Skip to content
2000
Volume 28, Issue 16
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Ovarian Cancer (OC) is a lethal malignant tumor with a poor prognosis. Disulfidptosis is a newly identified form of cell death caused by disulfide stress. Targeting disulfidptosis is a new metabolic therapeutic strategy in cancer treatment. We aimed to establish a disulfidptosis-related lncRNA signature for prognosis prediction and explore its treatment values in OC patients.

Method

Data from the TCGA and GTEx databases and a disulfidptosis gene set were used to establish a disulfidptosis-related lncRNA signature for prognosis prediction in OC patients. Then, we internally and externally (PCR) validated our model. We also built a nomogram to improve our model's predictive power. Afterward, GSEA was employed to explore our model's potential functions. The ESTIMATE, CIBERSORT, TIMER, and ssGSEA were applied to estimate the immune landscape. Finally, the drug sensitivity of certain drugs for OC patients was analyzed.

Results

We built a prognosis model based on seven drlncRNAs, including AL157871.2, HCP5, AC027348.1, AL109615.3, AL928654.1, LINC02585, and AC011445.1. Our model performed well by internal validation. PCR data also confirmed the same trend in the lncRNA levels. Furthermore, the nomogram-integrated age, grade, stage, and risk score could accurately predict the survival outcomes of OC patients. Subsequently, GSEA unveiled that our model genes enriched the Hedgehog signaling pathway, a key regulator in OC tumorigenesis. Our predictive signature was associated with immune checkpoints, such as PD-1( < 0.01), PD-L1( < 0.001), and CTLA4 ( < 0.01), which might help screen out OC patients who are sensitive to immunotherapy. Small molecule drugs, such as AZD-2281, GDC-0449, imatinib, and nilotinib, might benefit OC patients with different risk scores.

Conclusion

Our disulfidptosis-related lncRNA signature comprised of AL157871.2, HCP5, AC027348.1, AL109615.3, AL928654.1, LINC02585, and AC011445.1 could serve as a prognostic biomarker and guidance to therapy response for OC patients.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073326170240923061119
2024-10-03
2025-12-31
Loading full text...

Full text loading...

References

  1. ShakfaN. LiD. NersesianS. Wilson-SanchezJ. KotiM. The STING pathway: Therapeutic vulnerabilities in ovarian cancer.Br. J. Cancer2022127460361110.1038/s41416‑022‑01797‑4 35383278
    [Google Scholar]
  2. WebbP.M. JordanS.J. Global epidemiology of epithelial ovarian cancer.Nat. Rev. Clin. Oncol.202421538940010.1038/s41571‑024‑00881‑3 38548868
    [Google Scholar]
  3. CabasagC.J. FaganP.J. FerlayJ. VignatJ. LaversanneM. LiuL. van der AaM.A. BrayF. SoerjomataramI. Ovarian cancer today and tomorrow: A global assessment by world region and Human Development Index using GLOBOCAN 2020.Int. J. Cancer202215191535154110.1002/ijc.34002 35322413
    [Google Scholar]
  4. AroraT. MullangiS. VadakekutE.S. LekkalaM.R. Epithelial Ovarian Cancer.StatPearlsTreasure Island, FL2024
    [Google Scholar]
  5. St LaurentJ. LiuJ.F. Treatment Approaches for Platinum-Resistant Ovarian Cancer.J. Clin. Oncol.202442212713310.1200/JCO.23.01771 37910841
    [Google Scholar]
  6. MorandS. DevanaboyinaM. StaatsH. StanberyL. NemunaitisJ. Ovarian cancer immunotherapy and personalized medicine.Int. J. Mol. Sci.20212212653210.3390/ijms22126532 34207103
    [Google Scholar]
  7. BoseS. SahaP. ChatterjeeB. SrivastavaA.K. Chemokines driven ovarian cancer progression, metastasis and chemoresistance: Potential pharmacological targets for cancer therapy.Semin. Cancer Biol.202286Pt 256857910.1016/j.semcancer.2022.03.028 35378273
    [Google Scholar]
  8. LiuX. NieL. ZhangY. YanY. WangC. ColicM. OlszewskiK. HorbathA. ChenX. LeiG. MaoC. WuS. ZhuangL. PoyurovskyM.V. James YouM. HartT. BilladeauD.D. ChenJ. GanB. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis.Nat. Cell Biol.202325340441410.1038/s41556‑023‑01091‑2 36747082
    [Google Scholar]
  9. ChenY. LiuL. XiaL. WuN. WangY. LiH. ChenX. ZhangX. LiuZ. ZhuM. LiaoQ. WangJ. TRPM7 silencing modulates glucose metabolic reprogramming to inhibit the growth of ovarian cancer by enhancing AMPK activation to promote HIF-1α degradation.J. Exp. Clin. Cancer Res.20224114410.1186/s13046‑022‑02252‑1 35101076
    [Google Scholar]
  10. GaoT. ZhangX. ZhaoJ. ZhouF. WangY. ZhaoZ. XingJ. ChenB. LiJ. LiuS. SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer.Cancer Lett.20204698910110.1016/j.canlet.2019.10.029 31639424
    [Google Scholar]
  11. SunH. WangH. WangX. AokiY. WangX. YangY. ChengX. WangZ. WangX. Aurora-A/SOX8/FOXK1 signaling axis promotes chemoresistance via suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells.Theranostics202010156928694510.7150/thno.43811 32550913
    [Google Scholar]
  12. WilkersonM.D. HayesD.N. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking.Bioinformatics201026121572157310.1093/bioinformatics/btq170 20427518
    [Google Scholar]
  13. CaiX. LinJ. LiuL. ZhengJ. LiuQ. JiL. SunY. A novel TCGA-validated programmed cell-death-related signature of ovarian cancer.BMC Cancer202424151510.1186/s12885‑024‑12245‑2 38654239
    [Google Scholar]
  14. KanehisaM. GotoS. KEGG: kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.27 10592173
    [Google Scholar]
  15. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA200510243155451555010.1073/pnas.0506580102 16199517
    [Google Scholar]
  16. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms3612 24113773
    [Google Scholar]
  17. HänzelmannS. CasteloR. GuinneyJ. GSVA: gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  18. LiT. FanJ. WangB. TraughN. ChenQ. LiuJ.S. LiB. LiuX.S. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells.Cancer Res.20177721e108e11010.1158/0008‑5472.CAN‑17‑0307 29092952
    [Google Scholar]
  19. NewmanA.M. SteenC.B. LiuC.L. GentlesA.J. ChaudhuriA.A. SchererF. KhodadoustM.S. EsfahaniM.S. LucaB.A. SteinerD. DiehnM. AlizadehA.A. Determining cell type abundance and expression from bulk tissues with digital cytometry.Nat. Biotechnol.201937777378210.1038/s41587‑019‑0114‑2 31061481
    [Google Scholar]
  20. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.3337 25822800
    [Google Scholar]
  21. JiH. RenM. LiuT. SunY. Prognostic and immunological significance of CXCR2 in ovarian cancer: A promising target for survival outcome and immunotherapeutic response assessment.Dis. Markers2021202112110.1155/2021/5350232 34840630
    [Google Scholar]
  22. LinL. ChenL. XieZ. ChenJ. LiL. LinA. Identification of NAD+ metabolism-derived gene signatures in ovarian cancer prognosis and immunotherapy.Front. Genet.20221390523810.3389/fgene.2022.905238 35783253
    [Google Scholar]
  23. YangW. SoaresJ. GreningerP. EdelmanE.J. LightfootH. ForbesS. BindalN. BeareD. SmithJ.A. ThompsonI.R. RamaswamyS. FutrealP.A. HaberD.A. StrattonM.R. BenesC. McDermottU. GarnettM.J. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells.Nucleic Acids Res.201341Database issueD955D961 23180760
    [Google Scholar]
  24. WangY. BryantS.H. ChengT. WangJ. GindulyteA. ShoemakerB.A. ThiessenP.A. HeS. ZhangJ. PubChem BioAssay: 2017 update.Nucleic Acids Res.201745D1D955D96310.1093/nar/gkw1118 27899599
    [Google Scholar]
  25. GeeleherP. CoxN.J. HuangR.S. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines.Genome Biol.2014153R4710.1186/gb‑2014‑15‑3‑r47 24580837
    [Google Scholar]
  26. HanX. SongD. CuiY. ShiY. GuX. Pan‐cancer analyses of immunogenic cell death‐derived gene signatures: Potential biomarkers for prognosis and immunotherapy.Cancer Rep.202474e207310.1002/cnr2.2073 38627900
    [Google Scholar]
  27. LiuL. ZhanP. NieD. FanL. LinH. GaoL. MaoX. Intermediate-conductance-Ca2-activated K channel IKCa1 is upregulated and promotes cell proliferation in cervical cancer.Med. Sci. Monit. Basic Res.201723455710.12659/MSMBR.901462 28280257
    [Google Scholar]
  28. BridgesM.C. DaulagalaA.C. KourtidisA. LNCcation: lncRNA localization and function.J. Cell Biol.20212202e20200904510.1083/jcb.202009045 33464299
    [Google Scholar]
  29. AshrafizadehM. RabieeN. KumarA.P. SethiG. ZarrabiA. WangY. Long noncoding RNAs (lncRNAs) in pancreatic cancer progression.Drug Discov. Today20222782181219810.1016/j.drudis.2022.05.012 35589014
    [Google Scholar]
  30. ChaichianS. BidgoliS.A. NikfarB. MoazzamiB. LncRNAs and MiRNAs: New targets for resveratrol in ovarian cancer research.Curr. Med. Chem.202330283238324810.2174/1389201024666221111160407 36372916
    [Google Scholar]
  31. HermanA.B. TsitsipatisD. GorospeM. Integrated lncRNA function upon genomic and epigenomic regulation.Mol. Cell202282122252226610.1016/j.molcel.2022.05.027 35714586
    [Google Scholar]
  32. SiderisN. DamaP. BayraktarS. StiffT. CastellanoL. LncRNAs in breast cancer: A link to future approaches.Cancer Gene Ther.202229121866187710.1038/s41417‑022‑00487‑w 35788171
    [Google Scholar]
  33. ZhangG. SunJ. ZhangX. A novel Cuproptosis-related LncRNA signature to predict prognosis in hepatocellular carcinoma.Sci. Rep.20221211132510.1038/s41598‑022‑15251‑1 35790864
    [Google Scholar]
  34. Emami MeybodiS.M. SoleimaniN. YariA. JavadifarA. TollabiM. KarimiB. Emami MeybodiM. SeyedhossainiS. Brouki MilanP. Dehghani FiroozabadiA. Circulatory long noncoding RNAs (circulatory-LNC-RNAs) as novel biomarkers and therapeutic targets in cardiovascular diseases: Implications for cardiovascular diseases complications.Int. J. Biol. Macromol.20232251049107110.1016/j.ijbiomac.2022.11.167 36414082
    [Google Scholar]
  35. WangH. MengQ. QianJ. LiM. GuC. YangY. Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer.Pharmacol. Ther.202223410812310.1016/j.pharmthera.2022.108123 35121000
    [Google Scholar]
  36. MacheskyL.M. Deadly actin collapse by disulfidptosis.Nat. Cell Biol.202325337537610.1038/s41556‑023‑01100‑4 36918690
    [Google Scholar]
  37. HuS. GeM. GaoL. JiangM. HuK. LncRNA HCP5 as a potential therapeutic target and prognostic biomarker for various cancers: A meta analysis and bioinformatics analysis.Cancer Cell Int.202121168610.1186/s12935‑021‑02404‑x 34923990
    [Google Scholar]
  38. ZouY. ChenB. Long non-coding RNA HCP5 in cancer.Int. J. Clin. Chem.20215123339
    [Google Scholar]
  39. WuH. LiuB. ChenZ. LiG. ZhangZ. MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of gastric cancer.Cell Death Dis.202011423310.1038/s41419‑020‑2426‑z 32300102
    [Google Scholar]
  40. WangL. HeM. FuL. JinY. Role of lncRNAHCP5/micro RNA-525–5p/PRC1 crosstalk in the malignant behaviors of ovarian cancer cells.Exp. Cell Res.2020394111212910.1016/j.yexcr.2020.112129 32511950
    [Google Scholar]
  41. HeY. FangL. HuD. ChenS. ShenS. ChenK. MuJ. LiJ. ZhangH. Yong-linL. ZhangL. Necroptosis-associated long noncoding RNAs can predict prognosis and differentiate between cold and hot tumors in ovarian cancer.Front. Oncol.20221296720710.3389/fonc.2022.967207 35965557
    [Google Scholar]
  42. MengC. ZhouJ.Q. LiaoY.S. Autophagy-related long non-coding RNA signature for ovarian cancer.J. Int. Med. Res.2020481110.1177/0300060520970761 33179541
    [Google Scholar]
  43. PengY. WangH. HuangQ. WuJ. ZhangM. A prognostic model based on immune-related long noncoding RNAs for patients with epithelial ovarian cancer.J. Ovarian Res.2022151810.1186/s13048‑021‑00930‑w 35031063
    [Google Scholar]
  44. LiangY. SunH.X. MaB. MengQ.K. Identification of a genomic instability-related long noncoding RNA prognostic model in colorectal cancer based on bioinformatic analysis.Dis. Markers2022202211610.1155/2022/4556585 35711569
    [Google Scholar]
  45. GuY. LiuX. LiaoL. GaoY. ShiY. NiJ. HeG. Relationship between lipid metabolism and Hedgehog signaling pathway.J. Steroid Biochem. Mol. Biol.202120910582510.1016/j.jsbmb.2021.105825 33529733
    [Google Scholar]
  46. HinshawD.C. HannaA. Lama-SherpaT. MetgeB. KammerudS.C. BenavidesG.A. KumarA. AlsheikhH.A. MotaM. ChenD. BallingerS.W. RathmellJ.C. PonnazhaganS. Darley-UsmarV. SamantR.S. ShevdeL.A. Hedgehog signaling regulates metabolism and polarization of mammary tumor-associated macrophages.Cancer Res.202181215425543710.1158/0008‑5472.CAN‑20‑1723 34289986
    [Google Scholar]
  47. HuangQ. WeiX. LiW. MaY. ChenG. ZhaoL. JiangY. XieS. ChenQ. ChenT. Endogenous propionibacterium acnes promotes ovarian cancer progression via regulating hedgehog signalling pathway.Cancers20221421517810.3390/cancers14215178 36358596
    [Google Scholar]
  48. PanY. ZhouJ. ZhangW. YanL. LuM. DaiY. ZhouH. ZhangS. YangJ. The Sonic Hedgehog signaling pathway regulates autophagy and migration in ovarian cancer.Cancer Med.202110134510452110.1002/cam4.4018 34076346
    [Google Scholar]
  49. ZhangH. HuL. ChengM. WangQ. HuX. ChenQ. The Hedgehog signaling pathway promotes chemotherapy resistance via multidrug resistance protein 1 in ovarian cancer.Oncol. Rep.20204462610262010.3892/or.2020.7798 33125122
    [Google Scholar]
  50. BaderJ.E. VossK. RathmellJ.C. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy.Mol. Cell20207861019103310.1016/j.molcel.2020.05.034 32559423
    [Google Scholar]
  51. LiuX. LeiX. HuangS. YangX. Current Perspectives of Immunotherapy for Hepatocellular Carcinoma.Comb. Chem. High Throughput Screen.202528218520110.2174/0113862073255266231025111125 38031784
    [Google Scholar]
  52. WashahH.N. SalifuE.Y. SoremekunO. ElrashedyA.A. MunsamyG. OlotuF.A. SolimanM.E.S. Integrating Bioinformatics Strategies in Cancer Immunotherapy: Current and Future Perspectives.Comb. Chem. High Throughput Screen.202023868769810.2174/1386207323666200427113734 32338212
    [Google Scholar]
  53. ZhangY. ZhangZ. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications.Cell. Mol. Immunol.202017880782110.1038/s41423‑020‑0488‑6 32612154
    [Google Scholar]
  54. PawłowskaA. SkibaW. SuszczykD. KuryłoW. Jakubowicz-GilJ. PaduchR. WertelI. The dual blockade of the TIGIT and PD-1/PD-L1 pathway as a new hope for ovarian cancer patients.Cancers (Basel)20221423575710.3390/cancers14235757 36497240
    [Google Scholar]
  55. OliveiraG. WuC.J. Dynamics and specificities of T cells in cancer immunotherapy.Nat. Rev. Cancer202323529531610.1038/s41568‑023‑00560‑y 37046001
    [Google Scholar]
  56. YuW.D. SunG. LiJ. XuJ. WangX. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy.Cancer Lett.2019452667010.1016/j.canlet.2019.02.048 30902563
    [Google Scholar]
  57. LiB. ChanH.L. ChenP. Immune Checkpoint Inhibitors: Basics and Challenges.Curr. Med. Chem.201926173009302510.2174/0929867324666170804143706 28782469
    [Google Scholar]
  58. DumitruA. DobricaE.C. CroitoruA. CretoiuS.M. GasparB.S. Focus on PD-1/PD-L1 as a Therapeutic Target in Ovarian Cancer.Int. J. Mol. Sci.202223201206710.3390/ijms232012067 36292922
    [Google Scholar]
  59. PawłowskaA. SuszczykD. OkłaK. BarczyńskiB. KotarskiJ. WertelI. Immunotherapies based on PD-1/PD-L1 pathway inhibitors in ovarian cancer treatment.Clin. Exp. Immunol.2019195333434410.1111/cei.13255 30582756
    [Google Scholar]
  60. GouQ. DongC. XuH. KhanB. JinJ. LiuQ. ShiJ. HouY. PD-L1 degradation pathway and immunotherapy for cancer.Cell Death Dis.2020111195510.1038/s41419‑020‑03140‑2 33159034
    [Google Scholar]
  61. Czystowska-KuzmiczM. SosnowskaA. NowisD. RamjiK. SzajnikM. Chlebowska-TuzJ. WolinskaE. GajP. GrazulM. PilchZ. ZerrouqiA. Graczyk-JarzynkaA. SoroczynskaK. CierniakS. KoktyszR. ElishaevE. GrucaS. StefanowiczA. BlaszczykR. BorekB. GzikA. WhitesideT. GolabJ. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma.Nat. Commun.2019101300010.1038/s41467‑019‑10979‑3 31278254
    [Google Scholar]
  62. KhatoonE. ParamaD. KumarA. AlqahtaniM.S. AbbasM. GirisaS. SethiG. KunnumakkaraA.B. Targeting PD-1/PD-L1 axis as new horizon for ovarian cancer therapy.Life Sci.202230612082710.1016/j.lfs.2022.120827 35907493
    [Google Scholar]
  63. MuaibatiM. AbuduyilimuA. ZhangT. DaiY. LiR. HuangF. LiK. TongQ. HuangX. ZhuangL. Efficacy of immune checkpoint inhibitor monotherapy or combined with other small molecule-targeted agents in ovarian cancer.Expert Rev. Mol. Med.202325e610.1017/erm.2023.3 36691778
    [Google Scholar]
  64. O’MalleyD.M. New Therapies for Ovarian Cancer.J. Natl. Compr. Canc. Netw.2019175.5619621 31117037
    [Google Scholar]
  65. WangH. WangD. GuT. ZhuM. ChengL. DaiW. AADAC promotes therapeutic activity of cisplatin and imatinib against ovarian cancer cells.Histol. Histopathol.2022379899907 35451495
    [Google Scholar]
  66. WeigelM.T. RathK. AlkatoutI. WennersA.S. SchemC. MaassN. JonatW. MundhenkeC. Nilotinib in combination with carboplatin and paclitaxel is a candidate for ovarian cancer treatment.Oncology201487423224510.1159/000363656 25116401
    [Google Scholar]
  67. Shyam SunderS. SharmaU.C. PokharelS. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management.Signal Transduct. Target. Ther.20238126210.1038/s41392‑023‑01469‑6 37414756
    [Google Scholar]
  68. BlayJ.Y. von MehrenM. Nilotinib: a novel, selective tyrosine kinase inhibitor.Semin. Oncol.2011380 1)(Suppl. 1S3S910.1053/j.seminoncol.2011.01.016 21419934
    [Google Scholar]
  69. MuraiJ. HuangS.N. DasB.B. RenaudA. ZhangY. DoroshowJ.H. JiJ. TakedaS. PommierY. Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors.Cancer Res.201272215588559910.1158/0008‑5472.CAN‑12‑2753 23118055
    [Google Scholar]
  70. DiSilvestroP. BanerjeeS. ColomboN. ScambiaG. KimB.G. OakninA. FriedlanderM. LisyanskayaA. FloquetA. LearyA. SonkeG.S. GourleyC. OzaA. González-MartínA. AghajanianC. BradleyW. MathewsC. LiuJ. McNamaraJ. LoweE.S. Ah-SeeM.L. MooreK.N. Overall survival with maintenance olaparib at a 7-year follow-up in patients with newly diagnosed advanced ovarian cancer and a BRCA mutation: The SOLO1/GOG 3004 trial.J. Clin. Oncol.202341360961710.1200/JCO.22.01549 36082969
    [Google Scholar]
  71. GaoQ. ZhuJ. ZhaoW. HuangY. AnR. ZhengH. QuP. WangL. ZhouQ. WangD. LouG. WangJ. WangK. LowJ. KongB. RozitaA.M. SenL.C. YinR. XieX. LiuJ. SunW. SuJ. ZhangC. ZangR. MaD. Olaparib Maintenance Monotherapy in Asian Patients with Platinum-Sensitive Relapsed Ovarian Cancer: Phase III Trial (L-MOCA).Clin. Cancer Res.202228112278228510.1158/1078‑0432.CCR‑21‑3023 35131903
    [Google Scholar]
  72. González-MartínA. DesauwC. HeitzF. CropetC. GargiuloP. BergerR. OchiH. VergoteI. ColomboN. MirzaM.R. TaziY. CanzlerU. ZamagniC. Guerra-AliaE.M. LevachéC.B. MarméF. BazanF. GregorioN. de; Dohollou, N.; Fasching, P.A.; Scambia, G.; Rubio-Pérez, M.J.; Milenkova, T.; Costan, C.; Pautier, P.; Ray-Coquard, I. Maintenance olaparib plus bevacizumab in patients with newly diagnosed advanced high-grade ovarian cancer: Main analysis of second progression-free survival in the phase III PAOLA-1/ENGOT-ov25 trial.Euro J. Cancer2022174221231
    [Google Scholar]
  73. SmithM. PothuriB. Appropriate Selection of PARP Inhibitors in Ovarian Cancer.Curr. Treat. Options Oncol.202223688790310.1007/s11864‑022‑00938‑4 35412195
    [Google Scholar]
  74. RudinC.M. Vismodegib.Clin. Cancer Res.201218123218322210.1158/1078‑0432.CCR‑12‑0568 22679179
    [Google Scholar]
  75. DierksC. GDC-0449--targeting the hedgehog signaling pathway.Recent Results Cancer Res.201018423523810.1007/978‑3‑642‑01222‑8_17 20072843
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073326170240923061119
Loading
/content/journals/cchts/10.2174/0113862073326170240923061119
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): disulfidptosis; immune infiltration; lncRNA; Ovarian cancer; signature; TCGA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test