Skip to content
2000
Volume 28, Issue 13
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

Although constitutive ginsenosides are credited with ginseng's remarkable anti-aging efficacy, the mechanism of action and bioactive components of ginsenosides are unclear.

Objective

The goal of the study was to examine the effect of ginsenosides on D-galactose (D-gal)-induced aging in rats and to figure out the underlying molecular mechanism using serum pharmacochemistry and network pharmacology.

Methods

Using behavioral, biochemical indexes, and histological analysis, ginsenosides were evaluated for their anti-aging effects in rats induced by D-gal, and effective ingredients absorbed in the blood were examined by ultra-performance liquid chromatography quadrupole time of flight coupled with mass spectrometry (UPLC-Q/TOF-MS) before being subjected to network pharmacology analysis.

Results

As well as improving spatial learning and memory skills, Ginsenosides are known to regulate malondialdehyde (MDA), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity. In addition, it improved the ultrastructure of neurons in D-gal-induced rats' hippocampus. Seventy-four absorption components and metabolites of ginsenosides were identified in aging rat serum. According to a network pharmacology study, ginsenosides have anti-aging properties by modulating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinases (MAPK) signaling pathways.

Conclusion

The potential mechanisms of the anti-aging effect of ginsenosides involve multiple components, targets, and pathways. These findings serve as a foundation for further research into the processes behind ginsenoside's anti-aging impact.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073270652231115080745
2024-03-04
2025-10-27
Loading full text...

Full text loading...

References

  1. HouY. DanX. BabbarM. WeiY. HasselbalchS.G. CroteauD.L. BohrV.A. Ageing as a risk factor for neurodegenerative disease.Nat. Rev. Neurol.2019151056558110.1038/s41582‑019‑0244‑7 31501588
    [Google Scholar]
  2. TyrrellD.J. GoldsteinD.R. Ageing and atherosclerosis: Vascular intrinsic and extrinsic factors and potential role of IL-6.Nat. Rev. Cardiol.2021181586810.1038/s41569‑020‑0431‑7 32918047
    [Google Scholar]
  3. ZabranskyD.J. JaffeeE.M. WeeraratnaA.T. Shared genetic and epigenetic changes link aging and cancer.Trends Cell Biol.202232433835010.1016/j.tcb.2022.01.004 35144882
    [Google Scholar]
  4. PutotA. PutotS. ChaguéF. CottinY. ZellerM. ManckoundiaP. New horizons in Type 2 myocardial infarction: Pathogenesis, assessment and management of an emerging geriatric disease.Age Ageing2022514afac08510.1093/ageing/afac085 35397160
    [Google Scholar]
  5. LiH. HastingsM.H. RheeJ. TragerL.E. RohJ.D. RosenzweigA. Targeting age-related pathways in heart failure.Circ. Res.2020126453355110.1161/CIRCRESAHA.119.315889 32078451
    [Google Scholar]
  6. FengZ. GlinskayaE. ChenH. GongS. QiuY. XuJ. YipW. Long-term care system for older adults in China: Policy landscape, challenges, and future prospects.Lancet2020396102591362137210.1016/S0140‑6736(20)32136‑X 34338215
    [Google Scholar]
  7. FanW. HuangY. ZhengH. LiS. LiZ. YuanL. ChengX. HeC. SunJ. Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: Pharmacology and mechanisms.Biomed. Pharmacother.202013211091510.1016/j.biopha.2020.110915
    [Google Scholar]
  8. JakariaM. KimJ. KarthivashanG. ParkS.Y. GanesanP. ChoiD.K. Emerging signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases.J. Ginseng Res.201943216317110.1016/j.jgr.2018.01.001 30976157
    [Google Scholar]
  9. WongA.S.T. CheC.M. LeungK.W. Recent advances in ginseng as cancer therapeutics: A functional and mechanistic overview.Nat. Prod. Rep.201532225627210.1039/C4NP00080C 25347695
    [Google Scholar]
  10. de Oliveira ZanusoB. de Oliveira dos SantosA.R. MiolaV.F.B. Guissoni CamposL.M. SpillaC.S.G. BarbalhoS.M. Panax ginseng and aging related disorders: A systematic review.Exp. Gerontol.202216111173110.1016/j.exger.2022.111731 35143871
    [Google Scholar]
  11. HeB. ChenD. ZhangX. YangR. YangY. ChenP. ShenZ. Oxidative stress and ginsenosides: An update on the molecular mechanisms.Oxid. Med. Cell. Longev.2022202211510.1155/2022/9299574 35498130
    [Google Scholar]
  12. WangZ.L. ChenL.B. QiuZ. ChenX.B. LiuY. LiJ. WangL. WangY.P. Ginsenoside Rg1 ameliorates testicular�senescence�changes in D-gal-induced aging mice via anti-inflammatory and antioxidative mechanisms.Mol. Med. Rep.20181756269627610.3892/mmr.2018.8659 29512726
    [Google Scholar]
  13. YangF. YangM.Y. LeJ.Q. LuoB.Y. YinM.D. Chao-Li; Jiang, J.L.; Fang, Y.F.; Shao, J.W. Protective effects and therapeutics of ginsenosides for improving endothelial dysfunction: From therapeutic potentials, pharmaceutical developments to clinical trials.Am. J. Chin. Med.202250374977210.1142/S0192415X22500318 35450513
    [Google Scholar]
  14. ZhengM. XinY. LiY. XuF. XiX. GuoH. CuiX. CaoH. ZhangX. HanC. Ginsenosides: A potential neuroprotective agent.BioMed Res. Int.2018201811110.1155/2018/8174345 29854792
    [Google Scholar]
  15. YuS. XiaH. GuoY. QianX. ZouX. YangH. YinM. LiuH. Ginsenoside Rb1 retards aging process by regulating cell cycle, apoptotic pathway and metabolism of aging mice.J. Ethnopharmacol.202025511274610.1016/j.jep.2020.112746 32165173
    [Google Scholar]
  16. ZhongS.J. WangL. GuR.Z. ZhangW.H. LanR. QinX.Y. Ginsenoside Rg1 ameliorates the cognitive deficits in D-galactose and AlCl 3 -induced aging mice by restoring FGF2-Akt and BDNF-TrkB signaling axis to inhibit apoptosis.Int. J. Med. Sci.20201781048105510.7150/ijms.43979 32410834
    [Google Scholar]
  17. SunJ. ZhangL. ZhangJ. RanR. ShaoY. LiJ. JiaD. ZhangY. ZhangM. WangL. WangY. Protective effects of ginsenoside Rg1 on splenocytes and thymocytes in an aging rat model induced by d-galactose.Int. Immunopharmacol.2018589410210.1016/j.intimp.2018.03.017 29567591
    [Google Scholar]
  18. LiZ.H. YuD. HuangN.N. WuJ.K. DuX.W. WangX.J. Immunoregulatory mechanism studies of ginseng leaves on lung cancer based on network pharmacology and molecular docking.Sci. Rep.20211111820110.1038/s41598‑021‑97115‑8 34521875
    [Google Scholar]
  19. FengG. SunY. LiuS. SongF. PiZ. LiuZ. Stepwise targeted matching strategy from in vitro to in vivo based on ultra–high performance liquid chromatography tandem mass spectrometry technology to quickly identify and screen pharmacodynamic constituents.Talanta201919461962610.1016/j.talanta.2018.10.074 30609581
    [Google Scholar]
  20. WangJ. HeM. GuoW. ZhangY. SuiX. LinJ. LiuX. LiH. LiJ. YangQ. KanM. ZhangZ. MingS. QuX. LiN. Microbiome-metabolomics reveals endogenous alterations of energy metabolism by the dushen tang to attenuate d-galactose-induced memory impairment in rats.BioMed Res. Int.2021202111710.1155/2021/6649085 34136571
    [Google Scholar]
  21. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz382 31106366
    [Google Scholar]
  22. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  23. AmbergerJ.S. BocchiniC.A. SchiettecatteF. ScottA.F. HamoshA. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders.Nucleic Acids Res.201543D1D789D79810.1093/nar/gku1205 25428349
    [Google Scholar]
  24. SafranM. DalahI. AlexanderJ. RosenN. Iny SteinT. ShmoishM. NativN. BahirI. DonigerT. KrugH. GeneCards Version 3: The human gene integrator.Database20102010baq02010.1093/database/baq020
    [Google Scholar]
  25. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  26. KanehisaM. FurumichiM. SatoY. Ishiguro-WatanabeM. TanabeM. KEGG: Integrating viruses and cellular organisms.Nucleic Acids Res.202149D1D545D55110.1093/nar/gkaa970 33125081
    [Google Scholar]
  27. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  28. ZhuJ. MuX. ZengJ. XuC. LiuJ. ZhangM. LiC. ChenJ. LiT. WangY. Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging.PLoS One201496e10129110.1371/journal.pone.0101291 24979747
    [Google Scholar]
  29. LiJ. CaiD. YaoX. ZhangY. ChenL. JingP. WangL. WangY. Protective effect of ginsenoside Rg1 on hematopoietic stem/progenitor cells through attenuating oxidative stress and the wnt/β-catenin signaling pathway in a mouse model of d-galactose-induced aging.Int. J. Mol. Sci.201617684910.3390/ijms17060849 27294914
    [Google Scholar]
  30. ShaoD. LiuX. WuJ. ZhangA. BaiY. ZhaoP. LiJ. Identification of the active compounds and functional mechanisms of Jinshui Huanxian formula in pulmonary fibrosis by integrating serum pharmacochemistry with network pharmacology.Phytomedicine202210215417710.1016/j.phymed.2022.154177 35636171
    [Google Scholar]
  31. YinY. ZhangK. WeiL. ChenD. ChenQ. JiaoM. LiX. HuangJ. GongZ. KangN. LiF. The molecular mechanism of antioxidation of huolisu oral liquid based on serum analysis and network analysis.Front. Pharmacol.20211271097610.3389/fphar.2021.710976 34790116
    [Google Scholar]
  32. YuanH. MaQ. CuiH. LiuG. ZhaoX. LiW. PiaoG. How can synergism of traditional medicines benefit from network pharmacology?Molecules2017227113510.3390/molecules22071135 28686181
    [Google Scholar]
  33. XueC. LiG. LuJ. LiL. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression.Signal Transduct. Target. Ther.20216140010.1038/s41392‑021‑00788‑w 34815385
    [Google Scholar]
  34. LongH.Z. ChengY. ZhouZ.W. LuoH.Y. WenD.D. GaoL.C. PI3K/AKT signal pathway: A target of natural products in the prevention and treatment of alzheimer’s disease and parkinson’s disease.Front. Pharmacol.20211264863610.3389/fphar.2021.648636 33935751
    [Google Scholar]
  35. YuC. XiaoJ.H. The Keap1-Nrf2 system: A mediator between oxidative stress and aging.Oxid. Med. Cell. Longev.2021202111610.1155/2021/6635460 34012501
    [Google Scholar]
  36. Méndez-PertuzM. MartínezP. Blanco-AparicioC. Gómez-CaseroE. Belen GarcíaA. Martínez-TorrecuadradaJ. PalafoxM. CortésJ. SerraV. PastorJ. BlascoM.A. Modulation of telomere protection by the PI3K/AKT pathway.Nat. Commun.201781127810.1038/s41467‑017‑01329‑2 29097657
    [Google Scholar]
  37. WuY. QinD. YangH. WangW. XiaoJ. ZhouL. FuH. Neuroprotective effects of deuterium-depleted water (DDW) Against H2O2-induced oxidative stress in differentiated pc12 cells through the PI3K/Akt signaling pathway.Neurochem. Res.20204551034104410.1007/s11064‑020‑02978‑4 32016793
    [Google Scholar]
  38. ChenH.W. LiuM.Q. ZhangG.Z. ZhangC.Y. WangZ.H. LinA.X. KangJ.H. LiuW.Z. GuoX.D. WangY.D. KangX.W. Proanthocyanidins inhibit the apoptosis and aging of nucleus pulposus cells through the PI3K/Akt pathway delaying intervertebral disc degeneration.Connect. Tissue Res.202263665066210.1080/03008207.2022.2063121 35491814
    [Google Scholar]
  39. ZhangQ. YangX. LiuJ. SongJ. ZhangS. ChenL. ZhangM. 20 S -Protopanaxatriol improves cognitive function of Alzheimer’s disease by promoting endogenous neurogenesis.Food Funct.20231494191420310.1039/D2FO03191D 37067038
    [Google Scholar]
  40. KimE.K. ChoiE.J. Compromised MAPK signaling in human diseases: An update.Arch. Toxicol.201589686788210.1007/s00204‑015‑1472‑2 25690731
    [Google Scholar]
  41. CanoM. Guerrero-CastillaA. NabaviS.M. AyalaA. ArgüellesS. Targeting pro-senescence mitogen activated protein kinase (Mapk) enzymes with bioactive natural compounds.Food Chem. Toxicol.201913111054410.1016/j.fct.2019.05.052
    [Google Scholar]
  42. PapaconstantinouJ. The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease.Cells2019811138310.3390/cells8111383 31689891
    [Google Scholar]
  43. ArafaE.S.A. RefaeyM.S. Abd El-GhafarO.A.M. HassaneinE.H.M. SayedA.M. The promising therapeutic potentials of ginsenosides mediated through p38 MAPK signaling inhibition.Heliyon2021711e0835410.1016/j.heliyon.2021.e08354 34825082
    [Google Scholar]
  44. YuanQ. HuangL. LiuL. LiuJ. DouL. WangG. LiuX. Ginsenoside Rg1 protects against neurodegeneration by inducing neurite outgrowth in cultured hippocampal neurons.Neural Regen. Res.201611231932510.4103/1673‑5374.177741 27073387
    [Google Scholar]
  45. ZhaoQ. LiuY. ZhangS. ZhaoY. WangC. LiK. JinZ. QiaoJ. LiuM. Studies on the regulation and molecular mechanism of panax ginseng saponins on senescence and related behaviors of Drosophila melanogaster.Front. Aging Neurosci.20221487032610.3389/fnagi.2022.870326 35795238
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073270652231115080745
Loading
/content/journals/cchts/10.2174/0113862073270652231115080745
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test