Skip to content
2000
Volume 28, Issue 13
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

According to current worldwide cancer data, Prostate Cancer (PC) ranks as the second most common type of cancer and is the fifth leading cause of cancer-related mortality among men worldwide. PC in China has the 10th highest number of new cases and the 13th highest fatality rate, both of which show an ongoing annual increase. One of the significant challenges with prostate cancer is the difficulty in early detection, often resulting in diagnosis at intermediate or late stages, complicating treatment. Although hormonal therapy is initially successful in controlling the progression of prostate cancer, almost all tumors that respond to hormones eventually transform into Castration-resistant Prostate Cancer (CRPC) within 18-24 months of hormonal therapy. This poses clinical difficulties due to an absence of successful therapeutic approaches. Therefore, understanding the fundamental mechanisms of prostate cancer development, identifying effective therapeutic targets, and discovering reliable molecular biomarkers are crucial objectives.

Methods

CircRNA expression in plasma was assessed in 4 samples obtained from patients with Benign Prostatic Hyperplasia (BPH), and PC was detected through microarray probes. Statistical analysis of the expression of circDUSP22 and clinicopathological features was conducted. The investigation of target genes was conducted using luciferase reporter assays and bioinformatics analysis. The expression levels of circDUSP22, miR-18a-5p, and Solute Carrier Family 7 member 11 (SLC7A11) were assessed using a quantitative Real-time Polymerase Chain Reaction (qRT-PCR) assay. Cell invasion, migration, colony formation, and proliferation were evaluated using Transwell, wound healing, colony formation, and CCK-8 assays, respectively. RNA Immunoprecipitation (RIP) and dual-luciferase reporter assays were used to examine the connections among circDUSP22, miR-18a-5p, and SLC7A11. The impact of circDUSP22 on the expression of ferroptosis-related proteins, specifically SLC7A11, as well as its effects on Fe2+ and ROS were also examined.

Results

In both plasma samples and PCa cell lines, there was a substantial elevation of circDUSP22 and SLC7A11 expression and a decline in miR-18a-5p expression. Suppression of circDUSP22 significantly impeded the migration, invasion, and proliferation of PC cells . The target gene of miR-18a-5p, SLC7A11, was found to be upregulated as an effect of circDUSP22's competitive binding to miR-18a-5p. Cellular experiments demonstrated that interference with circDUSP22 expression in DU145 and PC-3 cells led to increased ferroptosis and decreased SLC7A11 expression. The modulation of prostate cancer cell proliferation was reversed by either overexpressing SLC7A11 or inhibiting miR-18a-5p in response to the silencing of circDUSP22.

Conclusion

The circDUSP22 has been found to have a substantial effect on the development of ferroptosis in PC. It has been observed to influence the formation and evolution of this disorder by affecting the miR-18a-5p/SLC7A11 signaling pathway.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073324077240624094140
2024-07-11
2025-10-27
Loading full text...

Full text loading...

/deliver/fulltext/cchts/28/13/CCHTS-28-13-10.html?itemId=/content/journals/cchts/10.2174/0113862073324077240624094140&mimeType=html&fmt=ahah

References

  1. BergengrenO. PekalaK.R. MatsoukasK. FainbergJ. MungovanS.F. BrattO. BrayF. BrawleyO. LuckenbaughA.N. MucciL. MorganT.M. CarlssonS.V. 2022 Update on Prostate Cancer Epidemiology and Risk Factors—A Systematic Review.Eur. Urol.202384219120610.1016/j.eururo.2023.04.021 37202314
    [Google Scholar]
  2. RoselliniM. SantoniM. MollicaV. RizzoA. CimadamoreA. ScarpelliM. StortiN. BattelliN. MontironiR. MassariF. Treating Prostate Cancer by Antibody–Drug Conjugates.Int. J. Mol. Sci.2021224155110.3390/ijms22041551 33557050
    [Google Scholar]
  3. RizzoA. MollicaV. TateoV. TassinariE. MarchettiA. RoselliniM. De LucaR. SantoniM. MassariF. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: the MOUSEION-05 study.Cancer Immunol. Immunother.20237261381139410.1007/s00262‑023‑03366‑x 36695827
    [Google Scholar]
  4. MollicaV. RizzoA. RoselliniM. MarchettiA. RicciA.D. CimadamoreA. ScarpelliM. BonucciC. AndriniE. ErraniC. SantoniM. MontironiR. MassariF. Bone Targeting Agents in Patients with Metastatic Prostate Cancer: State of the Art.Cancers (Basel)202113354610.3390/cancers13030546 33535541
    [Google Scholar]
  5. RizzoA. SantoniM. MollicaV. FiorentinoM. BrandiG. MassariF. Microbiota and prostate cancer.Semin. Cancer Biol.202286Pt 31058106510.1016/j.semcancer.2021.09.007 34536504
    [Google Scholar]
  6. WangY. MaY. JiangK. The role of ferroptosis in prostate cancer: a novel therapeutic strategy.Prostate Cancer Prostatic Dis.2023261252910.1038/s41391‑022‑00583‑w 36056183
    [Google Scholar]
  7. LeeH. ZhuangL. GanB. Energy stress inhibits ferroptosis via AMPK.Mol. Cell. Oncol.202074176124210.1080/23723556.2020.1761242 32944623
    [Google Scholar]
  8. BertolioR. NapoletanoF. ManoM. Maurer-StrohS. FantuzM. ZanniniA. BicciatoS. SorrentinoG. Del SalG. Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism.Nat. Commun.2019101132610.1038/s41467‑019‑09152‑7 30902980
    [Google Scholar]
  9. WuJ. MinikesA.M. GaoM. BianH. LiY. StockwellB.R. ChenZ.N. JiangX. Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling.Nature2019572776940240610.1038/s41586‑019‑1426‑6 31341276
    [Google Scholar]
  10. KoppulaP. ZhangY. ZhuangL. GanB. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer.Cancer Commun.201838111310.1186/s40880‑018‑0288‑x 29764521
    [Google Scholar]
  11. KoppulaP. ZhuangL. GanB. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy.Protein Cell202112859962010.1007/s13238‑020‑00789‑5 33000412
    [Google Scholar]
  12. XiaC. XingX. ZhangW. WangY. JinX. WangY. TianM. BaX. HaoF. Cysteine and homocysteine can be exploited by GPX4 in ferroptosis inhibition independent of GSH synthesis.Redox Biol.20246910299910.1016/j.redox.2023.102999 38150992
    [Google Scholar]
  13. HommaT. KobayashiS. FujiiJ. Methionine deprivation reveals the pivotal roles of cell cycle progression in ferroptosis that is induced by cysteine starvation.Cells20221110160310.3390/cells11101603 35626640
    [Google Scholar]
  14. TangX. ChenW. LiuH. LiuN. ChenD. TianD. WangJ. Research progress on SLC7A11 in the regulation of cystine/cysteine metabolism in tumors (Review).Oncol. Lett.20212324710.3892/ol.2021.13165 34992680
    [Google Scholar]
  15. YanY. TengH. HangQ. KondiparthiL. LeiG. HorbathA. LiuX. MaoC. WuS. ZhuangL. James YouM. PoyurovskyM.V. MaL. OlszewskiK. GanB. SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells.Nat. Commun.2023141367310.1038/s41467‑023‑39401‑9 37339981
    [Google Scholar]
  16. KoppulaP. ZhangY. ShiJ. LiW. GanB. The glutamate/cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate.J. Biol. Chem.201729234142401424910.1074/jbc.M117.798405 28630042
    [Google Scholar]
  17. HeF. ZhangP. LiuJ. WangR. KaufmanR.J. YadenB.C. KarinM. ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis.J. Hepatol.202379236237710.1016/j.jhep.2023.03.016 36996941
    [Google Scholar]
  18. LiuX. ChenC. HanD. ZhouW. CuiY. TangX. XiaoC. WangY. GaoY. SLC7A11/GPX4 inactivation-mediated ferroptosis contributes to the pathogenesis of triptolide-induced cardiotoxicity.Oxid. Med. Cell. Longev.2022202211610.1155/2022/3192607 35757509
    [Google Scholar]
  19. HuangW. ChenK. LuY. ZhangD. ChengY. LiL. HuangW. HeG. LiaoH. CaiL. TangY. ZhaoL. PanM. ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma.Neoplasia202123121227123910.1016/j.neo.2021.11.002 34768109
    [Google Scholar]
  20. YadavP. SharmaP. SundaramS. VenkatramanG. BeraA.K. KarunagaranD. SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells.Cancer Lett.202152221122410.1016/j.canlet.2021.09.033 34571083
    [Google Scholar]
  21. WangH.H. MaJ.N. ZhanX.R. Circular RNA Circ_0067934 attenuates ferroptosis of thyroid cancer cells by miR-545-3p/SLC7A11 signaling.Front. Endocrinol.20211267003110.3389/fendo.2021.670031 34290668
    [Google Scholar]
  22. LangX. GreenM.D. WangW. YuJ. ChoiJ.E. JiangL. LiaoP. ZhouJ. ZhangQ. DowA. SaripalliA.L. KryczekI. WeiS. SzeligaW. VatanL. StoneE.M. GeorgiouG. CieslikM. WahlD.R. MorganM.A. ChinnaiyanA.M. LawrenceT.S. ZouW. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11.Cancer Discov.20199121673168510.1158/2159‑8290.CD‑19‑0338 31554642
    [Google Scholar]
  23. ChenL. WangC. SunH. WangJ. LiangY. WangY. WongG. The bioinformatics toolbox for circRNA discovery and analysis.Brief. Bioinform.20212221706172810.1093/bib/bbaa001 32103237
    [Google Scholar]
  24. DongJ. ZengZ. HuangY. ChenC. ChengZ. ZhuQ. Challenges and opportunities for circRNA identification and delivery.Crit. Rev. Biochem. Mol. Biol.2023581193510.1080/10409238.2023.2185764 36916323
    [Google Scholar]
  25. YuY.Z. LvD.J. WangC. SongX.L. XieT. WangT. LiZ.M. GuoJ.D. FuD.J. LiK.J. WuD.L. ChanF.L. FengN.H. ChenZ.S. ZhaoS.C. Hsa_circ_0003258 promotes prostate cancer metastasis by complexing with IGF2BP3 and sponging miR-653-5p.Mol. Cancer20222111210.1186/s12943‑021‑01480‑x 34986849
    [Google Scholar]
  26. PanJ. LiuZ. YangZ. LiangE. FangC. ZhangD. ZhouX. NiuY. XinZ. ChenY. CaiQ. Circ_0001686 Promotes Prostate Cancer Progression by Up-Regulating SMAD3/TGFBR2 via miR-411-5p.World J. Mens Health202240114916110.5534/wjmh.200204 34169675
    [Google Scholar]
  27. ZhangG. LiuY. YangJ. WangH. XingZ. Inhibition of circ_0081234 reduces prostate cancer tumor growth and metastasis via the miR‐1/MAP 3 K1 axis.J. Gene Med.2022248e337610.1002/jgm.3376 34191363
    [Google Scholar]
  28. LiW. WuW. Circ_0005276 Promotes Prostate Cancer Progression Through the Crosstalk of miR-128-3p/DEPDC1B Axis.Biochem. Genet.20236151987200310.1007/s10528‑022‑10328‑y 36913076
    [Google Scholar]
  29. DingX. SunJ. ZhangX. Circ_0076305 facilitates prostate cancer development via sponging miR‐411‐5p and regulating PGK1.Andrologia2022546e1440610.1111/and.14406 35238066
    [Google Scholar]
  30. LvD. CenS. YangS. ZouZ. ZhongJ. PanZ. DengN. LiY. WuK. WangJ. LiuP. Hsa_circ_0063329 inhibits prostate cancer growth and metastasis by modulating the miR-605-5p/tgif2 axis.Cell Cycle20232291101111510.1080/15384101.2023.2174658 36740902
    [Google Scholar]
  31. YuT. DuH. SunC. Circ-ABCC4 contributes to prostate cancer progression and radioresistance by mediating miR-1253/SOX4 cascade.Anticancer Drugs202334115516510.1097/CAD.0000000000001361 36539368
    [Google Scholar]
  32. ChenL. SongY. HouT. LiX. ChengL. LiY. XingY. Circ_0004087 interaction with SND1 promotes docetaxel resistance in prostate cancer by boosting the mitosis error correction mechanism.J. Exp. Clin. Cancer Res.202241119410.1186/s13046‑022‑02404‑3 35659274
    [Google Scholar]
  33. ZhaoS. LiP. WuW. WangQ. QianB. LiX. ShenM. Roles of ferroptosis in urologic malignancies.Cancer Cell Int.202121167610.1186/s12935‑021‑02264‑5 34922551
    [Google Scholar]
  34. ZhouX. ZouL. LiaoH. LuoJ. YangT. WuJ. ChenW. WuK. CenS. LvD. ShuF. YangY. LiC. LiB. MaoX. Abrogation of HnRNP L enhances anti-PD-1 therapy efficacy via diminishing PD-L1 and promoting CD8+ T cell-mediated ferroptosis in castration-resistant prostate cancer.Acta Pharm. Sin. B202212269270710.1016/j.apsb.2021.07.016 35256940
    [Google Scholar]
  35. LiuT. XieX. HeY. ZhangJ. MouJ. circ_WASF2 regulates ferroptosis by miR-634/GPX4 signaling in pancreatic cancer.Discov. Oncol.202415114310.1007/s12672‑024‑01001‑4 38704809
    [Google Scholar]
  36. HuangX. WuJ. WangY. XianZ. LiJ. QiuN. LiH. FOXQ1 inhibits breast cancer ferroptosis and progression via the circ_0000643/miR-153/SLC7A11 axis.Exp. Cell Res.2023431111373710.1016/j.yexcr.2023.113737 37591453
    [Google Scholar]
  37. HuangM. GaoT. ChenX. YiJ. ZhouX. Circ_0087851 suppresses colorectal cancer malignant progression through triggering miR-593-3p/BAP1-mediated ferroptosis.J. Cancer Res. Clin. Oncol.2024150420410.1007/s00432‑024‑05643‑3 38642144
    [Google Scholar]
  38. WeiL. HeW. ZhaoH. ZhaoP. Circ_0026123 promotes cisplatin resistance and progression of ovarian cancer by upregulating RAB1A through sequestering miR-543.Anticancer Drugs202233101069108010.1097/CAD.0000000000001373 36255068
    [Google Scholar]
  39. YamadaM. TanakaK. YamamotoK. MatsumotoH. YamasakiM. YamashitaK. MakinoT. SaitoT. YamamotoK. TakahashiT. KurokawaY. NakajimaK. OkadaY. EguchiH. DokiY. Association between circ_0004365 and cisplatin resistance in esophageal squamous cell carcinoma.Oncol. Lett.202326546710.3892/ol.2023.14054 37780544
    [Google Scholar]
  40. ShiW. WangF. circ_AKT3 knockdown suppresses cisplatin resistance in gastric cancer.Open Med.2022171280291
    [Google Scholar]
  41. MaT. GuoJ. HanJ. LiL. RenY. HuangJ. DiaoG. ZhengX. ZhengY. Circ_0001589/miR‐1248/HMGB1 axis enhances EMT‐mediated metastasis and cisplatin resistance in cervical cancer.Mol. Carcinog.202362111645165810.1002/mc.23605 37431919
    [Google Scholar]
  42. MaY. GaoJ. GuoH. Circ_0000140 Alters miR-527/SLC7A11-Mediated Ferroptosis to Influence Oral Squamous Cell Carcinoma Cell Resistance to DDP.Pharm. Genomics Pers. Med.2023161079108910.2147/PGPM.S426205 38105907
    [Google Scholar]
  43. WangZ. DingY. WangX. LuS. WangC. HeC. WangL. PiaoM. ChiG. LuoY. GeP. Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT.Cancer Lett.2018428213310.1016/j.canlet.2018.04.021 29702192
    [Google Scholar]
  44. MishchenkoT.A. BalalaevaI.V. VedunovaM.V. KryskoD.V. Ferroptosis and Photodynamic Therapy Synergism: Enhancing Anticancer Treatment.Trends Cancer20217648448710.1016/j.trecan.2021.01.013 33640304
    [Google Scholar]
  45. ZhuoS. YangL. ChenS. TangC. LiW. GaoZ. FengJ. YangK. Ferroptosis: A potential opportunity for intervention of pre-metastatic niche.Front. Oncol.20221298062010.3389/fonc.2022.980620 36158661
    [Google Scholar]
  46. LeiG. ZhuangL. GanB. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions.Cancer Cell202442451353410.1016/j.ccell.2024.03.011 38593779
    [Google Scholar]
  47. LiZ. FanM. ZhouZ. SangX. Circ_0082374 Promotes the Tumorigenesis and Suppresses Ferroptosis in Non-small Cell Lung Cancer by Up-Regulating GPX4 Through Sequestering miR-491-5p.Mol. Biotechnol.202410.1007/s12033‑024‑01059‑z 38438754
    [Google Scholar]
  48. FantoneS. PianiF. OlivieriF. RippoM.R. SiricoA. Di SimoneN. MarzioniD. TossettaG. Role of SLC7A11/xCT in Ovarian Cancer.Int. J. Mol. Sci.202425158710.3390/ijms25010587 38203758
    [Google Scholar]
  49. ChenR-S. SongY-M. ZhouZ-Y. TongT. LiY. FuM. GuoX-L. DongL-J. HeX. QiaoH-X. ZhanQ-M. LiW. Disruption of xCT inhibits cancer cell metastasis via the caveolin-1/β-catenin pathway.Oncogene200928459960910.1038/onc.2008.414 19015640
    [Google Scholar]
  50. BanjacA. PerisicT. SatoH. SeilerA. BannaiS. WeissN. KölleP. TschoepK. IsselsR.D. DanielP.T. ConradM. BornkammG.W. The cystine/cysteine cycle: A redox cycle regulating susceptibility versus resistance to cell death.Oncogene200827111618162810.1038/sj.onc.1210796 17828297
    [Google Scholar]
  51. HuangY. DaiZ. BarbacioruC. SadéeW. Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance.Cancer Res.200565167446745410.1158/0008‑5472.CAN‑04‑4267 16103098
    [Google Scholar]
  52. GuanJ. LoM. DockeryP. MahonS. KarpC.M. BuckleyA.R. LamS. GoutP.W. WangY.Z. The x c − cystine/glutamate antiporter as a potential therapeutic target for small-cell lung cancer: Use of sulfasalazine.Cancer Chemother. Pharmacol.200964346347210.1007/s00280‑008‑0894‑4 19104813
    [Google Scholar]
  53. MaM. ChenG. WangP. LuW. ZhuC. SongM. YangJ. WenS. XuR. HuY. HuangP. Xc− inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism.Cancer Lett.20153681889610.1016/j.canlet.2015.07.031 26254540
    [Google Scholar]
  54. DoxseeD.W. GoutP.W. KuritaT. LoM. BuckleyA.R. WangY. XueH. KarpC.M. CutzJ.C. CunhaG.R. WangY.Z. Sulfasalazine‐induced cystine starvation: Potential use for prostate cancer therapy.Prostate200767216217110.1002/pros.20508 17075799
    [Google Scholar]
  55. JiangX. GuoS. XuM. MaB. LiuR. XuY. ZhangY. TFAP2C-Mediated lncRNA PCAT1 Inhibits Ferroptosis in Docetaxel-Resistant Prostate Cancer Through c-Myc/miR-25-3p/SLC7A11 Signaling.Front. Oncol.20221286201510.3389/fonc.2022.862015 35402284
    [Google Scholar]
  56. HeJ. DingH. LiH. PanZ. ChenQ. Intra-Tumoral Expression of SLC7A11 Is Associated with Immune Microenvironment, Drug Resistance, and Prognosis in Cancers: A Pan-Cancer Analysis.Front. Genet.20211277085710.3389/fgene.2021.770857 34938318
    [Google Scholar]
  57. BanoI. HorkyP. AbbasS.Q. MajidM. BilalA.H.M. AliF. BehlT. HassanS.S. BungauS. Ferroptosis: A New Road towards Cancer Management.Molecules2022277212910.3390/molecules27072129 35408533
    [Google Scholar]
  58. HassanniaB. VandenabeeleP. Vanden BergheT. Targeting Ferroptosis to Iron Out Cancer.Cancer Cell201935683084910.1016/j.ccell.2019.04.002 31105042
    [Google Scholar]
  59. ChenX. KangR. KroemerG. TangD. Broadening horizons: the role of ferroptosis in cancer.Nat. Rev. Clin. Oncol.202118528029610.1038/s41571‑020‑00462‑0 33514910
    [Google Scholar]
  60. LiQ. ChenK. ZhangT. JiangD. ChenL. JiangJ. ZhangC. LiS. Understanding sorafenib-induced ferroptosis and resistance mechanisms: Implications for cancer therapy.Eur. J. Pharmacol.202395517591310.1016/j.ejphar.2023.175913 37460053
    [Google Scholar]
  61. YangC. LuT. LiuM. YuanX. LiD. ZhangJ. ZhouL. XuM. Tiliroside targets TBK1 to induce ferroptosis and sensitize hepatocellular carcinoma to sorafenib.Phytomedicine202311115466810.1016/j.phymed.2023.154668 36657316
    [Google Scholar]
  62. ByunJ.K. LeeS. KangG.W. LeeY.R. ParkS.Y. SongI.S. YunJ.W. LeeJ. ChoiY.K. ParkK.G. Macropinocytosis is an alternative pathway of cysteine acquisition and mitigates sorafenib-induced ferroptosis in hepatocellular carcinoma.J. Exp. Clin. Cancer Res.20224119810.1186/s13046‑022‑02296‑3 35287706
    [Google Scholar]
  63. GaoR. KalathurR.K.R. Coto-LlerenaM. ErcanC. BuechelD. ShuangS. PiscuoglioS. DillM.T. CamargoF.D. ChristoforiG. TangF. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis.EMBO Mol. Med.20211312e1435110.15252/emmm.202114351 34664408
    [Google Scholar]
  64. LiuM. ShiC. SongQ. KangM. JiangX. LiuH. PeiD. Sorafenib induces ferroptosis by promoting TRIM54-mediated FSP1 ubiquitination and degradation in hepatocellular carcinoma.Hepatol. Commun.2023710e024610.1097/HC9.0000000000000246 37695069
    [Google Scholar]
  65. XuF. WuX. ChenC. WangK. HuangL. XiaJ. LiuY. ShanX. TangN. SLC27A5 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by downregulating glutathione reductase.Cell Death Dis.20231412210.1038/s41419‑023‑05558‑w 36635256
    [Google Scholar]
  66. XuX. LiY. WuY. WangM. LuY. FangZ. WangH. LiY. Increased ATF2 expression predicts poor prognosis and inhibits sorafenib-induced ferroptosis in gastric cancer.Redox Biol.20235910256410.1016/j.redox.2022.102564 36473315
    [Google Scholar]
  67. ChangK. ChenY. ZhangX. ZhangW. XuN. ZengB. WangY. FengT. DaiB. XuF. YeD. WangC. DPP9 Stabilizes NRF2 to Suppress Ferroptosis and Induce Sorafenib Resistance in Clear Cell Renal Cell Carcinoma.Cancer Res.202383233940395510.1158/0008‑5472.CAN‑22‑4001 37713596
    [Google Scholar]
  68. ZhaoY. CuiQ. ShenJ. ShenW. WengY. Hsa_circ_0070440 promotes lung adenocarcinoma progression by SLC7A11-mediated-ferroptosis.Histol. Histopathol.2023381214291441 36852950
    [Google Scholar]
  69. PanC.F. WeiK. MaZ.J. HeY.Z. HuangJ.J. GuoZ.Z. ChenZ.P. BarrM.P. ShackelfordR.E. XiaY. WangJ. CircP4HB regulates ferroptosis via SLC7A11-mediated glutathione synthesis in lung adenocarcinoma.Transl. Lung Cancer Res.202211336638010.21037/tlcr‑22‑138 35399564
    [Google Scholar]
  70. ShanshanW. HongyingM. JingjingF. YimingY. YuR. RuiY. CircDTL Functions as an Oncogene and Regulates Both Apoptosis and Ferroptosis in Non-small Cell Lung Cancer Cells.Front. Genet.20211274350510.3389/fgene.2021.743505 34621297
    [Google Scholar]
  71. LiuB. MaH. LiuX. XingW. CircSCN8A suppresses malignant progression and induces ferroptosis in non-small cell lung cancer by regulating miR-1290/ACSL4 axis.Cell Cycle202322775877610.1080/15384101.2022.2154543 36482742
    [Google Scholar]
  72. XiY. ShenY. WuD. ZhangJ. LinC. WangL. YuC. YuB. ShenW. CircBCAR3 accelerates esophageal cancer tumorigenesis and metastasis via sponging miR-27a-3p.Mol. Cancer202221114510.1186/s12943‑022‑01615‑8 35840974
    [Google Scholar]
  73. LiC. TianY. LiangY. LiQ. RETRACTED ARTICLE: Circ_0008035 contributes to cell proliferation and inhibits apoptosis and ferroptosis in gastric cancer via miR-599/EIF4A1 axis.Cancer Cell Int.20202018410.1186/s12935‑020‑01168‑0 32190008
    [Google Scholar]
  74. WangY. ChenH. WeiX. Circ_0007142 downregulates miR‐874‐3p‐mediated GDPD5 on colorectal cancer cells.Eur. J. Clin. Invest.2021517e1354110.1111/eci.13541 33797091
    [Google Scholar]
  75. ZhangH. GeZ. WangZ. GaoY. WangY. QuX. Circular RNA RHOT1 promotes progression and inhibits ferroptosis via mir-106a-5p/STAT3 axis in breast cancer.Aging (Albany NY)20211368115812610.18632/aging.202608 33686957
    [Google Scholar]
  76. WangS. WangY. LiQ. LiX. FengX. A novel circular RNA confers trastuzumab resistance in human epidermal growth factor receptor 2‐positive breast cancer through regulating ferroptosis.Environ. Toxicol.20223771597160710.1002/tox.23509 35234341
    [Google Scholar]
  77. WuP. LiC. YeD. YuK. LiY. TangH. XuG. YiS. ZhangZ. Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis.Aging (Albany NY)20211334663467310.18632/aging.202518 33534779
    [Google Scholar]
  78. OuR. LuS. WangL. WangY. LvM. LiT. XuY. LuJ. GeR. Circular RNA circLMO1 Suppresses Cervical Cancer Growth and Metastasis by Triggering miR-4291/ACSL4-Mediated Ferroptosis.Front. Oncol.20221285859810.3389/fonc.2022.858598 35321435
    [Google Scholar]
  79. CenJ. LiangY. FengZ. ChenX. ChenJ. WangY. ZhuJ. XuQ. ShuG. ZhengW. LiangH. WangZ. DengQ. CaoJ. LuoJ. JinX. HuangY. Hsa_circ_0057105 modulates a balance of epithelial‐mesenchymal transition and ferroptosis vulnerability in renal cell carcinoma.Clin. Transl. Med.2023138e133910.1002/ctm2.1339 37496319
    [Google Scholar]
  80. WangL. WuS. HeH. AiK. XuR. ZhangL. ZhuX. CircRNA-ST6GALNAC6 increases the sensitivity of bladder cancer cells to erastin-induced ferroptosis by regulating the HSPB1/P38 axis.Lab. Invest.2022102121323133410.1038/s41374‑022‑00826‑3 35945269
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073324077240624094140
Loading
/content/journals/cchts/10.2174/0113862073324077240624094140
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CircDUSP22; ferroptosis; in vitro; prostate cancer; SLC7A11
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test