Skip to content
2000
Volume 28, Issue 15
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Rheumatoid Arthritis (RA) is a chronic autoimmune disease with a complex etiology. Siweixizangmaoru Decoction (SXD) has been used to treat RA in Tibet for a long history as a classic Tibetan medicine formula. However, the potential pharmacological mechanism has not been elucidated yet.

Aims

The aim of this study was to evaluate the efficacy and mechanism of action of SXD in the treatment of RA using network pharmacology and molecular docking analysis.

Methods

Network pharmacology was employed to identify the potential bioactive components and key targets of SXD for the treatment of RA. Molecular docking of key targets and potential compounds was conducted. High-performance liquid chromatography was performed to validate the predicted active components of SXD. We established a rat model of RA and evaluated the histopathology of each group of rats. In addition, the levels of inflammatory factors in serum and the expression levels of PI3K/AKT and MAPK pathway-related proteins in synovial tissue were detected.

Results

The results of network pharmacological analyses indicated that apigenin, rhamnolipids, kaempferol, quercetin, and naringenin are potential bioactive components of SXD for the treatment of rheumatoid arthritis and that their therapeutic effects may be related to the PI3K-Akt and MAPK pathways. The results of experiments show that SXD improved the arthritis index, significantly reduced joint swelling, and improved synovial inflammation and cartilage destruction.

Conclusion

Network pharmacology, along with experimental validation, provided a useful approach for understanding the pharmacological mechanism of Siweixizangmaoru decoction in RA.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073326896240901110932
2024-09-16
2025-12-31
Loading full text...

Full text loading...

References

  1. ZhangZ. CaoY. YuanQ. ZhangA. Shexiang-wulong pills attenuate rheumatoid arthritis by alleviating inflammation in a mouse model of collagen-induced arthritis.Evid. Based Complement. Alternat. Med.20192019530840510.1155/2019/5308405
    [Google Scholar]
  2. FangQ. ZhouC. NandakumarK.S. Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis, mediators.Inflamm.20202020383021210.1155/2020/3830212
    [Google Scholar]
  3. ZhaoJ. JiangP. GuoS. SchrodiS.J. HeD. Apoptosis, autophagy, NETosis, necroptosis, and pyroptosis mediated programmed cell death as targets for innovative therapy in rheumatoid arthritis.Front. Immunol.20211280980610.3389/fimmu.2021.809806 35003139
    [Google Scholar]
  4. LuoY. LeiY. GuoX. ZhuD. ZhangH. GuoZ. XuZ. ZhaoH. XiY. PengX. XiaoL. WangZ. NiuX. ChenG. CX-4945 inhibits fibroblast-like synoviocytes functions through the CK2-p53 axis to reduce rheumatoid arthritis disease severity.Int. Immunopharmacol.202311911016310.1016/j.intimp.2023.110163 37060808
    [Google Scholar]
  5. Madrid-ParedesA. MartínJ. MárquezA. -Omic approaches and treatment response in rheumatoid arthritis.Pharmaceutics2022148164810.3390/pharmaceutics14081648 36015273
    [Google Scholar]
  6. GuoQ. WangY. XuD. NossentJ. PavlosN.J. XuJ. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies.Bone Res.2018611510.1038/s41413‑018‑0016‑9 29736302
    [Google Scholar]
  7. WangW. ZhouH. LiuL. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review.Eur. J. Med. Chem.201815850251610.1016/j.ejmech.2018.09.027 30243154
    [Google Scholar]
  8. ZhangR. HanL. LinW. BaX. YanJ. LiT. YangY. HuangY. HuangY. QinK. ChenZ. WangY. TuS. Mechanisms of NLRP3 inflammasome in rheumatoid arthritis and osteoarthritis and the effects of traditional Chinese medicine.J. Ethnopharmacol.202432111743210.1016/j.jep.2023.117432 37992880
    [Google Scholar]
  9. WangY. ChenS. DuK. LiangC. WangS. Owusu BoadiE. LiJ. PangX. HeJ. ChangY. Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis.J. Ethnopharmacol.202127911436810.1016/j.jep.2021.114368 34197960
    [Google Scholar]
  10. TaoY. LiuJ. LiM. WangH. FanG. XieX. FuX. SuJ. Abelmoschus manihot (L.) medik. seeds alleviate rheumatoid arthritis by modulating JAK2/STAT3 signaling pathway.J. Ethnopharmacol.202432511764110.1016/j.jep.2023.117641 38151179
    [Google Scholar]
  11. HeQ. TanX. GengS. DuQ. PeiZ. ZhangY. WangS. ZhangY. Network analysis combined with pharmacological evaluation strategy to reveal the mechanism of Tibetan medicine Wuwei Shexiang pills in treating rheumatoid arthritis.Front. Pharmacol.20221394101310.3389/fphar.2022.941013 35924046
    [Google Scholar]
  12. YuL. LiS. PuL. YangC. ShiQ. ZhaoQ. MenigaS. LiuY. ZhangY. LaiX. Traditional Tibetan medicine: therapeutic potential in rheumatoid arthritis.Front. Pharmacol.20221393891510.3389/fphar.2022.938915 36267280
    [Google Scholar]
  13. HuangY. GaoX. AnY. Inhibitory effect of jinwujiangu prescription on peripheral blood osteoclasts in patients with rheumatoid arthritis and the relevant molecular mechanism, mediators.Inflamm.20232023481441210.1155/2023/4814412
    [Google Scholar]
  14. Su, J.; Li, Q.; Liu, J.; Wang, H.; Li, X.; Wüntrang, D.; Liu, C.; Zhao, Q.; RuyuYao, ; Meng, X.; Zhang, Y. Ethyl acetate extract of Tibetan medicine Rhamnella gilgitica ameliorated type II collagen-induced arthritis in rats via regulating JAK-STAT signaling pathway.J. Ethnopharmacol.202126711351410.1016/j.jep.2020.113514 33223115
    [Google Scholar]
  15. HuangS. LiuH.F. QuanX. JinY. XuanG. AnR.B. DikyeT. LiB. Rhamnella gilgitica Attenuates Inflammatory Responses in LPS-Induced Murine Macrophages and Complete Freund’s Adjuvant-Induced Arthritis Rats.Am. J. Chin. Med.20164471379139210.1142/S0192415X16500774 27785942
    [Google Scholar]
  16. SharmaA. TirpudeN.V. BhardwajN. KumarD. PadwadY. Berberis lycium fruit extract and its phytoconstituents berberine and rutin mitigate collagen–CFA-induced arthritis (CIA) via improving GSK3β/STAT/Akt/MAPKs/NF-κB signaling axis mediated oxi-inflammation and joint articular damage in murine model.Inflammopharmacology202230265566610.1007/s10787‑022‑00941‑z 35254584
    [Google Scholar]
  17. Alamgeer; Uttra, A.M.; Hasan, U.H. Anti-arthritic activity of aqueous-methanolic extract and various fractions of Berberis orthobotrys Bien ex Aitch.BMC Complement. Altern. Med.201717137110.1186/s12906‑017‑1879‑9 28720131
    [Google Scholar]
  18. JiaN. MaH. ZhangT. WangL. CuiJ. ZhaY. DingY. WangJ. Gentiopicroside attenuates collagen-induced arthritis in mice via modulating the CD147/p38/NF-κB pathway.Int. Immunopharmacol.202210810885410.1016/j.intimp.2022.108854 35598398
    [Google Scholar]
  19. YuF. YuF. LiR. WangR. Inhibitory effects of the Gentiana macrophylla (Gentianaceae) extract on rheumatoid arthritis of rats.J. Ethnopharmacol.2004951778110.1016/j.jep.2004.06.025 15374610
    [Google Scholar]
  20. NairV. SinghS. GuptaY.K. Anti-arthritic and disease modifying activity of Terminalia chebula Retz. in experimental models.J. Pharm. Pharmacol.201062121801180610.1111/j.2042‑7158.2010.01193.x 21054408
    [Google Scholar]
  21. LiuX TaoH TianR HuangW ZhangT LiuY ZhangY MengX Hezi inhibits Tiebangchui-induced cardiotoxicity and preserves its anti-rheumatoid arthritis effects by regulating the pharmacokinetics of aconitine and deoxyaconitine.J Ethnopharmacol2023302Pt A11591510.1016/j.jep.2022.11591536375646
    [Google Scholar]
  22. ZhangR. ZhuX. BaiH. NingK. Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment.Front. Pharmacol.20191012310.3389/fphar.2019.00123 30846939
    [Google Scholar]
  23. YuanH. MaQ. CuiH. How Can Synergism of Traditional Medicines Benefit from Network Pharmacology.Molecules201722113510.3390/molecules22071135
    [Google Scholar]
  24. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  25. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  26. ChenW. LinT. HeQ. YangP. ZhangG. HuangF. WangZ. PengH. LiB. LiangD. WangH. Study on the potential active components and molecular mechanism of Xiao Huoluo Pills in the treatment of cartilage degeneration of knee osteoarthritis based on bioinformatics analysis and molecular docking technology.J. Orthop. Surg. Res.202116146010.1186/s13018‑021‑02552‑w 34273999
    [Google Scholar]
  27. HähnkeV.D. KimS. BoltonE.E. PubChem chemical structure standardization.J. Cheminform.20181013610.1186/s13321‑018‑0293‑8 30097821
    [Google Scholar]
  28. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz382 31106366
    [Google Scholar]
  29. StelzerG RosenN PlaschkesI The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses.Curr Protoc Bioinformatics2016541.30.11.30.3310.1002/cpbi.5
    [Google Scholar]
  30. HamoshA. AmbergerJ.S. BocchiniC. ScottA.F. RasmussenS.A. Online Mendelian Inheritance in Man (OMIM ®): Victor MCKUSICK 's magnum opus.Am. J. Med. Genet. A.2021185113259326510.1002/ajmg.a.62407 34169650
    [Google Scholar]
  31. DonchevaN.T. MorrisJ.H. GorodkinJ. JensenL.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data.J. Proteome Res.201918262363210.1021/acs.jproteome.8b00702 30450911
    [Google Scholar]
  32. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa1074 33237311
    [Google Scholar]
  33. DennisG.Jr ShermanB.T. HosackD.A. YangJ. GaoW. LaneH.C. LempickiR.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery.Genome Biol.200345310.1186/gb‑2003‑4‑5‑p3 12734009
    [Google Scholar]
  34. FerreiraL. Dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules200713384 26205061
    [Google Scholar]
  35. WangL. TangX. XiangX. TangY. QiuL. Experimental study of TNF α receptor gene transfection by ultrasound targeted microbubble destruction to treat collagen induced arthritis in rats in vivo.Exp. Ther. Med.20191731601161010.3892/etm.2019.7158 30783427
    [Google Scholar]
  36. PengJ. LuX. XieK. XuY. HeR. GuoL. HanY. WuS. DongX. LuY. LiuZ. CaoW. GongM. Dynamic alterations in the gut microbiota of collagen-induced arthritis rats following the prolonged administration of total glucosides of paeony.Front. Cell. Infect. Microbiol.2019920410.3389/fcimb.2019.00204 31245305
    [Google Scholar]
  37. LiQ. Study on Material Basis of Anti-Rheumatoid Arthritis of Tibetan Medicine Rhamnella gilgitica.PhD thesis, Chengdu University of Traditional Chinese Medicine202010.26988/d.cnki.gcdzu.2020.000521
    [Google Scholar]
  38. PeiX. Study on the chemical composition and anti-rheumatoid arthritis activity of Rhamnella gilgitica Mansf.PhD thesis, Qing dao university of science and technology2015
    [Google Scholar]
  39. WangH. LiL. ChenQ. Mechanism of Rhamnella gilgitica Mansf. et Melch. against rheumatoid arthritis based on network pharmacology and molecular docking technology.Zhongguo Yaolixue Yu Dulixue Zazhi20213503182193
    [Google Scholar]
  40. CrottiC. BiggioggeroM. BeccioliniA. AgapeE. FavalliE.G. Mavrilimumab: A unique insight and update on the current status in the treatment of rheumatoid arthritis.Expert Opin. Investig. Drugs201928757358110.1080/13543784.2019.1631795 31208237
    [Google Scholar]
  41. ChenG. LuoJ. LiuY. YuX. LiuX. TaoQ. Network pharmacology analysis and experimental validation to investigate the mechanism of total flavonoids of rhizoma drynariae in treating rheumatoid arthritis.Drug Des. Devel. Ther.2022161743176610.2147/DDDT.S354946 35702063
    [Google Scholar]
  42. MoudgilK.D. BermanB.M. Traditional Chinese medicine:] Potential for clinical treatment of rheumatoid arthritis.Expert Rev. Clin. Immunol.201410781982210.1586/1744666X.2014.917963 24820012
    [Google Scholar]
  43. WenY ZhangS MengX ZhaoC HouB ZhuX CaiW ZhouY QiuL SunH Water extracts of Tibetan medicine Wuweiganlu attenuates experimental arthritis via inducing macrophage polarization towards the M2 type.J Ethnopharmacol2024318Pt A11693410.1016/j.jep.2023.11693437480967
    [Google Scholar]
  44. MiyoshiM. LiuS. Collagen-induced arthritis models, methods.Mol. Biol.201818683710.1007/978‑1‑4939‑8802‑0_1
    [Google Scholar]
  45. CaoD. FanQ. LiZ. ChenM. JiangY. LinR. LiJ. ZhaoC. Transcriptomic profiling revealed the role of apigenin-4′-O-α-L-rhamnoside in inhibiting the activation of rheumatoid arthritis fibroblast-like synoviocytes via MAPK signaling pathway.Phytomedicine202210215420110.1016/j.phymed.2022.154201 35660352
    [Google Scholar]
  46. LiX. HanY. ZhouQ. JieH. HeY. HanJ. HeJ. JiangY. SunE. Apigenin, a potent suppressor of dendritic cell maturation and migration, protects against collagen‐induced arthritis.J. Cell. Mol. Med.201620117018010.1111/jcmm.12717 26515512
    [Google Scholar]
  47. HuT. LiuQ.M. HeX.W. HuangF. ZhangM.W. JiangJ.G. Identification of bioactives from Astragalus chinensis L.f. and their antioxidant, anti-inflammatory and anti-proliferative effects.J. Food Sci. Technol.201754134315432310.1007/s13197‑017‑2902‑3 29184237
    [Google Scholar]
  48. YoonH.Y. LeeE.G. LeeH. ChoI.J. ChoiY.J. SungM.S. YooH.G. YooW.H. Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of COX-2, PGE2 and MMPs.Int. J. Mol. Med.201332497197710.3892/ijmm.2013.1468 23934131
    [Google Scholar]
  49. PanD. LiN. LiuY. XuQ. LiuQ. YouY. WeiZ. JiangY. LiuM. GuoT. CaiX. LiuX. WangQ. LiuM. LeiX. ZhangM. ZhaoX. LinC. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway.Int. Immunopharmacol.20185517418210.1016/j.intimp.2017.12.011 29268189
    [Google Scholar]
  50. ShenP. LinW. BaX. HuangY. ChenZ. HanL. QinK. HuangY. TuS. Quercetin-mediated SIRT1 activation attenuates collagen-induced mice arthritis.J. Ethnopharmacol.202127911421310.1016/j.jep.2021.114213 34023442
    [Google Scholar]
  51. TangM. ZengY. PengW. XieX. YangY. JiB. LiF. Pharmacological aspects of natural quercetin in rheumatoid arthritis.Drug Des. Devel. Ther.2022162043205310.2147/DDDT.S364759 35791403
    [Google Scholar]
  52. LiY.R. ChenD.Y. ChuC.L. LiS. ChenY.K. WuC.L. LinC.C. Naringenin inhibits dendritic cell maturation and has therapeutic effects in a murine model of collagen-induced arthritis.J. Nutr. Biochem.201526121467147810.1016/j.jnutbio.2015.07.016 26350255
    [Google Scholar]
  53. MandevilleA. CockI.E. Terminalia chebula Retz.Indian J. Microbiol.201858449650610.1007/s12088‑018‑0754‑9 30262960
    [Google Scholar]
  54. JiangY.P. WenJ.J. ZhaoX.X. GaoY.C. MaX. SongS.Y. JinY. ShaoT.J. YuJ. WenC.P. The Flavonoid Naringenin Alleviates Collagen-Induced Arthritis through Curbing the Migration and Polarization of CD4+ T Lymphocyte Driven by Regulating Mitochondrial Fission.Int. J. Mol. Sci.202224127910.3390/ijms24010279 36613721
    [Google Scholar]
  55. CheN. SunX. GuL. WangX. ShiJ. SunY. XuL. LiuR. WangJ. ZhuF. PengN. XiaoF. HuD. LuL. QiuW. ZhangM. Adiponectin Enhances B-Cell Proliferation and Differentiation via Activation of Akt1/STAT3 and Exacerbates Collagen-Induced Arthritis.Front. Immunol.20211262631010.3389/fimmu.2021.626310 33815378
    [Google Scholar]
  56. de OliveiraP.S.S. da PaixãoA.B.F. da Rocha JuniorL.F. Branco Pinto DuarteA.L. PereiraM.C. Barreto de Melo RêgoM.J. da Rocha PittaI. da Rocha PittaM.G. Atorvastatin inhibits IL-17A, TNF, IL-6, and IL-10 in PBMC cultures from patients with severe rheumatoid arthritis.Immunobiology2020225315190810.1016/j.imbio.2020.151908 32051095
    [Google Scholar]
  57. PatelJ.P. Konanur SrinivasaN.K. GandeA. AnushaM. DarH. BajiD.B. The Role of Biologics in Rheumatoid Arthritis: A Narrative Review.Cureus2023151e3329310.7759/cureus.33293 36606106
    [Google Scholar]
  58. WuN. YuanT. YinZ. YuanX. SunJ. WuZ. ZhangQ. RedshawC. YangS. DaiX. Network Pharmacology and Molecular Docking Study of the Chinese Miao Medicine Sidaxue in the Treatment of Rheumatoid Arthritis.Drug Des. Devel. Ther.20221643546610.2147/DDDT.S330947 35221674
    [Google Scholar]
  59. ZhaiY. WuB. LiJ. YaoX. ZhuP. ChenZ. CD147 promotes IKK/IκB/NF-κB pathway to resist TNF-induced apoptosis in rheumatoid arthritis synovial fibroblasts.J. Mol. Med. (Berl.)2016941718210.1007/s00109‑015‑1334‑7 26296700
    [Google Scholar]
  60. SharmaV.K. PrateekshaP. SinghS.P. RaoC.V. SinghB.N. Nyctanthes arbor-tristis bioactive extract ameliorates LPS-induced inflammation through the inhibition of NF-κB signalling pathway.J. Ethnopharmacol.202432011738210.1016/j.jep.2023.117382 37925001
    [Google Scholar]
  61. LiJ. ZhangX. GuoD. ShiY. ZhangS. YangR. ChengJ. The mechanism of action of paeoniae radix rubra–angelicae sinensis radix drug pair in the treatment of rheumatoid arthritis through PI3K/AKT/NF-κB signaling pathway.Front. Pharmacol.202314111381010.3389/fphar.2023.1113810 36992829
    [Google Scholar]
  62. PandolfiF. FranzaL. CarusiV. AltamuraS. AndriolloG. NuceraE. Interleukin-6 in Rheumatoid Arthritis.Int. J. Mol. Sci.20202115523810.3390/ijms21155238 32718086
    [Google Scholar]
  63. YokotaK. SatoK. MiyazakiT. AizakiY. TanakaS. SekikawaM. KozuN. KadonoY. OdaH. MimuraT. Characterization and Function of Tumor Necrosis Factor and Interleukin‐6–Induced Osteoclasts in Rheumatoid Arthritis.Arthritis Rheumatol.20217371145115410.1002/art.41666 33512089
    [Google Scholar]
  64. ChenJ. WuW. ZhangM. ChenC. Taraxasterol suppresses inflammation in IL-1β-induced rheumatoid arthritis fibroblast-like synoviocytes and rheumatoid arthritis progression in mice.Int. Immunopharmacol.20197027428310.1016/j.intimp.2019.02.029 30851708
    [Google Scholar]
  65. ZhangB. GuJ. WangY. GuoL. XieJ. YangM. TNF-α stimulated exosome derived from fibroblast-like synoviocytes isolated from rheumatoid arthritis patients promotes HUVEC migration, invasion and angiogenesis by targeting the miR-200a-3p/KLF6/VEGFA axis.Autoimmunity2023561228293910.1080/08916934.2023.2282939 37975481
    [Google Scholar]
  66. ZhangY. QiuH. ZhangH. WangL. ZhuangC. LiuR. Vascular endothelial growth factor A (VEGFA) polymorphisms in Chinese patients with rheumatoid arthritis.Scand. J. Rheumatol.201342534434810.3109/03009742.2013.787454 23848209
    [Google Scholar]
  67. YuanF.L. LiX. LuW.G. SunJ.M. JiangD.L. XuR.S. Epidermal growth factor receptor (EGFR) as a therapeutic target in rheumatoid arthritis.Clin. Rheumatol.201332328929210.1007/s10067‑012‑2119‑9 23179003
    [Google Scholar]
  68. LiZ. XuM. LiR. ZhuZ. LiuY. DuZ. ZhangG. SongY. Identification of biomarkers associated with synovitis in rheumatoid arthritis by bioinformatics analyses.Biosci. Rep.2020409BSR2020171310.1042/BSR20201713 32840301
    [Google Scholar]
  69. ChengQ. ChenM. LiuM. ChenX. ZhuL. XuJ. XueJ. WuH. DuY. Semaphorin 5A suppresses ferroptosis through activation of PI3K-AKT-mTOR signaling in rheumatoid arthritis.Cell Death Dis.202213760810.1038/s41419‑022‑05065‑4 35835748
    [Google Scholar]
  70. JacintoE. FacchinettiV. LiuD. SotoN. WeiS. JungS.Y. HuangQ. QinJ. SuB. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity.Cell2006127112513710.1016/j.cell.2006.08.033 16962653
    [Google Scholar]
  71. SuC.M. HuS.L. SunY. ZhaoJ. DaiC. WangL. XuG. TangC.H. Myostatin induces tumor necrosis factor‐α expression in rheumatoid arthritis synovial fibroblasts through the PI3K–Akt signaling pathway.J. Cell. Physiol.201923469793980110.1002/jcp.27665 30378113
    [Google Scholar]
  72. WengW. LiuY. HuZ. LiZ. PengX. WangM. DongB. ZhongS. JiangY. PanY. Macrophage extracellular traps promote tumor-like biologic behaviors of fibroblast-like synoviocytes through cGAS-mediated PI3K/Akt signaling pathway in patients with rheumatoid arthritis.J. Leukoc. Biol.2024115111612910.1093/jleuko/qiad102 37648663
    [Google Scholar]
  73. WangL. LiP. ZhouY. GuR. LuG. ZhangC. Magnoflorine Ameliorates Collagen-Induced Arthritis by Suppressing the Inflammation Response via the NF-κB/MAPK Signaling Pathways.J. Inflamm. Res.2023162271229610.2147/JIR.S406298 37265745
    [Google Scholar]
  74. Weiqin Ji, ; Xu, W. Orientin inhibits the progression of fibroblast-like synovial cells in rheumatoid arthritis by regulating MAPK-signaling pathway.Allergol. Immunopathol. (Madr.)202250615416210.15586/aei.v50i6.742 36335459
    [Google Scholar]
  75. ZhangL.B. YanY. MaR. LiD.X. YinW.F. TaoQ.W. XuY. Integrated phytochemistry and network pharmacology analysis to reveal effective substances and mechanisms of Bushen Quhan Zhiwang decoction in the treatment of rheumatoid arthritis.J. Ethnopharmacol.202432511789710.1016/j.jep.2024.117897 38336180
    [Google Scholar]
  76. LiuC. HeL. WangJ. WangQ. SunC. LiY. JiaK. WangJ. XuT. MingR. WangQ. LinN. Anti-angiogenic effect of Shikonin in rheumatoid arthritis by downregulating PI3K/AKT and MAPKs signaling pathways.J. Ethnopharmacol.202026011303910.1016/j.jep.2020.113039 32497675
    [Google Scholar]
  77. ChenH. QinJ. ShiH. LiQ. ZhouS. ChenL. Rhoifolin ameliorates osteoarthritis via the Nrf2/NF-κB axis: in vitro and in vivo experiments.Osteoarthritis Cartilage202230573574510.1016/j.joca.2022.01.009 35139424
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073326896240901110932
Loading
/content/journals/cchts/10.2174/0113862073326896240901110932
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test