Skip to content
2000
Volume 28, Issue 15
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

The Precancerous Lesion of Gastric Cancer (PLGC) is an early stage in the development of gastric cancer. The clinical application of HPXLD has been found to be effective in treating PLGC, but the mechanism of how HPXLD acts on PLGC is still unclear.

Objective

The objectives of this study were to reveal the molecular mechanism of how HPXLD can be used to treat PLGC and investigate this mechanism through bioinformatics and experimental validation.

Methods

PLGC-associated target genes were identified through bioinformatics analysis. A rat model of PLGC was induced using N-methyl-N'-nitro-N-nitrosoquanidine (MNNG) in combination with ranitidine, hot saline, ethanol, and intermittent fasting, with interventions by HPXLD. The pathological alterations in gastric mucosa were assessed through Hematoxylin-eosin staining (HE). Immunohistochemistry (IHC) and Western blot analyses were employed to evaluate the changes in expression levels of inflammation-related proteins.

Results

After conducting bioinformatics analysis, it was found that there were 23 HPXLD-PLGC crossover genes, which were significantly enriched in the IL-17 signaling pathway, TNF signaling pathway, and NF-kappa B signaling pathway. The results of HE showed that HPXLD was effective in improving gastric mucosal histopathological changes. Additionally, the IHC results demonstrated that HPXLD was able to downregulate the expression of IL-6, COX-2, MCP-1, and MMP-9. Furthermore, Western blot analysis revealed that HPXLD was able to downregulate the expressions of IL-6, IL-17RA, ACT1, NF-κB, and TNF-α.

Conclusion

HPXLD has been shown to improve PLGC by reducing the expression of inflammation-related proteins. This suggests that HPXLD may potentially be a treatment option for PLGC.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073325718240827073225
2024-09-16
2026-01-01
Loading full text...

Full text loading...

References

  1. ZhongY.L. WangP.Q. HaoD.L. SuiF. ZhangF.B. LiB. Traditional Chinese medicine for transformation of gastric precancerous lesions to gastric cancer: A critical review.World J. Gastrointest. Oncol.2023151365410.4251/wjgo.v15.i1.36 36684050
    [Google Scholar]
  2. CorreaP. PiazueloM.B. The gastric precancerous cascade.J. Dig. Dis.20121312910.1111/j.1751‑2980.2011.00550.x 22188910
    [Google Scholar]
  3. WeiH. LiW. ZengL. DingN. LiK. YuH. JiangF. YinH. XiaY. DengC. CaiN. ChenX. GuL. ChenH. ZhangF. HeY. LiJ. ZhangC. OLFM4 promotes the progression of intestinal metaplasia through activation of the MYH9/GSK3β/β-catenin pathway.Mol. Cancer202423112410.1186/s12943‑024‑02016‑9 38849840
    [Google Scholar]
  4. Yan-RuiW. Xue-ErY. Mao-YuD. Ya-TingL. Bo-HengL. Miao-JieZ. LiZ. Research on the signaling pathway and the related mechanism of traditional Chinese medicine intervention in chronic gastritis of the “inflammation-cancer transformation”.Front. Pharmacol.202415133847110.3389/fphar.2024.1338471 38698812
    [Google Scholar]
  5. LiK. MaX. LiZ. LiuY. ShenG. LuoZ. WangD. XiaL. WangZ. TianM. LiuH. GengF. LiB. A natural peptide from a traditional chinese medicine has the potential to treat chronic atrophic gastritis by activating gastric stem cells.Adv. Sci.20241120230432610.1002/advs.202304326 38544338
    [Google Scholar]
  6. LuY. LiuH. YangK. MaoY. MengL. YangL. OuyangG. LiuW. A comprehensive update: Gastrointestinal microflora, gastric cancer and gastric premalignant condition, and intervention by traditional Chinese medicine.J. Zhejiang Univ. Sci. B202223111810.1631/jzus.B2100182 35029085
    [Google Scholar]
  7. CaoY. WangD. MoG. PengY. LiZ. Gastric precancerous lesions: Occurrence, development factors, and treatment.Front. Oncol.202313122665210.3389/fonc.2023.1226652 37719006
    [Google Scholar]
  8. DaiZ. TanC. WangJ. WangQ. WangY. HeY. PengY. GaoM. ZhangY. LiuL. SongN. LiN. Traditional Chinese medicine for gastric cancer: An evidence mapping.Phytother. Res.20243862707272310.1002/ptr.8155 38517014
    [Google Scholar]
  9. YuL. SunL. YuQ. XiongF. WangD. PuL. PengF. XieX. PengC. Bioactive compounds and mechanism of Xianglian pill in the treatment of gastric cancer: Network pharmacology analysis and experimental validation.J. Ethnopharmacol.202331411657310.1016/j.jep.2023.116573 37142148
    [Google Scholar]
  10. LiY. LiT. ChenJ. ZhengH. LiY. ChuF. WangS. LiP. LinJ. SuZ. DingX. Manpixiao decoction halted the malignant transformation of precancerous lesions of gastric cancer: From network prediction to in-vivo verification.Front. Pharmacol.20221392773110.3389/fphar.2022.927731 35991884
    [Google Scholar]
  11. TaoC. 30 cases of chronic superficial gastritis treated by huopu xialing decoction.Hubei J. Tradit. Chin. Med.20042661
    [Google Scholar]
  12. ZengY. NiC. WangQ. Clinical observation on the treatment of Helicobacter pylori-related gastritis with Huopu Xialing decoction.Hubei J. Tradit. Chin. Med.2007122
    [Google Scholar]
  13. YangL. Clinical observation on 32 cases of chronic superficial gastritis with spleen-stomach damp-heat type treated with Huopu Xialing decoction.Pract. Clin. J. Integr. Tradit. Chin. West. Med.20111133
    [Google Scholar]
  14. ZhangS. ShenY. LiuH. ZhuD. FangJ. PanH. LiuW. Inflammatory microenvironment in gastric premalignant lesions: Implication and application.Front. Immunol.202314129710110.3389/fimmu.2023.1297101 38035066
    [Google Scholar]
  15. YinJ. YiJ. YangC. XuB. LinJ. HuH. WuX. ShiH. FeiX. Chronic atrophic gastritis and intestinal metaplasia induced by high salt and N methyl N′ nitro N nitrosoguanidine intake in rats.Exp. Ther. Med.202121431510.3892/etm.2021.9746 33717258
    [Google Scholar]
  16. ThapaS. FischbachL.A. DelongchampR. FaramawiM.F. OrloffM. The association between salt and potential mediators of the gastric precancerous process.Cancers201911453510.3390/cancers11040535 30991669
    [Google Scholar]
  17. MehlaK. HollingsworthM.A. Inflammatory and immune effects on tumor progression.Trends Immunol.20224329395 34953686
    [Google Scholar]
  18. YuL. JiangR. ChenW. LiuY. WangG. GongX. WangY. Novel prognostic indicator combining inflammatory indicators and tumor markers for gastric cancer.World J. Surg. Oncol.20232115010.1186/s12957‑023‑02926‑w 36803398
    [Google Scholar]
  19. NoorF. AsifM. AshfaqU.A. QasimM. Tahir ul Qamar, M. Machine learning for synergistic network pharmacology: A comprehensive overview.Brief. Bioinform.2023243bbad12010.1093/bib/bbad120 37031957
    [Google Scholar]
  20. KanwalA. AzeemF. NadeemH. AshfaqU.A. AadilR.M. KoberA.K.M.H. RajokaM.S.R. RasulI. Molecular mechanisms of cassia fistula against epithelial ovarian cancer using network pharmacology and molecular docking approaches.Pharmaceutics2022149197010.3390/pharmaceutics14091970 36145718
    [Google Scholar]
  21. XueW. XueF. JiaT. HaoA. Research and experimental verification of the molecular mechanism of berberine in improving premature ovarian failure based on network pharmacology.Bioengineered20221349885990010.1080/21655979.2022.2062104 35420511
    [Google Scholar]
  22. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  23. ZhangP. ZhangD. ZhouW. WangL. WangB. ZhangT. LiS. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine.Brief. Bioinform.2023251bbad51810.1093/bib/bbad518 38197310
    [Google Scholar]
  24. GanX. ShuZ. WangX. YanD. LiJ. OfaimS. AlbertR. LiX. LiuB. ZhouX. BarabásiA.L. Network medicine framework reveals generic herb-symptom effectiveness of traditional Chinese medicine.Sci. Adv.2023943eadh021510.1126/sciadv.adh0215 37889962
    [Google Scholar]
  25. WangM.L. YangQ.Q. YingX.H. LiY.Y. WuY.S. ShouQ.Y. MaQ.X. ZhuZ.W. ChenM.L. Network pharmacology-based approach uncovers the mechanism of guanxinning tablet for treating thrombus by mapks signal pathway.Front. Pharmacol.20201165210.3389/fphar.2020.00652 32477130
    [Google Scholar]
  26. ShiL. ZhaoY. FengC. MiaoF. DongL. WangT. StalinA. ZhangJ. TuJ. LiuK. SunW. WuJ. Therapeutic effects of shaogan fuzi decoction in rheumatoid arthritis: Network pharmacology and experimental validation.Front. Pharmacol.20221396716410.3389/fphar.2022.967164 36059943
    [Google Scholar]
  27. WangZ.Y. WangX. ZhangD.Y. HuY.J. LiS. [Traditional Chinese medicine network pharmacology: Development in new era under guidance of network pharmacology evaluation method guidance]Zhongguo Zhongyao Zazhi2022471717 35178906
    [Google Scholar]
  28. LinS. WuJ. ChenB. LiS. HuangH. Identification of a potential mirna–mrna regulatory network for osteoporosis by using bioinformatics methods: A retrospective study based on the gene expression omnibus database.Front. Endocrinol.20221384421810.3389/fendo.2022.844218 35620387
    [Google Scholar]
  29. LeiS. ZhaoS. HuangX. FengY. LiZ. ChenL. HuangP. GuanH. ZhangH. WuQ. ChenB. Chaihu Shugan powder alleviates liver inflammation and hepatic steatosis in NAFLD mice: A network pharmacology study and in vivo experimental validation.Front. Pharmacol.20221396762310.3389/fphar.2022.967623 36172180
    [Google Scholar]
  30. CaoY. ChenY. WangP. LuJ. HanX. SheJ. Network pharmacology and experimental validation to explore the molecular mechanisms of Bushen Huoxue for the treatment of premature ovarian insufficiency.Bioengineered2021122103451036210.1080/21655979.2021.1996317 34753385
    [Google Scholar]
  31. El IdrissiF. FruchartM. BelarbiK. LamerA. Dubois-DeruyE. LemdaniM. N’GuessanA.L. GuinhouyaB.C. ZitouniD. Exploration of the core protein network under endometriosis symptomatology using a computational approach.Front. Endocrinol.20221386905310.3389/fendo.2022.869053 36120440
    [Google Scholar]
  32. WangK. WangZ. WangZ. XieX. ZangL. WangL. CheF. Stellera chamaejasme L. extracts in the treatment of glioblastoma cell lines: Biological verification based on a network pharmacology approach.Front. Oncol.20221296297010.3389/fonc.2022.962970 36059675
    [Google Scholar]
  33. DuA. ZhengR. DisomaC. LiS. ChenZ. LiS. LiuP. ZhouY. ShenY. LiuS. ZhangY. DongZ. YangQ. AlsaadaweM. RazzaqA. PengY. ChenX. HuL. PengJ. ZhangQ. JiangT. MoL. LiS. XiaZ. Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2.Int. J. Biol. Macromol.202117611210.1016/j.ijbiomac.2021.02.012 33548314
    [Google Scholar]
  34. QiuH. ZhangX. YuH. GaoR. ShiJ. ShenT. Identification of potential targets of triptolide in regulating the tumor microenvironment of stomach adenocarcinoma patients using bioinformatics.Bioengineered20211214304431910.1080/21655979.2021.1945522 34348580
    [Google Scholar]
  35. JiL. SongT. GeC. WuQ. MaL. ChenX. ChenT. ChenQ. ChenZ. ChenW. Identification of bioactive compounds and potential mechanisms of scutellariae radix-coptidis rhizoma in the treatment of atherosclerosis by integrating network pharmacology and experimental validation.Biomed. Pharmacother.202316511521010.1016/j.biopha.2023.115210 37499457
    [Google Scholar]
  36. YangL. ZhaoY. QuR. FuY. ZhouC. YuJ. A network pharmacology and molecular docking approach to reveal the mechanism of Chaihu Anxin Capsule in depression.Front. Endocrinol.202314125604510.3389/fendo.2023.1256045 37745719
    [Google Scholar]
  37. CaiT. ZhangC. ZhaoZ. LiS. CaiH. ChenX. CaiD. LiuW. YanY. XieK. PanH. ZengX. The gastric mucosal protective effects of astragaloside IV in mnng-induced GPL rats.Biomed. Pharmacother.201810429129910.1016/j.biopha.2018.04.013 29775897
    [Google Scholar]
  38. HaoX. ZhouP. YangZ. YangT. WangY. The therapeutic effect of Huazhuojiedu decoction on precancerous lesions in a gastric cancer model via the regulation of lnc 517368.J. Ethnopharmacol.202228311463510.1016/j.jep.2021.114635 34648901
    [Google Scholar]
  39. LuY.T. LiuH.Y. ShangJ.J. MaoY.J. OuyangG.Z. YangL. [Research progress in establishment of N-methyl-N'-nitro-N-nitroso-guanidine-induced rat model of Precancerous lesion of gastric cancer]Zhongguo Zhongyao Zazhi2021461640894095 34467718
    [Google Scholar]
  40. CaoK. ShenC. YuanY. BaiS. YangL. GuoL. ZhangR. ShiY. SiNiSan ameliorates the depression-like behavior of rats that experienced maternal separation through 5-HT1A receptor/CREB/BDNF pathway.Front. Psychiatry20191016010.3389/fpsyt.2019.00160 30984042
    [Google Scholar]
  41. YangL. LiuX. ZhuJ. ZhangX. LiY. ChenJ. LiuH. Progress in traditional Chinese medicine against chronic gastritis: From chronic non-atrophic gastritis to gastric precancerous lesions.Heliyon202396e1676410.1016/j.heliyon.2023.e16764 37313135
    [Google Scholar]
  42. ChenT. WuJ. CuiC. HeQ. LiX. LiangW. LiuX. LiuT. ZhouX. ZhangX. LeiX. XiongW. YuJ. LiG. CT-based radiomics nomograms for preoperative prediction of diffuse-type and signet ring cell gastric cancer: A multicenter development and validation cohort.J. Transl. Med.20222013810.1186/s12967‑022‑03232‑x 35073917
    [Google Scholar]
  43. YangJ. LuZ. LiL. LiY. TanY. ZhangD. WangA. Relationship of lymphovascular invasion with lymph node metastasis and prognosis in superficial esophageal carcinoma: Systematic review and meta-analysis.BMC Cancer202020117610.1186/s12885‑020‑6656‑3 32131772
    [Google Scholar]
  44. FangT. YinX. WangY. ZhangL. ZhangX. ZhaoX. WangY. XueY. Proposed models for prediction of mortality in Stage-I and Stage-II gastric cancer and 5 years after radical gastrectomy.J. Oncol.2022202211410.1155/2022/4510000 35300349
    [Google Scholar]
  45. YangL. LiJ. HuZ. FanX. CaiT. Hengli Zhou PanH. A Pan, H. A systematic review of the mechanisms underlying treatment of gastric precancerous lesions by traditional chinese medicine.Evid. Based Complement. Alternat. Med.2020202011210.1155/2020/9154738 32454874
    [Google Scholar]
  46. ZhuY MaR ChengW Sijunzi decoction ameliorates gastric precancerous lesions via regulating oxidative phosphorylation based on proteomics and metabolomics.J Ethnopharmacol2023318Pt A116925
    [Google Scholar]
  47. XieD WuC WangD Wei-fu-chun tablet halted gastric intestinal metaplasia and dysplasia associated with inflammation by regulating the NF-κB pathway.J Ethnopharmacol2024318Pt B117020
    [Google Scholar]
  48. HopkinsA.L. Network pharmacology.Nat. Biotechnol.200725101110111110.1038/nbt1007‑1110 17921993
    [Google Scholar]
  49. ZuoX. ShiX. ZhangX. ChenZ. YangZ. PanX. LaiR. ZhaoZ. Postoperative ileus with the topical application of tongfu decoction based on network pharmacology and experimental validation.Evid. Based Complement. Alternat. Med.2022202211210.1155/2022/2347419 35388311
    [Google Scholar]
  50. ZhaoJ. PanB. ZhouX. WuC. HaoF. ZhangJ. LiuL. Polygonum cuspidatum inhibits the growth of osteosarcoma cells via impeding Akt/ERK/EGFR signaling pathways.Bioengineered20221322992300610.1080/21655979.2021.2017679 35129428
    [Google Scholar]
  51. ShangT. YuQ. RenT. WangX.T. ZhuH. GaoJ.M. PanG. GaoX. ZhuY. FengY. LiM.C. Xuebijing injection maintains GRP78 expression to prevent Candida albicans–induced epithelial death in the kidney.Front. Pharmacol.202010141610.3389/fphar.2019.01416 31969817
    [Google Scholar]
  52. ZhengS. PanB. Multilevel data integration and molecular docking approach to systematically elucidate the underlying pharmacological mechanisms of Er-Zhi-Wan against hepatocellular carcinoma.Aging202214218783880410.18632/aging.204369 36347033
    [Google Scholar]
  53. ZhangX. WangM. QiaoY. ShanZ. YangM. LiG. XiaoY. WeiL. BiH. GaoT. Exploring the mechanisms of action of Cordyceps sinensis for the treatment of depression using network pharmacology and molecular docking.Ann. Transl. Med.202210628210.21037/atm‑22‑762 35434037
    [Google Scholar]
  54. HaJ. ParkC. ParkC. ParkS. IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization.J. Biomed. Inform.202010210335810.1016/j.jbi.2019.103358 31857202
    [Google Scholar]
  55. ChenX. LiT.H. ZhaoY. WangC.C. ZhuC.C. Deep-belief network for predicting potential miRNA-disease associations.Brief. Bioinform.2021223bbaa18610.1093/bib/bbaa186 34020550
    [Google Scholar]
  56. JinZ. WangM. TangC. ZhengX. ZhangW. ShaX. AnS. Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion.Comput. Biol. Med.202416910790410.1016/j.compbiomed.2023.107904 38181611
    [Google Scholar]
  57. GretenF.R. GrivennikovS.I. Inflammation and Cancer: Triggers, mechanisms, and consequences.Immunity2019511274110.1016/j.immuni.2019.06.025 31315034
    [Google Scholar]
  58. van LooG. BertrandM.J.M. Death by TNF: A road to inflammation.Nat. Rev. Immunol.202323528930310.1038/s41577‑022‑00792‑3 36380021
    [Google Scholar]
  59. ZafarU. KhaliqS. AhmadH.U. LoneK.P. Serum profile of cytokines and their genetic variants in metabolic syndrome and healthy subjects: A comparative study.Biosci. Rep.2019392BSR2018120210.1042/BSR20181202 30635365
    [Google Scholar]
  60. HiranoT. IL-6 in inflammation, autoimmunity and cancer.Int. Immunol.202133312714810.1093/intimm/dxaa078 33337480
    [Google Scholar]
  61. WuY. DuanZ. QuL. ZhangY. ZhuC. FanD. Gastroprotective effects of ginsenoside Rh4 against ethanol-induced gastric mucosal injury by inhibiting the MAPK/NF-κB signaling pathway.Food Funct.202314115167518110.1039/D2FO03693B 37184519
    [Google Scholar]
  62. GoradelH.N. NajafiM. SalehiE. FarhoodB. MortezaeeK. Cyclooxygenase‐2 in cancer: A review.J. Cell. Physiol.201923455683569910.1002/jcp.27411 30341914
    [Google Scholar]
  63. LopesC. AlmeidaT.C. Pimentel-NunesP. Dinis-RibeiroM. PereiraC. Linking dysbiosis to precancerous stomach through inflammation: Deeper than and beyond imaging.Front. Immunol.202314113478510.3389/fimmu.2023.1134785 37063848
    [Google Scholar]
  64. LimJ.W. KimH. KimK.H. Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells.Lab. Invest.200181334936010.1038/labinvest.3780243 11310828
    [Google Scholar]
  65. KudelskiJ. TokarzewiczA. Gudowska-SawczukM. MroczkoB. ChłostaP. Bruczko-GoralewskaM. MituraP. MłynarczykG. The significance of matrix Metalloproteinase 9 (MMP-9) and Metalloproteinase 2 (MMP-2) in urinary bladder cancer.Biomedicines202311395610.3390/biomedicines11030956 36979935
    [Google Scholar]
  66. LiuL. ZhangH. TangX. ZhangM. WuY. ZhaoY. LuC. ZhaoR. Geniposide ameliorates psoriatic skin inflammation by inhibiting the TLR4/MyD88/NF-κB p65 signaling pathway and MMP9.Int. Immunopharmacol.202413311208210.1016/j.intimp.2024.112082 38652958
    [Google Scholar]
  67. HsiehH.L. YuM.C. ChengL.C. ChuM.Y. HuangT.H. YehT.S. TsaiM.M. Quercetin exerts anti-inflammatory effects via inhibiting tumor necrosis factor-α-induced matrix metalloproteinase-9 expression in normal human gastric epithelial cells.World J. Gastroenterol.202228111139115810.3748/wjg.v28.i11.1139 35431500
    [Google Scholar]
  68. BianconiV. SahebkarA. AtkinS.L. PirroM. The regulation and importance of monocyte chemoattractant protein-1.Curr. Opin. Hematol.2018251445110.1097/MOH.0000000000000389 28914666
    [Google Scholar]
  69. ZengF. LiY. ZhangX. ShenL. ZhaoX. BetaT. LiB. ChenR. HuangW. Immune regulation and inflammation inhibition of Arctium lappa L. polysaccharides by TLR4/NF-κB signaling pathway in cells.Int. J. Biol. Macromol.2024254Pt 212770010.1016/j.ijbiomac.2023.127700 37918584
    [Google Scholar]
  70. ZhaoJ. ChenX. HerjanT. LiX. The role of interleukin-17 in tumor development and progression.J. Exp. Med.20202171e2019029710.1084/jem.20190297 31727782
    [Google Scholar]
  71. LiangJ. DaiW. LiuC. Gingerenone A attenuates ulcerative colitis via targeting IL-17RA to inhibit inflammation and restore intestinal barrier function.Adv. Sci.2024e2400206
    [Google Scholar]
  72. FanL. ZengX. JiangY. ZhengD. WangH. QinQ. LiM. WangH. LiuH. LiangS. PangX. ShiS. WuL. LiangS. Yigansan ameliorates maternal immune activation-induced autism-like behaviours by regulating the IL-17A/TRAF6/MMP9 pathway: Network analysis and experimental validation.Phytomedicine202412815538610.1016/j.phymed.2024.155386 38522317
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073325718240827073225
Loading
/content/journals/cchts/10.2174/0113862073325718240827073225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test