Skip to content
2000
Volume 28, Issue 13
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

Premature ovarian insufficiency [POI] is a disease characterized by a premature decline in ovarian function before the age of 40. In China, Ligustrum lucidum [FLL] has long been used to improve ovarian function and treat POI.

Methods

This study aims to verify the effect of FLL on POI through network pharmacology, molecular docking, and cell experiments.

Results

A total of 13 active substances were screened in FLL, including including quercetin, taxifolin, luteolin, kaempferol, and beta-sitosterol. Then, network analysis found that FLL may exert effects on POI through 10 targets, including AR, ESR1, ESR2, KDR, CYP19A1, CLPP, GC, MMP3, PPARG, and STS. According to GO and KEGG enrichment analysis, FLL is associated with mechanisms related to estrogen, including steroid hormone biosynthesis, ovarian steroidogenesis, and the estrogen signaling pathway. Molecular docking confirms the interaction between the active ingredients of FLL and CYP19A1, which encodes aromatase. CCK8 experiment confirmed that quercetin and taxifolin can enhance the proliferation of KGN granulosa cells, while quercetin, taxifolin, and kaempferol can inhibit the apoptosis of KGN granulosa cells. ELISA experiments have confirmed that quercetin, taxifolin, luteolin, and kaempferol can increase the synthesis of estradiol in KGN granulosa cells. WB confirms that quercetin can increase the expression level of CYP19A1 in KGN cells.

Conclusion

FLL can improve the proliferation, apoptosis, and synthesis of estradiol in ovarian granulosa cells, and has the potential to treat POI.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073321308240808075854
2024-08-09
2025-10-27
Loading full text...

Full text loading...

References

  1. NelsonL.M. Clinical practice. Primary ovarian insufficiency.N. Engl. J. Med.2009360660661410.1056/NEJMcp0808697 19196677
    [Google Scholar]
  2. RebarR.W. Premature ovarian failure.Obstet. Gynecol.200911361355136310.1097/AOG.0b013e3181a66843 19461434
    [Google Scholar]
  3. DingX. LvS. GuoZ. GongX. WangC. ZhangX. MengK. Potential therapeutic options for premature ovarian insufficiency: Experimental and clinical evidence.Reprod. Sci.202330123428344210.1007/s43032‑023‑01300‑1 37460850
    [Google Scholar]
  4. SharifK. WatadA. BridgewoodC. KanducD. AmitalH. ShoenfeldY. Insights into the autoimmune aspect of premature ovarian insufficiency.201933610132310.1016/j.beem.2019.101323
    [Google Scholar]
  5. MaclaranK. PanayN. Premature ovarian failure.J. Fam. Plann. Reprod. Health Care2011371354210.1136/jfprhc.2010.0015 21367702
    [Google Scholar]
  6. SchoverL.R. Premature ovarian failure and its consequences: Vasomotor symptoms, sexuality, and fertility.J. Clin. Oncol.200826575375810.1200/JCO.2007.14.1655 18258983
    [Google Scholar]
  7. NappiR.E. CucinellaL. MartiniE. RossiM. TiraniniL. MartellaS. BosoniD. CassaniC. Sexuality in premature ovarian insufficiency.Climacteric201922328929510.1080/13697137.2019.1575356 30900474
    [Google Scholar]
  8. Podfigurna-StopaA. CzyzykA. GrymowiczM. SmolarczykR. KatulskiK. CzajkowskiK. MeczekalskiB. Premature ovarian insufficiency: The context of long-term effects.J. Endocrinol. Invest.201639998399010.1007/s40618‑016‑0467‑z 27091671
    [Google Scholar]
  9. LiX.T. LiP.Y. LiuY. YangH.S. HeL.Y. FangY.G. LiuJ. LiuB.Y. ChaplinJ.E. Health-related quality-of-life among patients with premature ovarian insufficiency: A systematic review and meta-analysis.Qual. Life Res.2020291193610.1007/s11136‑019‑02326‑2 31620985
    [Google Scholar]
  10. GossetA. ClaeysJ.M. HuygheE. TremollieresF. Sexual function and quality of life in women with idiopathic premature ovarian insufficiency.J. Sex. Med.202320562663210.1093/jsxmed/qdad006 36881744
    [Google Scholar]
  11. GroffA.A. CovingtonS.N. HalversonL.R. FitzgeraldO.R. VanderhoofV. CalisK. NelsonL.M. Assessing the emotional needs of women with spontaneous premature ovarian failure.Fertil. Steril.20058361734174110.1016/j.fertnstert.2004.11.067 15950644
    [Google Scholar]
  12. AllenN.E. TsilidisK.K. KeyT.J. DossusL. KaaksR. LundE. BakkenK. GavrilyukO. OvervadK. TjønnelandA. OlsenA. FournierA. FabreA. Clavel-ChapelonF. Chabbert-BuffetN. SacerdoteC. KroghV. BendinelliB. TuminoR. PanicoS. BergmannM. SchuetzeM. van DuijnhovenF.J.B. Bas Bueno-de-MesquitaH. Charlotte Onland-MoretN. van GilsC.H. AmianoP. BarricarteA. ChirlaqueM.D. Molina-MontesM.E. RedondoM.L. DuellE.J. KhawK.T. WarehamN. RinaldiS. FedirkoV. MouwT. MichaudD.S. RiboliE. Menopausal hormone therapy and risk of endometrial carcinoma among postmenopausal women in the European prospective investigation into cancer and nutrition.Am. J. Epidemiol.2010172121394140310.1093/aje/kwq300 20961969
    [Google Scholar]
  13. AndersonG.L. LimacherM. AssafA.R. BassfordT. BeresfordS.A. BlackH. BondsD. BrunnerR. BrzyskiR. CaanB. ChlebowskiR. CurbD. GassM. HaysJ. HeissG. HendrixS. HowardB.V. HsiaJ. HubbellA. JacksonR. JohnsonK.C. JuddH. KotchenJ.M. KullerL. LaCroixA.Z. LaneD. LangerR.D. LasserN. LewisC.E. MansonJ. MargolisK. OckeneJ. O’SullivanM.J. PhillipsL. PrenticeR.L. RitenbaughC. RobbinsJ. RossouwJ.E. SartoG. StefanickM.L. Van HornL. Wactawski-WendeJ. WallaceR. Wassertheil-SmollerS. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: The women’s health initiative randomized controlled trial.JAMA2004291141701171210.1001/jama.291.14.1701 15082697
    [Google Scholar]
  14. SwicaY. WarrenM.P. MansonJ.E. AragakiA.K. BassukS.S. ShimboD. KaunitzA. RossouwJ. StefanickM.L. WomackC.R. Effects of oral conjugated equine estrogens with or without medroxyprogesterone acetate on incident hypertension in the women’s health initiative hormone therapy trials.Menopause201825775376110.1097/GME.0000000000001067 29381666
    [Google Scholar]
  15. AwwadJ.T. GhazeeriG.S. HannounA. IsaacsonK. Abou-AbdallahM. FarraC.G. An investigational ovarian stimulation protocol increased significantly the psychological burden in women with premature ovarian failure.Acta Obstet. Gynecol. Scand.201291111273127810.1111/aogs.12004 22994379
    [Google Scholar]
  16. LinJ. LiX. SongH. LiQ. WangM. QiuX. LiD. WangL. A general description for Chinese medicine in treating premature ovarian failure.Chin. J. Integr. Med.2017232919710.1007/s11655‑016‑2642‑7 28265850
    [Google Scholar]
  17. ChenH.Y. LinY.H. WuJ.C. ChenY.C. YangS.H. ChenJ.L. ChenT.J. Prescription patterns of Chinese herbal products for menopausal syndrome: Analysis of a nationwide prescription database.J. Ethnopharmacol.201113731261126610.1016/j.jep.2011.07.053 21824510
    [Google Scholar]
  18. HungY.C. KaoC.W. LinC.C. LiaoY.N. WuB.Y. HungI.L. HuW.L. Chinese herbal products for female infertility in Taiwan.Medicine (Baltimore)20169511e307510.1097/MD.0000000000003075 26986137
    [Google Scholar]
  19. ChenY. LiX. TangX. GaoY. YuP. XuL. LiuR. Combined extracts of Herba epimedii and Fructus ligustri lucidi rebalance bone remodeling in ovariectomized rats.Evid. Based Complement. Alternat. Med.2019201911110.1155/2019/1596951 30894875
    [Google Scholar]
  20. WangL. MaR. GuoY. SunJ. LiuH. ZhuR. LiuC. LiJ. LiL. ChenB. SunL. TangJ. ZhaoD. MoF. NiuJ. JiangG. FuM. BrömmeD. ZhangD. GaoS. Antioxidant effect of Fructus ligustri lucidi aqueous extract in ovariectomized rats is mediated through Nox4-ROS-NF-κB pathway.Front. Pharmacol.2017826610.3389/fphar.2017.00266 28588482
    [Google Scholar]
  21. HuB. DuQ. DengS. an, H.M.; Pan, C.F.; Shen, K.P.; Xu, L.; Wei, M.M.; Wang, S.S. Ligustrum lucidum Ait. fruit extract induces apoptosis and cell senescence in human hepatocellular carcinoma cells through upregulation of p21.Oncol. Rep.20143231037104210.3892/or.2014.3312 25017491
    [Google Scholar]
  22. WangJ. ShanA. LiuT. ZhangC. ZhangZ. In vitro immunomodulatory effects of an oleanolic acid-enriched extract of Ligustrum lucidum fruit (Ligustrum lucidum supercritical CO2 extract) on piglet immunocytes.Int. Immunopharmacol.201214475876310.1016/j.intimp.2012.10.006 23099145
    [Google Scholar]
  23. LiL. ChenB. ZhuR. LiR. TianY. LiuC. JiaQ. WangL. TangJ. ZhaoD. MoF. LiuY. LiY. OrekhovA.N. BrömmeD. ZhangD. GaoS. Fructus Ligustri Lucidi preserves bone quality through the regulation of gut microbiota diversity, oxidative stress, TMAO and Sirt6 levels in aging mice.Aging (Albany NY)201911219348936810.18632/aging.102376 31715585
    [Google Scholar]
  24. TangY. LiC. SunX. LiuY. WangX. GuoY. WangL. MaR. NiuJ. FuM. ZhangD. LiY. Fructus ligustri lucidi modulates estrogen receptor expression with no uterotrophic effect in ovariectomized rats.BMC Complement. Altern. Med.201818111810.1186/s12906‑018‑2171‑3 29609586
    [Google Scholar]
  25. CaiJ. ZhengT. ZhangL. TianY. YangM. DuJ. Effects of Herba epimedii and Fructus ligustri lucidi on the transcription factors in hypothalamus of aged rats.Chin. J. Integr. Med.2011171075876310.1007/s11655‑011‑0636‑z 21465296
    [Google Scholar]
  26. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.118 18936753
    [Google Scholar]
  27. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  28. WangX. ShenY. WangS. LiS. ZhangW. LiuX. LaiL. PeiJ. LiH. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database.Nucleic Acids Res.201745W1W356W36010.1093/nar/gkx374 28472422
    [Google Scholar]
  29. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  30. NeisyA. ZalF. SeghatoleslamA. AlaeeS. Amelioration by quercetin of insulin resistance and uterine GLUT4 and ERα gene expression in rats with polycystic ovary syndrome (PCOS).Reprod. Fertil. Dev.201931231532310.1071/RD18222 30103849
    [Google Scholar]
  31. GuoA.J. ChoiR.C. ZhengK.Y. ChenV.P. DongT.T. WangZ.T. VollmerG. LauD.T. TsimK.W. Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling.Chin. Med.2012711010.1186/1749‑8546‑7‑10 22546174
    [Google Scholar]
  32. ZhengN. YuanP. LiC. WuJ. HuangJ. Luteolin reduces BACE1 expression through NF-κB and estrogen receptor mediated pathways in HEK293 and SH-SY5Y cells.J. Alzheimers Dis.201545265967110.3233/JAD‑142517 25589732
    [Google Scholar]
  33. ThompsonD.J. O’MaraT.A. GlubbD.M. PainterJ.N. ChengT. FolkerdE. DoodyD. DennisJ. WebbP.M. GormanM. MartinL. HodgsonS. MichailidouK. TyrerJ.P. MaranianM.J. HallP. CzeneK. DarabiH. LiJ. FaschingP.A. HeinA. BeckmannM.W. EkiciA.B. DörkT. HillemannsP. DürstM. RunnebaumI. ZhaoH. DepreeuwJ. SchrauwenS. AmantF. GoodeE.L. FridleyB.L. DowdyS.C. WinhamS.J. SalvesenH.B. TrovikJ. NjolstadT.S. WernerH.M. AshtonK. ProiettoT. OttonG. Carvajal-CarmonaL. ThamE. LiuT. MintsM. ScottR.J. McEvoyM. AttiaJ. HollidayE.G. MontgomeryG.W. MartinN.G. NyholtD.R. HendersA.K. HopperJ.L. TraficanteN. RuebnerM. SwerdlowA.J. BurwinkelB. BrennerH. MeindlA. BrauchH. LindblomA. LambrechtsD. Chang-ClaudeJ. CouchF.J. GilesG.G. KristensenV.N. CoxA. BollaM.K. WangQ. BojesenS.E. ShahM. LubenR. KhawK.T. PharoahP.D. DunningA.M. TomlinsonI. DowsettM. EastonD.F. SpurdleA.B. CYP19A1 fine-mapping and Mendelian randomization: Estradiol is causal for endometrial cancer.Endocr. Relat. Cancer2016232779110.1530/ERC‑15‑0386 26574572
    [Google Scholar]
  34. MuellerJ.W. GilliganL.C. IdkowiakJ. ArltW. FosterP.A. The regulation of steroid action by sulfation and desulfation.Endocr. Rev.201536552656310.1210/er.2015‑1036 26213785
    [Google Scholar]
  35. JiaM. Dahlman-WrightK. GustafssonJ.Å. Estrogen receptor alpha and beta in health and disease.Best Pract. Res. Clin. Endocrinol. Metab.201529455756810.1016/j.beem.2015.04.008 26303083
    [Google Scholar]
  36. AstapovaO. MinorB.M.N. HammesS.R. Physiological and pathological androgen actions in the ovary.Endocrinology201916051166117410.1210/en.2019‑00101 30912811
    [Google Scholar]
  37. KimuraS. MatsumotoT. MatsuyamaR. ShiinaH. SatoT. TakeyamaK. KatoS. Androgen receptor function in folliculogenesis and its clinical implication in premature ovarian failure.Trends Endocrinol. Metab.200718518318910.1016/j.tem.2007.04.002 17442585
    [Google Scholar]
  38. KhristiV. ChakravarthiV.P. SinghP. GhoshS. PramanikA. RatriA. BoroshaS. RobyK.F. WolfeM.W. RumiM.A.K. ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation.Mol. Cell. Endocrinol.201847421422610.1016/j.mce.2018.03.012 29580824
    [Google Scholar]
  39. TangZ.R. ZhangR. LianZ.X. DengS.L. YuK. Estrogen-receptor expression and function in female reproductive disease.Cells2019810112310.3390/cells8101123 31546660
    [Google Scholar]
  40. ShiinaH. MatsumotoT. SatoT. IgarashiK. MiyamotoJ. TakemasaS. SakariM. TakadaI. NakamuraT. MetzgerD. ChambonP. KannoJ. YoshikawaH. KatoS. Premature ovarian failure in androgen receptor-deficient mice.Proc. Natl. Acad. Sci. USA2006103122422910.1073/pnas.0506736102 16373508
    [Google Scholar]
  41. HeM. ShuJ. HuangX. TangH. Association between estrogen receptora gene (ESR1) PvuII (T/C) and XbaI (A/G) polymorphisms and premature ovarian failure risk: evidence from a meta-analysis.J. Assist. Reprod. Genet.201532229730410.1007/s10815‑014‑0393‑y 25428437
    [Google Scholar]
  42. ChouC.H. ChenM.J. The effect of steroid hormones on ovarian follicle development.Vitam. Horm.201810715517510.1016/bs.vh.2018.01.013 29544629
    [Google Scholar]
  43. KobayashiN. OrisakaM. CaoM. KotsujiF. LeaderA. SakuragiN. TsangB.K. Growth differentiation factor-9 mediates follicle-stimulating hormone-thyroid hormone interaction in the regulation of rat preantral follicular development.Endocrinology2009150125566557410.1210/en.2009‑0262 19833718
    [Google Scholar]
  44. ShimamotoS. NishimuraY. NagamatsuG. HamadaN. KitaH. HikabeO. HamazakiN. HayashiK. Hypoxia induces the dormant state in oocytes through expression of Foxo3.Proc. Natl. Acad. Sci. USA201911625123211232610.1073/pnas.1817223116 31147464
    [Google Scholar]
  45. MolinariE. BarH. PyleA.M. PatrizioP. Transcriptome analysis of human cumulus cells reveals hypoxia as the main determinant of follicular senescence.Mol. Hum. Reprod.201622886687610.1093/molehr/gaw038 27268410
    [Google Scholar]
  46. ThompsonJ.G. BrownH.M. KindK.L. RussellD.L. The ovarian antral follicle: Living on the edge of hypoxia or not?Biol. Reprod.201592615310.1095/biolreprod.115.128660 25972011
    [Google Scholar]
  47. McGinnisL.K. KinseyW.H. Role of focal adhesion kinase in oocyte‐follicle communication.Mol. Reprod. Dev.20158229010210.1002/mrd.22446 25536210
    [Google Scholar]
  48. SakuraiM. OhtakeJ. IshikawaT. TanemuraK. HoshinoY. ArimaT. SatoE. Distribution and Y397 phosphorylation of focal adhesion kinase on follicular development in the mouse ovary.Cell Tissue Res.2012347245746510.1007/s00441‑011‑1307‑2 22322421
    [Google Scholar]
  49. HaoX. AnastácioA. LiuK. Rodriguez-WallbergK.A. Ovarian follicle depletion induced by chemotherapy and the investigational stages of potential fertility-protective treatments—A review.Int. J. Mol. Sci.20192019472010.3390/ijms20194720 31548505
    [Google Scholar]
  50. AraújoV.R. DuarteA.B.G. BrunoJ.B. Pinho LopesC.A. de FigueiredoJ.R. Importance of vascular endothelial growth factor (VEGF) in ovarian physiology of mammals.Zygote201321329530410.1017/S0967199411000578 21993013
    [Google Scholar]
  51. RahH. JeonY.J. ChoiY. ShimS.H. KoJ.J. YoonT.K. ChaS.H. KimN.K. Association between kinase insert domain-containing receptor polymorphisms (-604T>C, 1192G>A, 1719A>T) and premature ovarian failure in Korean women.Menopause20121991037104210.1097/gme.0b013e318248f2e8 22510937
    [Google Scholar]
  52. WangT. BabayevE. JiangZ. LiG. ZhangM. EsencanE. HorvathT. SeliE. Mitochondrial unfolded protein response gene Clpp is required to maintain ovarian follicular reserve during aging, for oocyte competence, and development of pre‐implantation embryos.Aging Cell2018174e1278410.1111/acel.12784 29851234
    [Google Scholar]
  53. CurryT.Jr SmithM. Impact of extracellular matrix remodeling on ovulation and the folliculo-luteal transition.Semin. Reprod. Med.200624422824110.1055/s‑2006‑948552 16944420
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073321308240808075854
Loading
/content/journals/cchts/10.2174/0113862073321308240808075854
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test