Skip to content
2000
Volume 28, Issue 15
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

. (LDC) is often prescribed for Cerebral Ischemia (CI) and is commonly combined with Borneolum (BO) to enhance therapeutic outcomes. However, its specific active ingredients and underlying mechanisms remain unclear.

Objective

This study aimed to identify the active ingredients and mechanisms of LDC and BO combination therapy against CI using network pharmacology, molecular docking, and experiments.

Methods

Potential active ingredients and targets were sourced from relevant databases, and a drug-component-target-disease network was constructed to pinpoint key ingredients. Subsequently, a protein-protein interaction analysis was conducted to confirm the key targets. Following enrichment analyses of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), molecular docking was employed to evaluate binding energies. Finally, the therapeutic effects and mechanisms of the combination against CI were validated through experiments using male ICR mice.

Results

Venn analysis identified a total of 41 components and 292 potential targets. The drug-component-target-disease network revealed that the key components in LDC were palmitic acid, tetramethylpyrazine, and (Z)-ligustilide, while those in BO were (+)-borneol, β-elemene, and (-)-borneol. The PPI analysis highlighted seven crucial targets. Docking results confirmed a stable affinity between these components and their targets. KEGG enrichment analysis indicated that the mechanism involved the PI3K/AKT signaling pathway. Subsequently, experiments confirmed that the combination ameliorated abnormal hippocampus morphology and reduced the release of inflammatory factors through the activation of the PI3K/AKT signaling pathway.

Conclusion

The combination of LDC and BO markedly improved CI and inhibited inflammation response activating the PI3K/AKT pathway.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073317255240902075511
2024-09-19
2026-01-01
Loading full text...

Full text loading...

References

  1. PrustM.L. FormanR. OvbiageleB. Addressing disparities in the global epidemiology of stroke.Nat. Rev. Neurol.2024204207221Epub ahead of print10.1038/s41582‑023‑00921‑z 38228908
    [Google Scholar]
  2. SokoloffL. ReivichM. KennedyC. RosiersM.H.D. PatlakC.S. PettigrewK.D. SakuradaO. ShinoharaM. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat.J. Neurochem.197728589791610.1111/j.1471‑4159.1977.tb10649.x 864466
    [Google Scholar]
  3. CroninC.A. Intravenous tissue plasminogen activator for stroke: A review of the ECASS III results in relation to prior clinical trials.J. Emerg. Med.20103819910510.1016/j.jemermed.2009.08.004 19765940
    [Google Scholar]
  4. LiH. WeiJ. XiaW. LiJ. LiuA. YinS. WangC. SongL. WangY. ZhengG. FanJ. Promoting blood circulation for removing blood stasis therapy for acute intracerebral hemorrhage: A systematic review and meta-analysis.Acta Pharmacol. Sin.201536665967510.1038/aps.2014.139 25960132
    [Google Scholar]
  5. ChenZ. ZhangC. GaoF. FuQ. FuC. HeY. ZhangJ. A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong).Food Chem. Toxicol.201811930932510.1016/j.fct.2018.02.050 29486278
    [Google Scholar]
  6. IpF.C.F. ZhaoY.M. ChanK.W. ChengE.Y.L. TongE.P.S. ChandrashekarO. FuG.M. ZhaoZ.Z. IpN.Y.Y. Neuroprotective effect of a novel Chinese herbal decoction on cultured neurons and cerebral ischemic rats.BMC Complement. Altern. Med.201616143710.1186/s12906‑016‑1417‑1 27814708
    [Google Scholar]
  7. GuJ. FengL. SongJ. CuiL. LiuD. MaL. JiaX. The effect and mechanism of combination of total paeony glycosides and total ligustici phenolic acids against focal cerebral ischemia.Sci. Rep.2020101368910.1038/s41598‑020‑60357‑z 32111871
    [Google Scholar]
  8. The Pharmacopoeia of the People’s Republic of ChinaBeijing, China,2020 edition; China Medical Science Press2020152153
    [Google Scholar]
  9. XiaX. LiQ. LiuM. Neuroprotective effect of a formula, moschus combined with borneolum synthcticum, from traditional chinese medicine on ischemia stroke in rats.Evid. Based Complement. Alternat. Med.2014201411010.1155/2014/157938 24782904
    [Google Scholar]
  10. DongT. ChenN. MaX. WangJ. WenJ. XieQ. MaR. The protective roles of L-borneolum, D-borneolum and synthetic borneol in cerebral ischaemia via modulation of the neurovascular unit.Biomed. Pharmacother.201810287488310.1016/j.biopha.2018.03.087 29728011
    [Google Scholar]
  11. XuH.C. Xiongbing nasal spray for vertebral and basilar arterial insufficiency. Chin. J. Integr. Med. Cardio & cerebrovasc.Dis2006405388390
    [Google Scholar]
  12. LiJ.Z. Experimental and clinical study of xiongbing spay in treating acute cerebral ischemic stroke.GuangzhouGuangzhou Univ Chin Med2010
    [Google Scholar]
  13. YuB. RuanM. LiangT. YuY. Synergy between borneol and extract of ligusticum chuanxiong hort against cortex and striatum ischemia.Int. J. Pharmacol.202016210411910.3923/ijp.2020.104.119
    [Google Scholar]
  14. YuB. YaoY. ZhangX. XuH. LuJ. RuanM. Synergic effect of ligusticum chuanxiong hort extract and borneol in protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reperfusion injury.Int. J. Pharmacol.202016644745910.3923/ijp.2020.447.459
    [Google Scholar]
  15. HopkinsA.L. Network pharmacology.Nat. Biotechnol.200725101110111110.1038/nbt1007‑1110 17921993
    [Google Scholar]
  16. LiS. Network systems underlying Traditional Chinese Medicine syndrome and herb formula.Curr. Bioinform.20094318819610.2174/157489309789071129
    [Google Scholar]
  17. LiS ZhangB ZhangN Network target for screening synergistic drug combinations with application to traditional Chinese medicine.BMC Syst Biol20115Suppl 1S1010.1186/1752‑0509‑5‑S1‑S1021689469
    [Google Scholar]
  18. JiashuoW.U. FangqingZ. ZhuangzhuangL.I. WeiyiJ. YueS. Integration strategy of network pharmacology in Traditional Chinese Medicine: A narrative review.J. Tradit. Chin. Med.202242347948610.19852/j.cnki.jtcm.20220408.003 35610020
    [Google Scholar]
  19. BhatiV. KumarA. LatherV. SharmaR. PanditaD. Association of temozolomide with progressive multifocal leukoencephalopathy: A disproportionality analysis integrated with network pharmacology.Expert Opin. Drug Saf.202423564965810.1080/14740338.2023.2278682 37915230
    [Google Scholar]
  20. Saima; Latha, S.; Sharma, R.; Kumar, A. Role of network pharmacology in prediction of mechanism of neuroprotective compounds.Methods Mol. Biol.2024276115917910.1007/978‑1‑0716‑3662‑6_13 38427237
    [Google Scholar]
  21. XiaoG. YangM. ZengZ. TangR. JiangJ. WuG. XieC. JiaD. BiX. Investigation into the anti-inflammatory mechanism of Pothos chinensis (Raf.) Merr. By regulating TLR4/MyD88/NF-κB pathway: Integrated network pharmacology, serum pharmacochemistry, and metabolomics.J. Ethnopharmacol.202433411852010.1016/j.jep.2024.118520 38964626
    [Google Scholar]
  22. WangF. ZhuL. CuiH. GuoS. WuJ. LiA. WangZ. Renshen Yangrong decoction for secondary malaise and fatigue: network pharmacology and Mendelian randomization study.Front. Nutr.202411140412310.3389/fnut.2024.1404123 38966421
    [Google Scholar]
  23. GuoJ. WuZ. ChangX. HuangM. WangY. LiuR. LiJ. Network pharmacology analysis and in vitro validation of the active ingredients and potential mechanisms of gynostemma pentaphyllum against esophageal cancer.Comb. Chem. High Throughput Screen.202427Epub ahead of print10.2174/0113862073280183240108113853 38243957
    [Google Scholar]
  24. TaoY. TianK. ChenJ. TanD. LiuY. XiongY. ChenZ. TianY. Network pharmacology-based prediction of the active compounds, potential targets, and signaling pathways involved in danshiliuhao granule for treatment of liver fibrosis.Evid. Based Complement. Alternat. Med.2019201911410.1155/2019/2630357 31354851
    [Google Scholar]
  25. ZhouB. QianZ. LiQ. GaoY. LiM. Assessment of pulmonary infectious disease treatment with Mongolian medicine formulae based on data mining, network pharmacology and molecular docking.Chin. Herb. Med.202214343244810.1016/j.chmed.2022.07.001 36118001
    [Google Scholar]
  26. ZhangP. ZhaoH. XiaX. XiaoH. HanC. YouZ. WangJ. CaoF. Network pharmacology and molecular-docking-based strategy to explore the potential mechanism of salidroside-inhibited oxidative stress in retinal ganglion cell.PLoS One2024197e030534310.1371/journal.pone.0305343 38968273
    [Google Scholar]
  27. HuW. XieN. ZhuH. JiangY. DingS. YeS. ZhangS. WangF. QuF. ZhouJ. The effective compounds and mechanisms of Cang-Fu-Dao-Tan Formula in treating polycystic ovary syndrome based on UPLC/Q-TOF-MS/MS, network pharmacology and molecular experiments.J. Pharm. Biomed. Anal.202423911586710.1016/j.jpba.2023.115867 38061171
    [Google Scholar]
  28. ZhangY. QiY. JiaZ. LiY. WuL. ZhouQ. XuF. Effects and mechanisms of Zhizi Chuanxiong herb pair against atherosclerosis: An integration of network pharmacology, molecular docking, and experimental validation.Chin. Med.2024191810.1186/s13020‑023‑00874‑x 38212797
    [Google Scholar]
  29. SunY. GaoC. LiuH. LiuX. YueT. Exploring the mechanism by which aqueous Gynura divaricata inhibits diabetic foot based on network pharmacology, molecular docking and experimental verification.Mol. Med.20232911110.1186/s10020‑023‑00605‑w 36670362
    [Google Scholar]
  30. TiwariP. AliS.A. PuriB. KumarA. DatusaliaA.K. Tinospora cordifolia Miers enhances the immune response in mice immunized with JEV-vaccine: A network pharmacology and experimental approach.Phytomedicine202311915497610.1016/j.phymed.2023.154976 37573808
    [Google Scholar]
  31. OuYangY. ChenB. YiJ. ZhouS. LiuY. TianF. ZengF. XiaoL. LiuB. Study on the molecular mechanisms of Liuwei Dihuang decoction against aging-related cognitive impairment based on network pharmacology and experimental verification.Heliyon20241011e3252610.1016/j.heliyon.2024.e32526 38961903
    [Google Scholar]
  32. XuH.B. ChenX.Z. ZhuS.Y. XueF. ZhangY.B. A study on molecular mechanism of Xihuang pill in the treatment of glioblastoma based on network pharmacology and validation in vitro and in vivo .J. Ethnopharmacol.202432311767510.1016/j.jep.2023.117675 38159819
    [Google Scholar]
  33. DaiS. WuR. FuK. LiY. YaoC. LiuY. ZhangF. ZhangS. GuoY. YaoY. LiY. Exploring the effect and mechanism of cucurbitacin B on cholestatic liver injury based on network pharmacology and experimental verification.J. Ethnopharmacol.202432211758410.1016/j.jep.2023.117584 38104874
    [Google Scholar]
  34. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa1074 33237311
    [Google Scholar]
  35. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  36. TangD. ChenM. HuangX. ZhangG. ZengL. ZhangG. WuS. WangY. SRplot: A free online platform for data visualization and graphing.PLoS One20231811e029423610.1371/journal.pone.0294236 37943830
    [Google Scholar]
  37. WangH. ZhaoX. WuZ. Mechanism of drug-pairs Astragalus Mongholicus–Largehead Atractylodes on treating knee osteoarthritis investigated by GEO gene chip with network pharmacology and molecular docking.Medicine202410327e3869910.1097/MD.0000000000038699 38968529
    [Google Scholar]
  38. HanW. XieL. DingC. DaiD. WangN. RenJ. ChenH. ZhuS. XiaoJ. XuH. Mechanism analysis of selenium-containing compounds in alleviating spinal cord injury based on network pharmacology and molecular docking technology.Mol. Neurobiol.20256211031104610.1007/s12035‑024‑04326‑x 38954252
    [Google Scholar]
  39. XueQ. LiuX. RussellP. LiJ. PanW. FuJ. ZhangA. Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock.Ecotoxicol. Environ. Saf.202223311332310.1016/j.ecoenv.2022.113323 35183811
    [Google Scholar]
  40. KazmiI. Al-AbbasiF.A. AlGhamdiS.A. AlghamdiA.M. ZeyadiM. SheikhR.A. GuptaG. SayyedN. Influence of rosiridin on streptozotocin-induced diabetes in rodents through endogenous antioxidants-inflammatory cytokines pathway and molecular docking study.J. Biomol. Struct. Dyn.20232011610.1080/07391102.2023.2282738 37982302
    [Google Scholar]
  41. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  42. TangL. LiuZ. JiZ. ZhangX. ZhaoM. PengD. HanL. Promotion of mature angiogenesis in ischemic stroke by Taohong Siwu decoction through glycolysis activation.Front. Pharmacol.202415139516710.3389/fphar.2024.1395167 38962303
    [Google Scholar]
  43. YangY. LaiY. TongX. LiZ. ChengY. TianL.W. Arjunolic acid ameliorates lipopolysaccharide-induced depressive behavior by inhibiting neuroinflammation via microglial SIRT1/AMPK/Notch1 signaling pathway.J. Ethnopharmacol.202433011822510.1016/j.jep.2024.118225 38670408
    [Google Scholar]
  44. LiX. ChenS. ZhengG. YangY. YinN. NiuX. YaoL. LvP. Atorvastatin calcium ameliorates cognitive deficits through the aMPK/Mtor pathway in rats with vascular dementia.Comb. Chem. High Throughput Screen.202427114815610.2174/1386207326666230606114448 37282650
    [Google Scholar]
  45. ChanS.S.K. ChengT.Y. LinG. Relaxation effects of ligustilide and senkyunolide A, two main constituents of Ligusticum chuanxiong, in rat isolated aorta.J. Ethnopharmacol.2007111367768010.1016/j.jep.2006.12.018 17222996
    [Google Scholar]
  46. XieX. ZhangH. LiuL. NiF. YuX. ZhongY. YanM. ZhangC. WangZ. XuN. XiaoW. A new butylphthalide from Ligusticum striatum DC.Nat. Prod. Res.202438172941294810.1080/14786419.2023.2200944 37042678
    [Google Scholar]
  47. NaitoT. KatsuharaT. NiitsuK. IkeyaY. OkadaM. MitsuhashiH. Two phthalides from Ligusticum chuangxiong.Phytochemistry199231263964210.1016/0031‑9422(92)90051‑Q
    [Google Scholar]
  48. LiuY. LuoZ.Q. LvB.R. ZhaoH.Y. DongL. Absorption and metabolism of Chuanxiong Rhizoma decoction with multi-component sequential metabolism method.Zhongguo Zhongyao Zazhi20164171178118210.4268/cjcmm20160703
    [Google Scholar]
  49. JiangY. LuoY. ChenX. LiuN. HouJ. PiaoJ. SongC. SiC. HuW. LiX. Senkyunolide H protects PC12 cells from OGD/R-induced injury via cAMP-PI3K/AKT signaling pathway.J. Ethnopharmacol.202228211465910.1016/j.jep.2021.114659 34543683
    [Google Scholar]
  50. HuangY. WuY. YinH. DuL. ChenC. SenkyunolideI. A review of its phytochemistry, pharmacology, pharmacokinetics, and drug-likeness.Molecules2023288363610.3390/molecules28083636 37110869
    [Google Scholar]
  51. RanX. MaL. PengC. ZhangH. QinL.P. Ligusticum chuanxiong Hort: A review of chemistry and pharmacology.Pharm. Biol.201149111180118910.3109/13880209.2011.576346 22014266
    [Google Scholar]
  52. ZouL. ZhangY. LiW. ZhangJ. WangD. FuJ. WangP. Comparison of chemical profiles, anti-Inflammatory activity, and UPLC-Q-TOF/MS-based metabolomics in endotoxic fever rats between synthetic borneol and natural borneol.Molecules2017229144610.3390/molecules22091446 28858264
    [Google Scholar]
  53. ChengC. LiuX. DuF. LiM. XuF. WangF. LiuY. LiC. SunY. Sensitive assay for measurement of volatile borneol, isoborneol, and the metabolite camphor in rat pharmacokinetic study of Borneolum (Bingpian) and Borneolum syntheticum (synthetic Bingpian).Acta Pharmacol. Sin.201334101337134810.1038/aps.2013.86 23974515
    [Google Scholar]
  54. ChenJ. ZengH. LiG. OuyangS. Analyses of volatile oil in Cinnamomum camphora (L.) Sieb and the component of natural borneolum.Zhong Yao Cai200528094243
    [Google Scholar]
  55. GuptaM. SharmaR. KumarA. Docking techniques in pharmacology: How much promising?Comput. Biol. Chem.20187621021710.1016/j.compbiolchem.2018.06.005 30067954
    [Google Scholar]
  56. GuptaM. SharmaR. KumarA. Docking techniques in toxicology: An overview.Curr. Bioinform.202015660061010.2174/1574893614666191003125540
    [Google Scholar]
  57. PassarelliJ.P. NimjeeS.M. TownsendK.L. Stroke and neurogenesis: Bridging clinical observations to new mechanistic insights from animal models.Transl. Stroke Res.2024151536810.1007/s12975‑022‑01109‑1 36462099
    [Google Scholar]
  58. KongJ. XiangQ. GeW. WangY. XuF. ShiG. Network pharmacology mechanisms and experimental verification of licorice in the treatment of ulcerative colitis.J. Ethnopharmacol.202432411769110.1016/j.jep.2023.117691 38176667
    [Google Scholar]
  59. HoW.K. WenH.L. LeeC.M. Tetramethylpyrazine for treatment of experimentally induced stroke in Mongolian gerbils.Stroke1989201969910.1161/01.STR.20.1.96 2911841
    [Google Scholar]
  60. JinZ. LiangJ. KolattukudyP.E. Tetramethylpyrazine preserves the integrity of blood-brain barrier associated with upregulation of mCPIP1 in a murine model of focal ischemic stroke.Front. Pharmacol.20211271035810.3389/fphar.2021.710358 34393790
    [Google Scholar]
  61. FengX. LiM. LinZ. LiM. LuY. ZhuangY. LeiJ. WangL. ZhaoH. Tetramethylpyrazine promotes stroke recovery by inducing the restoration of neurovascular unit and transformation of A1/A2 reactive astrocytes.Front. Cell. Neurosci.202317112541210.3389/fncel.2023.1125412 37051111
    [Google Scholar]
  62. FengX. LiM. LinZ. LuY. ZhuangY. LeiJ. LiuX. ZhaoH. Tetramethylpyrazine promotes axonal remodeling and modulates microglial polarization via JAK2-STAT1/3 and GSK3-NFκB pathways in ischemic stroke.Neurochem. Int.202317010560710.1016/j.neuint.2023.105607 37657766
    [Google Scholar]
  63. XieQ. ZhangL. XieL. ZhengY. LiuK. TangH. LiaoY. LiX. Z‐ligustilide: A review of its pharmacokinetics and pharmacology.Phytother. Res.20203481966199110.1002/ptr.6662 32135035
    [Google Scholar]
  64. KuangX. DuJ. LiuY. ZhangG. PengH. Postischemic administration of Z-Ligustilide ameliorates cognitive dysfunction and brain damage induced by permanent forebrain ischemia in rats.Pharmacol. Biochem. Behav.200888321322110.1016/j.pbb.2007.08.006 17889286
    [Google Scholar]
  65. MengX. LiN. ZhangY. FanD. YangC. LiH. GuoD. PanS. Beneficial effect of β-elemene alone and in combination with hyperbaric oxygen in traumatic brain injury by inflammatory pathway.Transl. Neurosci.201891333710.1515/tnsci‑2018‑0007 29992051
    [Google Scholar]
  66. LuoL. WuS. ChenR. RaoH. PengW. SuW. The study of neuroprotective effects and underlying mechanism of Naoshuantong capsule on ischemia stroke mice.Chin. Med.202015111910.1186/s13020‑020‑00399‑7 33292339
    [Google Scholar]
  67. WeiY. SunZ. WangY. XieZ. XuS. XuY. ZhouX. BiJ. ZhuZ. Methylation in the TP53 promoter is associated with ischemic stroke.Mol. Med. Rep.20192021404141010.3892/mmr.2019.10348 31173230
    [Google Scholar]
  68. ChenS. WangY. WangX. HeM. ZhangL. DongZ. PKA-dependent membrane surface recruitment of CI-AMPARs is crucial for BCP-mediated protection against post-acute ischemic stroke cognitive impairment.Front. Neurol.20201156606710.3389/fneur.2020.566067 33391143
    [Google Scholar]
  69. LiZ. SongY. HeT. WenR. LiY. ChenT. HuangS. WangY. TangY. ShenF. TianH.L. YangG.Y. ZhangZ. M2 microglial small extracellular vesicles reduce glial scar formation via the miR-124/STAT3 pathway after ischemic stroke in mice.Theranostics20211131232124810.7150/thno.48761 33391532
    [Google Scholar]
  70. FuR. ShenY. ZhengJ. Association between common genetic variants in ESR1 and stroke risk: A systematic review and meta-analysis.J. Stroke Cerebrovasc. Dis.2019281110435510.1016/j.jstrokecerebrovasdis.2019.104355 31533892
    [Google Scholar]
  71. LiaoS. WuJ. LiuR. WangS. LuoJ. YangY. QinY. LiT. ZhengX. SongJ. ZhaoX. XiaoC. ZhangY. BianL. JiaP. BaiY. ZhengX. A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: Role of Akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation.Redox Biol.20203610164410.1016/j.redox.2020.101644 32863210
    [Google Scholar]
  72. LiR. ZhengY. ZhangJ. ZhouY. FanX. Gomisin N attenuated cerebral ischemia-reperfusion injury through inhibition of autophagy by activating the PI3K/AKT/mTOR pathway.Phytomedicine202311015464410.1016/j.phymed.2023.154644 36634381
    [Google Scholar]
  73. KovalskaM. KovalskaL. PavlikovaM. JanickovaM. MikuskovaK. AdamkovM. KaplanP. TatarkovaZ. LehotskyJ. Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury.Neurochem. Res.20123771568157710.1007/s11064‑012‑0752‑y 22431068
    [Google Scholar]
  74. LiJ. DongS. QuanS. DingS. ZhouX. YuY. WuY. HuangW. ShiQ. LiQ. Nuciferine reduces inflammation induced by cerebral ischemia-reperfusion injury through the PI3K/Akt/NF-κB pathway.Phytomedicine202412515531210.1016/j.phymed.2023.155312 38232541
    [Google Scholar]
  75. XieY. ShiX. ShengK. HanG. LiW. ZhaoQ. JiangB. FengJ. LiJ. GuY. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review).Mol. Med. Rep.2018192783791[Review10.3892/mmr.2018.9713 30535469
    [Google Scholar]
  76. BangE. KimD.H. ChungH.Y. Protease-activated receptor 2 induces ROS-mediated inflammation through Akt-mediated NF-κB and FoxO6 modulation during skin photoaging.Redox Biol.20214410202210.1016/j.redox.2021.102022 34082382
    [Google Scholar]
  77. LiuT. WangW. LiX. ChenY. MuF. WenA. LiuM. DingY. Advances of phytotherapy in ischemic stroke targeting PI3K/Akt signaling.Phytother. Res.202337125509552810.1002/ptr.7994 37641491
    [Google Scholar]
  78. LiL. JiangW. YuB. LiangH. MaoS. HuX. FengY. XuJ. ChuL. Quercetin improves cerebral ischemia/reperfusion injury by promoting microglia/macrophages M2 polarization via regulating PI3K/Akt/NF-κB signaling pathway.Biomed. Pharmacother.202316811565310.1016/j.biopha.2023.115653 37812891
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073317255240902075511
Loading
/content/journals/cchts/10.2174/0113862073317255240902075511
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test