Google Scholar]
  17. DabeekW.M. MarraM.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans.Nutrients20191110228810.3390/nu11102288 31557798
    [Google Scholar]
  18. MaN. LiY.J. FanJ.P. Research progress on pharmacological action of quercetin.J. Liaoning Uni. TCM20182008221224
    [Google Scholar]
  19. LiuY. TangZ.G. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells.Biomed. Pharmacother.2017923338
    [Google Scholar]
  20. Reyes-FariasM. Carrasco-PozoC. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism.Int. J. Mol. Sci.20192013317710.3390/ijms20133177 31261749
    [Google Scholar]
  21. SilvermanE.K. SchmidtH.H.H.W. AnastasiadouE. AltucciL. AngeliniM. BadimonL. BalligandJ.L. BenincasaG. CapassoG. ConteF. Di CostanzoA. FarinaL. FisconG. GattoL. GentiliM. LoscalzoJ. MarcheseC. NapoliC. PaciP. PettiM. QuackenbushJ. TieriP. ViggianoD. VilahurG. GlassK. BaumbachJ. Molecular networks in Network Medicine: Development and applications.Wiley Interdiscip. Rev. Syst. Biol. Med.2020126e148910.1002/wsbm.1489 32307915
    [Google Scholar]
  22. ZhouW. ZhangH. WangX. KangJ. GuoW. ZhouL. LiuH. WangM. JiaR. DuX. WangW. ZhangB. LiS. Network pharmacology to unveil the mechanism of Moluodan in the treatment of chronic atrophic gastritis.Phytomedicine20229515383710.1016/j.phymed.2021.153837 34883416
    [Google Scholar]
  23. MaH. XuF. LiuC. SeeramN.P. A Network Pharmacology Approach to Identify Potential Molecular Targets for Cannabidiol’s Anti-Inflammatory Activity.Cannabis Cannabinoid Res.20216428829910.1089/can.2020.0025 33998855
    [Google Scholar]
  24. LinC. LiuZ. ChenJ. WangX. ZhangR. WuL. LiL. Integration of UPLC–QE–MS/MS and network pharmacology to investigate the active components and action mechanisms of tea cake extract for treating cough.Biomed. Chromatogr.20223610e544210.1002/bmc.5442 35781817
    [Google Scholar]
  25. DoakB.C. OverB. GiordanettoF. KihlbergJ. Oral druggable space beyond the rule of 5: Insights from drugs and clinical candidates.Chem. Biol.20142191115114210.1016/j.chembiol.2014.08.013 25237858
    [Google Scholar]
  26. Di PetrilloA. OrrùG. FaisA. FantiniM.C. Quercetin and its derivates as antiviral potentials: A comprehensive review.Phytother. Res.202236126627810.1002/ptr.7309 34709675
    [Google Scholar]
  27. AlizadehS.R. EbrahimzadehM.A. Quercetin derivatives: Drug design, development, and biological activities, a review.Eur. J. Med. Chem.202222911406810.1016/j.ejmech.2021.114068 34971873
    [Google Scholar]
  28. HaddadP. EidH. The Antidiabetic Potential of Quercetin: Underlying Mechanisms.Curr. Med. Chem.201724435536410.2174/0929867323666160909153707 27633685
    [Google Scholar]
  29. RicheK. LenardN.R. Quercetin’s Effects on Glutamate Cytotoxicity.Molecules20222721762010.3390/molecules27217620 36364448
    [Google Scholar]
  30. KashyapD. GargV.K. TuliH.S. YererM.B. SakK. SharmaA.K. KumarM. AggarwalV. SandhuS.S. Fisetin and quercetin: Promising flavonoids with chemopreventive potential.Biomolecules20199517410.3390/biom9050174 31064104
    [Google Scholar]
  31. VinayakM. MauryaA.K. Quercetin Loaded Nanoparticles in Targeting Cancer: Recent Development.Anticancer. Agents Med. Chem.201919131560157610.2174/1871520619666190705150214 31284873
    [Google Scholar]
  32. TangS.M. DengX.T. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects.Biomed. Pharmacother.2020121109604
    [Google Scholar]
  33. YounH. JeongJ.C. JeongY.S. KimE.J. UmS.J. Quercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells.Biol. Pharm. Bull.201336694495110.1248/bpb.b12‑01004 23727915
    [Google Scholar]
  34. WongM.Y. ChiuG.N.C. Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model.Nanomedicine20117683484010.1016/j.nano.2011.02.001 21371568
    [Google Scholar]
  35. ChenW. WangX. ZhuangJ. ZhangL. LinY. Induction of death receptor 5 and suppression of survivin contribute to sensitization of TRAIL-induced cytotoxicity by quercetin in non-small cell lung cancer cells.Carcinogenesis200728102114212110.1093/carcin/bgm133 17548900
    [Google Scholar]
  36. FanS. GengQ. PanZ. LiX. TieL. PanY. LiX. Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach.BMC Syst. Biol.20126115210.1186/1752‑0509‑6‑152 23228038
    [Google Scholar]
  37. DengZ. ChenG. ShiY. LinY. OuJ. ZhuH. WuJ. LiG. LvL. Curcumin and its nano-formulations: Defining triple-negative breast cancer targets through network pharmacology, molecular docking, and experimental verification.Front. Pharmacol.20221392051410.3389/fphar.2022.920514 36003508
    [Google Scholar]
  38. AlzahraniA.S. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside.Semin. Cancer Biol.20195912513210.1016/j.semcancer.2019.07.009 31323288
    [Google Scholar]
  39. PompuraS.L. Dominguez-VillarM. The PI3K/AKT signaling pathway in regulatory T-cell development, stability, and function.J. Leukoc. Biol.201810361065107610.1002/JLB.2MIR0817‑349R
    [Google Scholar]
  40. SamakovaA. GazovaA. SabovaN. ValaskovaS. JurikovaM. KyselovicJ. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia.Physiol. Res.201968Suppl. 2S131S13810.33549/physiolres.934345 31842576
    [Google Scholar]
  41. Pérez-RamírezC. Cañadas-GarreM. MolinaM.Á. Faus-DáderM.J. Calleja-HernándezM.Á. PTEN and PI3K/AKT in non-small-cell lung cancer.Pharmacogenomics201516161843186210.2217/pgs.15.122 26555006
    [Google Scholar]
  42. LiangJ. LiH. HanJ. JiangJ. WangJ. LiY. FengZ. ZhaoR. SunZ. LvB. TianH. Mex3a interacts with LAMA2 to promote lung adenocarcinoma metastasis via PI3K/AKT pathway.Cell Death Dis.202011861410.1038/s41419‑020‑02858‑3 32792503
    [Google Scholar]
  43. ShiL. ZhuW. HuangY. ZhuoL. WangS. ChenS. ZhangB. KeB. Cancer-associated fibroblast-derived exosomal microRNA-20a suppresses the PTEN/PI3K‐AKT pathway to promote the progression and chemoresistance of non‐small cell lung cancer.Clin. Transl. Med.2022127e98910.1002/ctm2.989 35857905
    [Google Scholar]
  44. WeiC. DongX. LuH. LPCAT1 promotes brain metastasis of lung adenocarcinoma by up-regulating PI3K/AKT/MYC pathway.J. Exp. Clin. Cancer Res.201938195
    [Google Scholar]
  45. LiuY. WangD. LiZ. LiX. JinM. JiaN. CuiX. HuG. TangT. YuQ. Pan-cancer analysis on the role of PIK3R1 and PIK3R2 in human tumors.Sci. Rep.2022121592410.1038/s41598‑022‑09889‑0 35395865
    [Google Scholar]
  46. Huang-DoranI. TomlinsonP. PayneF. GastA. SleighA. BottomleyW. HarrisJ. DalyA. RochaN. RudgeS. ClarkJ. KwokA. RomeoS. McCannE. MükschB. DattaniM. ZucchiniS. WakelamM. FoukasL.C. SavageD.B. MurphyR. O’RahillyS. BarrosoI. SempleR.K. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations.JCI Insight2016117e8876610.1172/jci.insight.88766 27766312
    [Google Scholar]
  47. CostaC. EngelmanJ.A. The double life of p85.Cancer Cell201426444544710.1016/j.ccell.2014.09.011 25314071
    [Google Scholar]
  48. Herrero-GonzalezS. Di CristofanoA. New routes to old places: PIK3R1 and PIK3R2 join PIK3CA and PTEN as endometrial cancer genes.Cancer Discov.20111210610710.1158/2159‑8290.CD‑11‑0116 22586352
    [Google Scholar]
  49. VaraJ.Á.F. CasadoE. de CastroJ. CejasP. Belda-IniestaC. González-BarónM. PI3K/Akt signalling pathway and cancer.Cancer Treat. Rev.200430219320410.1016/j.ctrv.2003.07.007 15023437
    [Google Scholar]
  50. HinzN. JückerM. Distinct functions of AKT isoforms in breast cancer: A comprehensive review.Cell Commun. Signal.201917115410.1186/s12964‑019‑0450‑3 31752925
    [Google Scholar]
  51. GeorgeB. GuiB. RaguramanR. PaulA.M. NakshatriH. PillaiM.R. KumarR. AKT1 Transcriptomic Landscape in Breast Cancer Cells.Cells20221115229010.3390/cells11152290 35892586
    [Google Scholar]
  52. AlwhaibiA. VermaA. AdilM.S. SomanathP.R. The unconventional role of Akt1 in the advanced cancers and in diabetes-promoted carcinogenesis.Pharmacol. Res.201914510427010.1016/j.phrs.2019.104270 31078742
    [Google Scholar]
  53. ChenX. ArissM.M. RamakrishnanG. NogueiraV. BlahaC. PutzbachW. IslamA.B.M.M.K. FrolovM.V. HayN. Cell-Autonomous versus Systemic Akt Isoform Deletions Uncovered New Roles for Akt1 and Akt2 in Breast Cancer.Mol. Cell202080187101.e510.1016/j.molcel.2020.08.017 32931746
    [Google Scholar]
  54. VoskaridesK. GiannopoulouN. The Role of TP53 in Adaptation and Evolution.Cells202312351210.3390/cells12030512 36766853
    [Google Scholar]
  55. KaurR.P. VasudevaK. KumarR. MunshiA. Role of p53 gene in breast cancer: Focus on mutation spectrum and therapeutic strategies.Curr. Pharm. Des.201824303566357510.2174/1381612824666180926095709 30255744
    [Google Scholar]
  56. MontiP. MenichiniP. SpecialeA. CutronaG. FaisF. TaianaE. NeriA. BombenR. GentileM. GatteiV. FerrariniM. MorabitoF. FronzaG. Heterogeneity of TP53 mutations and P53 protein residual function in cancer: Does it matter?Front. Oncol.20201059338310.3389/fonc.2020.593383 33194757
    [Google Scholar]
  57. OlivierM. HollsteinM. HainautP. TP53 mutations in human cancers: origins, consequences, and clinical use.Cold Spring Harb. Perspect. Biol.201021a00100810.1101/cshperspect.a001008 20182602
    [Google Scholar]
  58. LeroyB. AndersonM. SoussiT. TP53 mutations in human cancer: database reassessment and prospects for the next decade.Hum. Mutat.201435667268810.1002/humu.22552 24665023
    [Google Scholar]
  59. ChenN.Y. LuK. YuanJ.M. LiX.J. GuZ.Y. PanC.X. MoD.L. SuG.F. 3-Arylamino-quinoxaline-2-carboxamides inhibit the PI3K/Akt/mTOR signaling pathways to activate P53 and induce apoptosis.Bioorg. Chem.202111410510110.1016/j.bioorg.2021.105101 34175723
    [Google Scholar]
  60. ChaiX. ZhangJ.W. LiS.H. ChengQ.S. QinM.M. YangC.Y. GaoJ.L. HuangH.B. Xanthoceraside induces cell apoptosis through downregulation of the PI3K/Akt/Bcl-2/Bax signaling pathway in cell lines of human bladder cancer.Indian J. Pathol. Microbiol.202164229430110.4103/IJPM.IJPM_462_19 33851623
    [Google Scholar]
  61. LeeK.B. ByunH.J. ParkS.H. ParkC.Y. LeeS.H. RhoS.B. CYR61 controls p53 and NF-κB expression through PI3K/Akt/mTOR pathways in carboplatin-induced ovarian cancer cells.Cancer Lett.20123151869510.1016/j.canlet.2011.10.016 22078465
    [Google Scholar]
  62. ChenL. QingJ. XiaoY. HuangX. ChiY. ChenZ. TIM-1 promotes proliferation and metastasis, and inhibits apoptosis, in cervical cancer through the PI3K/AKT/p53 pathway.BMC Cancer202222137010.1186/s12885‑022‑09386‑7 35392845
    [Google Scholar]
  63. KnudsonC.M. KorsmeyerS.J. Bcl-2 and Bax function independently to regulate cell death.Nat. Genet.199716435836310.1038/ng0897‑358 9241272
    [Google Scholar]
  64. BoiseL.H. GottschalkA.R. QuintánsJ. ThompsonC.B. Bcl-2 and Bcl-2-related proteins in apoptosis regulation.Curr. Top. Microbiol. Immunol.199520010712110.1007/978‑3‑642‑79437‑7_8 7634826
    [Google Scholar]
  65. CorreiaC. LeeS.H. MengX.W. VinceletteN.D. KnorrK.L.B. DingH. NowakowskiG.S. DaiH. KaufmannS.H. Emerging understanding of Bcl-2 biology: Implications for neoplastic progression and treatment.Biochim. Biophys. Acta Mol. Cell Res.2015185371658167110.1016/j.bbamcr.2015.03.012 25827952
    [Google Scholar]
  66. TahaM.O. HabashM. KhanfarM.A. The use of docking-based comparative intermolecular contacts analysis to identify optimal docking conditions within glucokinase and to discover of new GK activators.J. Comput. Aided Mol. Des.201428550954710.1007/s10822‑014‑9740‑4 24610240
    [Google Scholar]
  67. GeZ. XuM. GeY. HuangG. ChenD. YeX. XiaoY. ZhuH. YinR. ShenH. MaG. QiL. WeiG. LiD. WeiS. ZhuM. MaH. ShiZ. WangX. GeX. QianX. Inhibiting G6PD by quercetin promotes degradation of EGFR T790M mutation.Cell Rep.2023421111341710.1016/j.celrep.2023.113417 37950872
    [Google Scholar]
  68. AlizadehS.R. EbrahimzadehM.A. O ‐GLYCOSIDE quercetin derivatives: Biological activities, mechanisms of action, and structure–activity relationship for drug design, a review.Phytother. Res.202236277880710.1002/ptr.7352 34964515
    [Google Scholar]
  69. UlusoyH.G. SanlierN. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities.Crit. Rev. Food Sci. Nutr.202060193290330310.1080/10408398.2019.1683810 31680558
    [Google Scholar]
  70. MirzaM.A. MahmoodS. HillesA.R. AliA. KhanM.Z. ZaidiS.A.A. IqbalZ. GeY. Quercetin as a Therapeutic Product: Evaluation of Its Pharmacological Action and Clinical Applications—A Review.Pharmaceuticals (Basel)20231611163110.3390/ph16111631 38004496
    [Google Scholar]
  71. KaurS. GoyalA. RaiA. Quercetin nanoformulations: Recent advancements and therapeutic applications.Adv. Nat. Sci.: Nanosci. Nanotechnol2023143
    [Google Scholar]
  72. AlaviM. AdulrahmanN.A. HaleemA.A. Al-RâwanduziA.D.H. KhusroA. AbdelgawadM.A. GhoneimM.M. BatihaG.E.S. KahriziD. MartinezF. KoiralaN. Nanoformulations of curcumin and quercetin with silver nanoparticles for inactivation of bacteria.Cell. Mol. Biol.202267515115610.14715/cmb/2021.67.5.21 35818258
    [Google Scholar]
  73. GorantlaS. WadhwaG. JainS. SankarS. NuwalK. MahmoodA. DubeyS.K. TaliyanR. KesharwaniP. SinghviG. Recent advances in nanocarriers for nutrient delivery.Drug Deliv. Transl. Res.202212102359238410.1007/s13346‑021‑01097‑z 34845678
    [Google Scholar]
  74. OkamotoT. Safety of quercetin for clinical application (Review).Int. J. Mol. Med.200516227527810.3892/ijmm.16.2.275 16012761
    [Google Scholar]
  75. KundrapuD.B. MallaR.R. Advances in Quercetin for Drug-Resistant Cancer Therapy: Mechanisms, Applications, and Delivery Systems.Crit. Rev. Oncog.2023284152610.1615/CritRevOncog.2023049513 38050978
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073332751241008072644
Loading
/content/journals/cchts/10.2174/0113862073332751241008072644
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test