Skip to content
2000
Volume 28, Issue 16
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Hepatocellular Carcinoma (HCC) is one of the most common malignant tumors in the world, characterized by high incidence, high malignancy, and low survival rate. Currently, 1/4 of adults in the world suffer from Non-Alcoholic Fatty Liver Disease (NAFLD), with an incidence rate of 27% in Asia.

Methods

We used TCGA and GEO public database data sets to conduct weighted gene co-expression network analysis to identify relevant gene modules, defined the intersection of tumorigenesis-related modules and NASH development-related modules as shared genes, and then used single-factor Cox, LASSO, and multivariate Cox regression analysis screened out core shared genes and verified their prognostic value. We further investigated the relationship between core shared genes and immune infiltration, tumor mutational load, and drug sensitivity. Finally, RT-qPCR was used to verify its mRNA expression in different cell lines.

Results

We identified Karyopherin α 2 (KPNA2) as the core shared gene between NASH and HCC. Patients were divided into low-risk groups and high-risk groups based on the expression of KPNA2. The prognosis of the low-risk group was significantly better than that of the high-risk group. Furthermore, we found significant differences in tumor immune cell infiltration, somatic mutations, microsatellite instability, and drug sensitivity between different expression groups.

Conclusion

There are very few studies on the molecular mechanism of the relationship between NAFLD and HCC. Our study demonstrates that KPNA2 is a potential therapeutic target and immune-related biomarker for patients with NAFLD and HCC.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073323011240912072514
2024-10-01
2025-12-31
Loading full text...

Full text loading...

References

  1. YounossiZ.M. KoenigA.B. AbdelatifD. FazelY. HenryL. WymerM. Global epidemiology of nonalcoholic fatty liver disease—Meta‐analytic assessment of prevalence, incidence, and outcomes.Hepatology2016641738410.1002/hep.28431 26707365
    [Google Scholar]
  2. ZhouJ. ZhouF. WangW. ZhangX.J. JiY.X. ZhangP. SheZ.G. ZhuL. CaiJ. LiH. Epidemiological features of NAFLD from 1999 to 2018 in China.Hepatology20207151851186410.1002/hep.31150 32012320
    [Google Scholar]
  3. LoombaR. SanyalA.J. The global NAFLD epidemic.Nat. Rev. Gastroenterol. Hepatol.2013101168669010.1038/nrgastro.2013.171 24042449
    [Google Scholar]
  4. YounossiZ.M. Non-alcoholic fatty liver disease – A global public health perspective.J. Hepatol.201970353154410.1016/j.jhep.2018.10.033 30414863
    [Google Scholar]
  5. GoldbergD. DitahI.C. SaeianK. LalehzariM. AronsohnA. GorospeE.C. CharltonM. Changes in the prevalence of hepatitis c virus infection, nonalcoholic steatohepatitis, and alcoholic liver disease among patients with cirrhosis or liver failure on the waitlist for liver transplantation.Gastroenterology2017152510901099.e110.1053/j.gastro.2017.01.003 28088461
    [Google Scholar]
  6. CobbinaE. AkhlaghiF. Non-alcoholic fatty liver disease (NAFLD) – pathogenesis, classification, and effect on drug metabolizing enzymes and transporters.Drug Metab. Rev.201749219721110.1080/03602532.2017.1293683 28303724
    [Google Scholar]
  7. PaikJ.M. GolabiP. YounossiY. MishraA. YounossiZ.M. Changes in the global burden of chronic liver diseases From 2012 to 2017: The growing impact of NAFLD.Hepatology20207251605161610.1002/hep.31173 32043613
    [Google Scholar]
  8. KimD. LiA.A. GadiparthiC. KhanM.A. CholankerilG. GlennJ.S. AhmedA. Changing trends in etiology-based annual mortality from chronic liver disease, from 2007 through 2016.Gastroenterology2018155411541163.e310.1053/j.gastro.2018.07.008 30009816
    [Google Scholar]
  9. WongR.J. CheungR. AhmedA. Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the U.S.Hepatology20145962188219510.1002/hep.26986 24375711
    [Google Scholar]
  10. VosT. LimS.S. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019.Lancet2020396102581204122210.1016/S0140‑6736(20)30925‑9 33069326
    [Google Scholar]
  11. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. Zucman-RossiJ. FinnR.S. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑3 33479224
    [Google Scholar]
  12. StineJ.G. WentworthB.J. ZimmetA. RinellaM.E. LoombaR. CaldwellS.H. ArgoC.K. Systematic review with meta‐analysis: Risk of hepatocellular carcinoma in non‐alcoholic steatohepatitis without cirrhosis compared to other liver diseases.Aliment. Pharmacol. Ther.201848769670310.1111/apt.14937 30136293
    [Google Scholar]
  13. PiscagliaF. Svegliati-BaroniG. BarchettiA. PecorelliA. MarinelliS. TiribelliC. BellentaniS. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter prospective study.Hepatology201663382783810.1002/hep.28368 26599351
    [Google Scholar]
  14. ErtleJ. DechêneA. SowaJ.P. PenndorfV. HerzerK. KaiserG. SchlaakJ.F. GerkenG. SynW.K. CanbayA. Non‐alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis.Int. J. Cancer2011128102436244310.1002/ijc.25797 21128245
    [Google Scholar]
  15. YasuiK. HashimotoE. KomorizonoY. KoikeK. AriiS. ImaiY. ShimaT. KanbaraY. SaibaraT. MoriT. KawataS. UtoH. TakamiS. SumidaY. TakamuraT. KawanakaM. OkanoueT. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma.Clin. Gastroenterol. Hepatol.20119542843310.1016/j.cgh.2011.01.023 21320639
    [Google Scholar]
  16. NassirF. NAFLD: Mechanisms, treatments, and biomarkers.Biomolecules202212682410.3390/biom12060824 35740949
    [Google Scholar]
  17. RadaP. González-RodríguezÁ. García-MonzónC. ValverdeÁ.M. Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver?Cell Death Dis.202011980210.1038/s41419‑020‑03003‑w 32978374
    [Google Scholar]
  18. NakagawaH. HayataY. KawamuraS. YamadaT. FujiwaraN. KoikeK. Lipid metabolic reprogramming in hepatocellular carcinoma.Cancers2018101144710.3390/cancers10110447 30445800
    [Google Scholar]
  19. AnsteeQ.M. ReevesH.L. KotsilitiE. GovaereO. HeikenwalderM. From NASH to HCC: Current concepts and future challenges.Nat. Rev. Gastroenterol. Hepatol.201916741142810.1038/s41575‑019‑0145‑7 31028350
    [Google Scholar]
  20. ZhangL. YuanY. LuK.H. ZhangL. Identification of recurrent focal copy number variations and their putative targeted driver genes in ovarian cancer.BMC Bioinformatics201617122210.1186/s12859‑016‑1085‑7 27230211
    [Google Scholar]
  21. PengH. LuL. ZhouZ. LiuJ. ZhangD. NanK. ZhaoX. LiF. TianL. DongH. YaoY. CNV detection from circulating tumor dna in late stage non-small cell lung cancer patients.Genes2019101192610.3390/genes10110926 31739500
    [Google Scholar]
  22. MyöhänenS.K. BaylinS.B. HermanJ.G. Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia.Cancer Res.1998584591593 9485004
    [Google Scholar]
  23. DaiX. RenT. ZhangY. NanN. Methylation multiplicity and its clinical values in cancer.Expert Rev. Mol. Med.202123e210.1017/erm.2021.4 33787478
    [Google Scholar]
  24. LauerS. GreshamD. An evolving view of copy number variants.Curr. Genet.20196561287129510.1007/s00294‑019‑00980‑0 31076843
    [Google Scholar]
  25. KakehashiA. SuzukiS. WanibuchiH. Recent insights into the biomarkers, molecular targets and mechanisms of non-alcoholic steatohepatitis-driven hepatocarcinogenesis.Cancers20231518456610.3390/cancers15184566 37760534
    [Google Scholar]
  26. NiY. LuM. LiM. HuX. LiF. WangY. XueD. Unraveling the underlying pathogenic factors driving nonalcoholic steatohepatitis and hepatocellular carcinoma: An in-depth analysis of prognostically relevant gene signatures in hepatocellular carcinoma.J. Transl. Med.20242217210.1186/s12967‑024‑04885‑6 38238845
    [Google Scholar]
  27. ZhongZ. XuM. GeC. TanJ. Exploring shared molecular signatures and regulatory mechanisms in nonalcoholic steatohepatitis and inflammatory bowel disease using integrative bioinformatics analysis.Sci. Rep.20241411208510.1038/s41598‑024‑62310‑w 38802459
    [Google Scholar]
  28. RaduA. BlobelG. MooreM.S. Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins.Proc. Natl. Acad. Sci. USA19959251769177310.1073/pnas.92.5.1769 7878057
    [Google Scholar]
  29. GoldfarbD.S. CorbettA.H. MasonD.A. HarremanM.T. AdamS.A. Importin α: A multipurpose nuclear-transport receptor.Trends Cell Biol.200414950551410.1016/j.tcb.2004.07.016 15350979
    [Google Scholar]
  30. KelleyJ.B. TalleyA.M. SpencerA. GioeliD. PaschalB.M. Karyopherin α7 (KPNA7), a divergent member of the importin α family of nuclear import receptors.BMC Cell Biol.20101116310.1186/1471‑2121‑11‑63 20701745
    [Google Scholar]
  31. WangC.I. ChienK.Y. WangC.L. LiuH.P. ChengC.C. ChangY.S. YuJ.S. YuC.J. Quantitative proteomics reveals regulation of karyopherin subunit alpha-2 (KPNA2) and its potential novel cargo proteins in nonsmall cell lung cancer.Mol. Cell. Proteomics201211111105112210.1074/mcp.M111.016592 22843992
    [Google Scholar]
  32. LiX.L. JiaL.L. ShiM.M. LiX. LiZ.H. LiH.F. WangE.H. JiaX.S. Downregulation of KPNA2 in non-small-cell lung cancer is associated with Oct4 expression.J. Transl. Med.201311123210.1186/1479‑5876‑11‑232 24070213
    [Google Scholar]
  33. NoetzelE. RoseM. BornemannJ. GajewskiM. KnüchelR. DahlE. Nuclear transport receptor karyopherin-α2 promotes malignant breast cancer phenotypes in vitro.Oncogene201231162101211410.1038/onc.2011.403 21909132
    [Google Scholar]
  34. PavlouM.P. DimitromanolakisA. Martinez-MorilloE. SmidM. FoekensJ.A. DiamandisE.P. Integrating meta-analysis of microarray data and targeted proteomics for biomarker identification: application in breast cancer.J. Proteome Res.20141362897290910.1021/pr500352e
    [Google Scholar]
  35. MaA. TangM. ZhangL. WangB. YangZ. LiuY. XuG. WuL. JingT. XuX. YangS. LiuY. USP1 inhibition destabilizes KPNA2 and suppresses breast cancer metastasis.Oncogene201938132405241910.1038/s41388‑018‑0590‑8 30531833
    [Google Scholar]
  36. BaylinS.B. EstellerM. RountreeM.R. BachmanK.E. SchuebelK. HermanJ.G. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer.Hum. Mol. Genet.200110768769210.1093/hmg/10.7.687 11257100
    [Google Scholar]
  37. RobertsonK.D. JonesP.A. DNA methylation: Past, present and future directions.Carcinogenesis200021346146710.1093/carcin/21.3.461 10688866
    [Google Scholar]
  38. GuoX. WangZ. ZhangJ. XuQ. HouG. YangY. DongC. LiuG. LiangC. LiuL. ZhouW. LiuH. Upregulated KPNA2 promotes hepatocellular carcinoma progression and indicates prognostic significance across human cancer types.Acta Biochim. Biophys. Sin.201951328529210.1093/abbs/gmz003 30883648
    [Google Scholar]
  39. PinterM. PinatoD.J. RamadoriP. HeikenwalderM. NASH andto hepacellular carcinoma: Immunology and immunotherapy.Clin. Cancer Res.202329351352010.1158/1078‑0432.CCR‑21‑1258 36166660
    [Google Scholar]
  40. WangH. ZhangH. WangY. BrownZ.J. XiaY. HuangZ. ShenC. HuZ. BeaneJ. Ansa-AddoE.A. HuangH. TianD. TsungA. Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis.J. Hepatol.20217561271128310.1016/j.jhep.2021.07.032 34363921
    [Google Scholar]
  41. MaC. KesarwalaA.H. EggertT. Medina-EcheverzJ. KleinerD.E. JinP. StroncekD.F. TerabeM. KapoorV. ElGindiM. HanM. ThorntonA.M. ZhangH. EggerM. LuoJ. FelsherD.W. McVicarD.W. WeberA. HeikenwalderM. GretenT.F. NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis.Nature2016531759325325710.1038/nature16969 26934227
    [Google Scholar]
  42. WangZ.Y. KeoghA. WaldtA. CuttatR. NeriM. ZhuS. SchuiererS. RuchtiA. CrochemoreC. KnehrJ. BastienJ. KsiazekI. Sánchez-TaltavullD. GeH. WuJ. RomaG. HelliwellS.B. StrokaD. NigschF. Single-cell and bulk transcriptomics of the liver reveals potential targets of NASH with fibrosis.Sci. Rep.20211111939610.1038/s41598‑021‑98806‑y 34588551
    [Google Scholar]
  43. GomesA.L. TeijeiroA. BurénS. TummalaK.S. YilmazM. WaismanA. TheurillatJ.P. PernaC. DjouderN. Metabolic inflammation-associated il-17a causes non-alcoholic steatohepatitis and hepatocellular carcinoma.Cancer Cell201630116117510.1016/j.ccell.2016.05.020 27411590
    [Google Scholar]
  44. JiangP. GuS. PanD. FuJ. SahuA. HuX. LiZ. TraughN. BuX. LiB. LiuJ. FreemanG.J. BrownM.A. WucherpfennigK.W. LiuX.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.Nat. Med.201824101550155810.1038/s41591‑018‑0136‑1 30127393
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073323011240912072514
Loading
/content/journals/cchts/10.2174/0113862073323011240912072514
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): HCC; Hepatocellular carcinoma; immunity; NAFLD; non-alcoholic fatty liver disease; prognosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test