Skip to content
2000
Volume 28, Issue 13
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Dispel-Scar Ointment is used in Traditional Chinese Medicine to treat scarred tissue and increasing evidence has shown that DSO is a potent therapeutic; however, its exact mechanism remains unexplored.

Aim of the Study

This study explored the molecular mechanisms of action of DSO in scarring using network pharmacology, molecular docking, and experimental validation.

Materials and Methods

Public databases were applied to predict the bioactive ingredients and putative targets of DSO against scars. A compounds-targets network was constructed using the Cytoscape software. Molecular docking was performed to verify the correlation between the major positive ingredients and hub targets, visualised using PyMol 2.3. Enrichment analysis was implemented using ClueGo and FunRich to specify the biological capabilities and related pathways of hub targets. SwissADME software was used to predict the ADME capabilities of the protein-related active compounds between DSO and scar in order to analyse the absorption and permeation across cell membranes of DSO. We assessed the skin sensitizer potential of the bioactive compounds of DSO using Pred-Skin computational tool. Experimental validations were conducted to elucidate the influence of DSO on keloid fibroblast cells using the CCK-8, wound-scratch, cell reactive oxygen species, and western blot assays.

Results

Network pharmacological analysis of DSO for scar treatment identified 146 ingredients and 1078 gene targets. Major targets included prostaglandin-endoperoxide synthase 2 matrix metallopeptidases and nitric oxide synthase 2. Molecular docking showed MMP2-flavoxanthin, MMP9-luteolin and MMP-9-kaempferol bound best to DSO. ClueGo analysis revealed 29 pathways (<0.05) and FunRich 345 pathways (<0.05), mainly toll-like receptor, TGF-β, interleukin-4/13, glypican, and tumour necrosis factor-related apoptosis-inducing ligand pathways. The results valued by the SwissADME and PreADMET tools illustrated that 12 compounds in DSO were almost permeable through the skin. Pred-Skin computational tool represented that these 12 bioactive compounds reflected skin sensitizer potential. Experimental analysis revealed that DSO could restrain the proliferation and migration of scar fibroblasts and facilitate their apoptosis in a concentration-dependent manner. DSO also decreased TGF-β1, -βR2, pSMAD2, pSMAD3, SMAD4, CoL1a1, and MMP2 expression.

Conclusion

Network pharmacology, molecular docking, and experimental validation showed DSO's feasibility in scar therapy. It may restrain scars through the TGF-β1/SMADs/MMPs signalling pathway, providing a basis for DSO's scar treatment application.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073335953240820075044
2024-08-21
2025-10-26
Loading full text...

Full text loading...

References

  1. GonzálezN. GoldbergD.J. Update on the treatment of scars.J. Drugs Dermatol.2019186550555 31251547
    [Google Scholar]
  2. OgawaR. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis.Int. J. Mol. Sci.201718360610.3390/ijms18030606 28287424
    [Google Scholar]
  3. HuH.H. ChenD.Q. WangY.N. FengY.L. CaoG. VaziriN.D. ZhaoY.Y. New insights into TGF-β/Smad signaling in tissue fibrosis.Chem. Biol. Interact.2018292768310.1016/j.cbi.2018.07.008 30017632
    [Google Scholar]
  4. AtiyehB.S. Nonsurgical management of hypertrophic scars: Evidence-based therapies, standard practices, and emerging methods.Aesthetic Plast. Surg.20204441320134410.1007/s00266‑020‑01820‑0 32766921
    [Google Scholar]
  5. L, Y. Liposomes loaded with 5-fluorouracil can improve the efficacy in pathological scars.Int. J. Nanomedicine20241973537365
    [Google Scholar]
  6. H, H. Graphene Quantum Dots Reduce Hypertrophic Scar by Inducing Myofibroblasts To Be a Quiescent State.ACS Appl. Mater. Interfaces202416293753037544
    [Google Scholar]
  7. X, W. The role of tenascin-C in hypertrophic scar formation: Insights from cell and animal experiments.Clin. Cosmet. Investig. Dermatol.20241716371648
    [Google Scholar]
  8. MariW. AlsabriS.G. TabalN. YounesS. SherifA. SimmanR. Novel insights on understanding of keloid scar: Article review.J. Am. Coll. Clin. Wound Spec.201571-31710.1016/j.jccw.2016.10.001 28053861
    [Google Scholar]
  9. Yi, Cao Effects of Chinese herbal preparations on hypertrophic scar tissue of rabbit ears. Chinese J. Tradit. Chinese Med.,20089697
    [Google Scholar]
  10. TaoM. ShiJ. HeQ. QiuC. LiuY. CaoY. YangX. The Effect of Qu scar decoction on the proliferation of fibroblasts and Ki-67 expression.J. Zhejiang China Med. Univ.201539722726
    [Google Scholar]
  11. L, Y. Cryptotanshinone downregulates the profibrotic activities of hypertrophic scar fibroblasts and accelerates wound healing: A potential therapy for the reduction of skin scarring.Biomed. Pharmacother.2016806
    [Google Scholar]
  12. JgW. YjW. Inhibitory effects of essential oil from rhizomes of ligusticum chuanxiong on hypertrophic scarring in the rabbit ear model.Pharm. Biol.2011497764769
    [Google Scholar]
  13. JgW. Essential Oil from Rhizomes of Ligusticum Chuanxiong Induces Apoptosis in Hypertrophic Scar Fibroblasts.Pharm. Biol.20114918693
    [Google Scholar]
  14. XlF. Effects of Huoxuezhitong Recipe on the Pathway of Mitochondrial Apoptosis and the Expression of Related Gene in Epidural Scar Tissue.China J. Orthop. Traumatol.201023
    [Google Scholar]
  15. Z, J. Stachydrine ameliorates carbon tetrachloride-induced hepatic fibrosis by inhibiting inflammation, oxidative stress and regulating MMPs/TIMPs system in rats.Biomed. Pharmacother.201897
    [Google Scholar]
  16. TaoW. XuX. WangX. LiB. WangY. LiY. YangL. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease.J. Ethnopharmacol.2013145111010.1016/j.jep.2012.09.051 23142198
    [Google Scholar]
  17. ZhangG. LiQ. ChenQ. SuS. Network pharmacology: A new approach for chinese herbal medicine research.Evid. Based Complement. Alternat. Med.201320131910.1155/2013/621423 23762149
    [Google Scholar]
  18. SaikiaS. BordoloiM. Molecular docking: Challenges, advances and its use in drug discovery perspective.Curr. Drug Targets201920550152110.2174/1389450119666181022153016 30360733
    [Google Scholar]
  19. LiY. YuQ. PengH. MingjunX. XuW. ZhengT. ZhaoT. XiaM. WuJ. StavrinouP. GoldbrunnerR. XieY. ZhangG. FengY. GuanY. ZhengF. SunP. Jingfang granules protects against intracerebral hemorrhage by inhibiting neuroinflammation and protecting blood-brain barrier damage.Aging (Albany NY)202416109023904610.18632/aging.205854 38809507
    [Google Scholar]
  20. ShiG. LuX. ZhengY. YangT. ZhuE. SongY. HuangP. Insights into the potential dual-antibacterial mechanism of kelisha capsule on Escherichia coli. In: BMC Complement Med. Ther202424(1)207
    [Google Scholar]
  21. ArifR. BukhariS.A. MustafaG. AhmedS. AlbeshrM.F. Network pharmacology and experimental validation to explore the potential mechanism of nigella sativa for the treatment of breast cancer.Pharmaceuticals202417561710.3390/ph17050617 38794187
    [Google Scholar]
  22. SilvaL. FerreiraE. Maryam; Espejo-Román, J.; Costa, G.; Cruz, J.; Kimani, N.; Costa, J.; Bittencourt, J.; Cruz, J.; Campos, J.; Santos, C. Galantamine based novel acetylcholinesterase enzyme inhibitors: A molecular modeling design approach.Molecules2023283103510.3390/molecules28031035 36770702
    [Google Scholar]
  23. PiñeroJ. Ramírez-AnguitaJ.M. Saüch-PitarchJ. RonzanoF. CentenoE. SanzF. FurlongL.I. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.202048D1D845D855 31680165
    [Google Scholar]
  24. JsY. CyL. A network pharmacology-based study on alzheimer disease prevention and treatment of Qiong Yu Gao.BioData Min.202013
    [Google Scholar]
  25. BatemanA. MartinM-J. OrchardS. MagraneM. AgivetovaR. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. BursteinasB. Bye-A-JeeH. CoetzeeR. CukuraA. Da SilvaA. DennyP. DoganT. EbenezerT.G. FanJ. CastroL.G. GarmiriP. GeorghiouG. GonzalesL. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JokinenP. JoshiV. JyothiD. LockA. LopezR. LucianiA. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MenchiM. MishraA. MoulangK. NightingaleA. OliveiraC.S. PundirS. QiG. RajS. RiceD. LopezM.R. SaidiR. SampsonJ. SawfordT. SperettaE. TurnerE. TyagiN. VasudevP. VolynkinV. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA. PouxS. RedaschiN. AimoL. Argoud-PuyG. AuchinclossA. AxelsenK. BansalP. BaratinD. BlatterM-C. BollemanJ. BoutetE. BreuzaL. Casals-CasasC. de CastroE. EchioukhK.C. CoudertE. CucheB. DocheM. DornevilD. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GehantS. GerritsenV. GosA. Gruaz-GumowskiN. HinzU. HuloC. Hyka-NouspikelN. JungoF. KellerG. KerhornouA. LaraV. Le MercierP. LieberherrD. LombardotT. MartinX. MassonP. MorgatA. NetoT.B. PaesanoS. PedruzziI. PilboutS. PourcelL. PozzatoM. PruessM. RivoireC. SigristC. SonessonK. StutzA. SundaramS. TognolliM. VerbregueL. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. GaravelliJ.S. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. YehL-S. ZhangJ. RuchP. TeodoroD. UniProt: The universal protein knowledgebase in 2021.Nucleic Acids Res.202149D1D480D48910.1093/nar/gkaa1100 33237286
    [Google Scholar]
  26. L, Z. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine.Sci. Rep.20166
    [Google Scholar]
  27. R, J. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.20146
    [Google Scholar]
  28. H, C. Systems pharmacology in drug discovery and therapeutic insight for herbal medicines.Brief. Bioinform.201415
    [Google Scholar]
  29. BittrichS. RoseY. SeguraJ. LoweR. WestbrookJ.D. DuarteJ.M. BurleyS.K. RCSB Protein Data Bank: Improved annotation, search and visualization of membrane protein structures archived in the PDB.Bioinformatics20223851452145410.1093/bioinformatics/btab813 34864908
    [Google Scholar]
  30. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2019 update: Improved access to chemical data.Nucleic Acids Res.201947D1D1102D110910.1093/nar/gky1033 30371825
    [Google Scholar]
  31. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac194 35325185
    [Google Scholar]
  32. FonsekaP. PathanM. ChittiS.V. KangT. MathivananS. FunRich enables enrichment analysis of OMICs datasets.J. Mol. Biol.20214331116674710.1016/j.jmb.2020.166747 33310018
    [Google Scholar]
  33. D, A. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.20177
    [Google Scholar]
  34. AzeemM. MustafaG. MahroshH.S. Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies.Int. J. Immunopathol. Pharmacol.20223610.1177/03946320221142793 36442514
    [Google Scholar]
  35. RcB. VmA. Pred-skin: A fast and reliable web application to assess skin sensitization effect of chemicals.J. Chem. Inf. Model.201757
    [Google Scholar]
  36. PandeyP. KhanF. AlzahraniF.A. QariH.A. OvesM. A novel approach to unraveling the apoptotic potential of rutin (Bioflavonoid) via targeting Jab1 in cervical cancer cells.Molecules20212618552910.3390/molecules26185529 34577000
    [Google Scholar]
  37. BiM. SunP. LiD. DongZ. ChenZ. Intralesional injection of botulinum toxin type a compared with intralesional injection of corticosteroid for the treatment of hypertrophic scar and keloid: A systematic review and meta-analysis.Med. Sci. Monit.2019252950295810.12659/MSM.916305 31006769
    [Google Scholar]
  38. ArnoA.I. GauglitzG.G. BarretJ.P. JeschkeM.G. Up-to-date approach to manage keloids and hypertrophic scars: A useful guide.Burns20144071255126610.1016/j.burns.2014.02.011 24767715
    [Google Scholar]
  39. ShiJ. GuoS. WuY. ChenG. LaiJ. XuX. Behaviour of cell penetrating peptide TAT-modified liposomes loaded with salvianolic acid B on the migration, proliferation, and survival of human skin fibroblasts.J. Liposome Res.20203019310610.1080/08982104.2019.1593451 31012367
    [Google Scholar]
  40. HeS. YangY. LiuX. HuangW. ZhangX. YangS. ZhangX. Compound astragalus and salvia miltiorrhiza extract inhibits cell proliferation, invasion and collagen synthesis in keloid fibroblasts by mediating transforming growth factor-β/Smad pathway.Br. J. Dermatol.2012166356457410.1111/j.1365‑2133.2011.10674.x 21967214
    [Google Scholar]
  41. ZhangH. RanX. HuC.L. QinL.P. LuY. PengC. Therapeutic effects of liposome-enveloped Ligusticum chuanxiong essential oil on hypertrophic scars in the rabbit ear model.PLoS One201272e3115710.1371/journal.pone.0031157 22363569
    [Google Scholar]
  42. GaoS.Q. ChangC. NiuX.Q. LiL.J. ZhangY. GaoJ.Q. Topical application of Hydroxysafflor Yellow A accelerates the wound healing in streptozotocin induced T1DM rats.Eur. J. Pharmacol.2018823727810.1016/j.ejphar.2018.01.018 29408092
    [Google Scholar]
  43. WangL. JinM. ZangB.X. WuY. Inhibitory effect of safflor yellow on pulmonary fibrosis.Biol. Pharm. Bull.201134451151610.1248/bpb.34.511 21467638
    [Google Scholar]
  44. WanF. YuA. CaoY. The target study of peach kernel coating against human-derived hypertrophic scars in nude mice. Chin.J. Tradit. Chin. Med.20092712211224
    [Google Scholar]
  45. ChengF. ZhouY. WangM. GuoC. CaoZ. ZhangR. PengC. A review of pharmacological and pharmacokinetic properties of stachydrine.Pharmacol. Res.202015510475510.1016/j.phrs.2020.104755 32173585
    [Google Scholar]
  46. KomakiY. KanmuraS. SasakiF. MaedaH. OdaK. ArimaS. TanoueS. NasuY. HashimotoS. MawatariS. TsubouchiH. IdoA. Hepatocyte growth factor facilitates esophageal mucosal repair and inhibits the submucosal fibrosis in a rat model of esophageal ulcer.Digestion201999322723810.1159/000491876 30227416
    [Google Scholar]
  47. LiX. GuoL. YangX. WangJ. HouY. ZhuS. DuJ. FengJ. XieY. ZhuangL. HeX. LiuY. TGF‐β1‐induced connexin43 promotes scar formation via the Erk/MMP‐1/collagen III pathway.J. Oral Rehabil.202047S1Suppl. 19910610.1111/joor.12829 31175668
    [Google Scholar]
  48. CostaO.A.A.D. RibasJ.M. AriedeB.L. CavalcantiT. ScapiniJ.G.S. PasettoC.V. Comparative efficacy of immunohistochemical markers in surgical healing.Rev. Col. Bras. Cir.2017444367373 29019540
    [Google Scholar]
  49. MorgadoF.N. SchubachA. VasconcellosE. Azeredo-CoutinhoR.B. Valete-RosalinoC.M. QuintellaL.P. SantosG. SalgueiroM. PalmeiroM.R. Conceição-SilvaF. Signs of an in situ inflammatory reaction in scars of human American tegumentary leishmaniasis.Parasite Immunol.201032428529510.1111/j.1365‑3024.2009.01188.x 20398229
    [Google Scholar]
  50. MesquitaK. Chemical composition and preliminary toxicity evaluation of the essential oil from peperomia circinnata link var. Circinnata. (Piperaceae) in artemia salina leach.Molecules202126
    [Google Scholar]
  51. S, M. Chemical composition, antimicrobial properties of siparuna guianensis essential oil and a molecular docking and dynamics molecular study of its major chemical constituent.Molecules202025173852
    [Google Scholar]
  52. Os, In silico analyses of toxicity of the major constituents of essential oils from two ipomoea L. Species.Toxicon2021195
    [Google Scholar]
  53. MmC. SgS. JnC. First report on the annona exsucca dc. essential oil and in silico identification of potential biological targets of its major compounds.Nat. Prod. Res.202236
    [Google Scholar]
  54. BaeM. KimM.B. KangH. ParkY.K. LeeJ.Y. Comparison of carotenoids for their antifibrogenic effects in hepatic stellate cells.Lipids2019546-740141010.1002/lipd.12157 31140624
    [Google Scholar]
  55. K, S.; M, K.; S, T.; D, J.; S, R.; Mkm, F.; S, M.; P, A.; Pp, S.; J, C.; Rr, L. An Updated Review on the Multifaceted Therapeutic Potential of Calendula Officinalis L.Pharmaceuticals2023164611
    [Google Scholar]
  56. SekiguchiA. MotegiS. FujiwaraC. YamazakiS. InoueY. UchiyamaA. AkaiR. IwawakiT. IshikawaO. Inhibitory effect of kaempferol on skin fibrosis in systemic sclerosis by the suppression of oxidative stress.J. Dermatol. Sci.201996181710.1016/j.jdermsci.2019.08.004 31447184
    [Google Scholar]
  57. GendrischF. EsserP.R. SchemppC.M. WölfleU. Luteolin as a modulator of skin aging and inflammation.Biofactors202147217018010.1002/biof.1699 33368702
    [Google Scholar]
  58. LeeT.F. LinY.L. HuangY.T. Studies on antiproliferative effects of phthalides from Ligusticum chuanxiong in hepatic stellate cells.Planta Med.200773652753410.1055/s‑2007‑981520 17520522
    [Google Scholar]
  59. DewanganH. BaisM. JaiswalV. VermaV.K. Potential wound healing activity of the ethanolic extract of Solanum xanthocarpum schrad and wendl leaves.Pak. J. Pharm. Sci.2012251189194 22186329
    [Google Scholar]
  60. JiangY. WangC. LiY.Y. WangX.C. AnJ.D. WangY.J. WangX.J. Mistletoe alkaloid fractions alleviates carbon tetrachloride- induced liver fibrosis through inhibition of hepatic stellate cell activation via TGF-β/Smad interference. J. Ethnopharmacol.,2014158Pt A23023810.1016/j.jep.2014.10.028 25456431
    [Google Scholar]
  61. LiuH. YangH.L. ZhouS.F. MengC.Y. Effects of sodium tanshinone II A sulfonate on proliferation of fibroblasts in scar and the mRNA and protein expressions of transforming growth factor beta 1 and alpha smooth muscle actin Zhonghua Shao Shang Za Zhi2013293294299 24059958
    [Google Scholar]
  62. BaiW. WangS. AnS. GuoM. GongG. LiuW. MaS. LiX. FuJ. YaoW. Combination therapy of chitosan, gynostemma, and motherwort alleviates the progression of experimental rat chronic renal failure by inhibiting STAT1 activation.Oncotarget2018921154981551110.18632/oncotarget.24125 29643988
    [Google Scholar]
  63. SM JNC RM IR SH MaK AmK MuI RrL MZ Effects of drying temperature and solvents on in vitro diabetic wound healing potential of moringa oleifera leaf extracts.Molecules2023282710
    [Google Scholar]
  64. HahnJ.M. McFarlandK.L. CombsK.A. SuppD.M. Partial epithelial-mesenchymal transition in keloid scars: regulation of keloid keratinocyte gene expression by transforming growth factor-β1. Burns Trauma,201641s41038-016-0055-710.1186/s41038‑016‑0055‑7 27574697
    [Google Scholar]
  65. KoppJ. PreisE. SaidH. HafemannB. WickertL. GressnerA.M. PalluaN. DooleyS. Abrogation of transforming growth factor-beta signaling by SMAD7 inhibits collagen gel contraction of human dermal fibroblasts.J. Biol. Chem.200528022215702157610.1074/jbc.M502071200 15788410
    [Google Scholar]
  66. WangZ. GaoZ. ShiY. SunY. LinZ. JiangH. HouT. WangQ. YuanX. ZhuX. WuH. JinY. Inhibition of Smad3 expression decreases collagen synthesis in keloid disease fibroblasts.J. Plast. Reconstr. Aesthet. Surg.200760111193119910.1016/j.bjps.2006.05.007 17889631
    [Google Scholar]
  67. CuiN. HuM. KhalilR.A. Biochemical and biological attributes of matrix metalloproteinases.Prog. Mol. Biol. Transl. Sci.201714717310.1016/bs.pmbts.2017.02.005 28413025
    [Google Scholar]
  68. E, S.; S, Y.; K, H. Strategies to prevent hypertrophic scar formation: A review of therapeutic interventions based on molecular evidence.Burns Trauma20208tk2003
    [Google Scholar]
  69. D’ArpaP. LeungK.P. Toll-like receptor signaling in burn wound healing and scarring.Adv. Wound Care201761033034310.1089/wound.2017.0733 29062590
    [Google Scholar]
  70. NguyenJ.K. AustinE. HuangA. MamalisA. JagdeoJ. The IL-4/IL-13 axis in skin fibrosis and scarring: mechanistic concepts and therapeutic targets.Arch. Dermatol. Res.20203122819210.1007/s00403‑019‑01972‑3 31493000
    [Google Scholar]
  71. HillJ.J. JinK. MaoX.O. XieL. GreenbergD.A. Intracerebral chondroitinase ABC and heparan sulfate proteoglycan glypican improve outcome from chronic stroke in rats.Proc. Natl. Acad. Sci. USA2012109239155916010.1073/pnas.1205697109 22615373
    [Google Scholar]
  72. DolivoD.M. LarsonS.A. DominkoT. Fibroblast growth factor 2 as an antifibrotic: Antagonism of myofibroblast differentiation and suppression of pro-fibrotic gene expression.Cytokine Growth Factor Rev.201738495810.1016/j.cytogfr.2017.09.003 28967471
    [Google Scholar]
  73. HabielD.M. MoreiraA.P. IsmailogluU.B. DunleavyM.P. CavassaniK.A. van RooijenN. CoelhoA.L. HogaboamC.M. TRAil-dependent resolution of pulmonary fibrosis.Mediators Inflamm.2018201811510.1155/2018/7934362 29670467
    [Google Scholar]
  74. SunP. HuZ. PanB. LuX. Targeting of keloid with TRAIL and TRAIL-R2/DR5.J. Dermatolog. Treat.202132895796410.1080/09546634.2020.1714541 31916474
    [Google Scholar]
  75. DiPietroL.A. Angiogenesis and wound repair: When enough is enough.J. Leukoc. Biol.2016100597998410.1189/jlb.4MR0316‑102R 27406995
    [Google Scholar]
  76. LynamE.C. XieY. DawsonR. McgovernJ. UptonZ. WangX. Severe hypoxia and malnutrition collectively contribute to scar fibroblast inhibition and cell apoptosis.Wound Repair Regen.201523566467110.1111/wrr.12343 26174572
    [Google Scholar]
  77. LiZ. YinL. LiY. CaoY. ZengH. Single-cell RNAsequencing reveals the cellular and genetic heterogeneity of skin scar to verify the therapeutic effects and mechanism of action of dispel-scar ointment in hypertrophic scar inhibition. Evidence- Based Complementary Altern. Med.,2022
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073335953240820075044
Loading
/content/journals/cchts/10.2174/0113862073335953240820075044
Loading

Data & Media loading...

Supplements

The results of Ultra-high performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), which was applied to identify the molecular compounds of Dispel-Scar Ointment (DSO) were showed in Supplementary Table S1 and Figure S1-S34.


  • Article Type:
    Research Article
Keyword(s): Dispel-scar ointment; DSO; molecular docking; network pharmacology; scar
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test