Skip to content
2000
Volume 28, Issue 16
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Astragalus membranaceus (AM) is a traditional Chinese medicine that has been clinically utilized as an adjunctive therapy for the treatment of myocardial ischemia and heart failure; however, its precise molecular mechanism of action remains unknown.

Objective

This study aims to investigate the potential pharmacological effects and molecular mechanism of AM in the treatment of ischemic heart failure (IHF) using network pharmacology methods, molecular docking technology, and experiments.

Methods

The active components and targets of AM were obtained from the TCMSP databases, while the disease targets of IHF were retrieved from GeneCards and OMIM databases. The analysis of overlapping targets between AM and IHF mainly included active compounds-targets network, PPI network, and GO and KEGG enrichment analysis. The association between active compounds and target proteins was verified through molecular docking. Additionally, an experimental model was used to evaluate the accuracy of the forecast results.

Results

The network pharmacological analysis revealed that quercetin, kaempferol, 7-O-methylisomucronulatol, formononetin, and isorhamnetin were the core active components of AM in treating IHF. The core targets included AKT1, IL6, IL1B, PTGS2, CASP3, MMP9, and HIF1A. The molecular docking results demonstrated a strong binding affinity between these active components and targets. The KEGG pathway analysis suggested that the PI3K-AKT signaling pathway might play a central role in mediating AM's therapeutic effects on IHF. experiments demonstrated that AM treatment enhanced cell viability, reduced heart failure biomarkers, and suppressed cell apoptosis. Furthermore, the western blot analyses indicated that AM treatment effectively regulated AKT1 phosphorylation in an experimental model of IHF.

Conclusion

Through integrated network pharmacological analysis, molecular docking technology, and experimental validation, it was demonstrated that AM can effectively mitigate IHF through activating PI3K-AKT signaling pathway. These findings significantly advance our understanding of the molecular mechanisms in IHF treatment and contribute further to promoting the clinical application of AM.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073322602240909113946
2024-09-26
2025-12-31
Loading full text...

Full text loading...

References

  1. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA.Z. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ. CatapanoA.L. ChughS.S. CooperL.T. CoreshJ. CriquiM. DeCleeneN. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolàJ. FowkesG. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN. KoroshetzW. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. TemesgenA.M. MokdadA. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. Moraes de OliveiraG. OttoC. OwolabiM. PrattM. RajagopalanS. ReitsmaM. RibeiroA.L.P. RigottiN. RodgersA. SableC. ShakilS. Sliwa-HahnleK. StarkB. SundströmJ. TimpelP. TleyjehI.M. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL. MurrayC. FusterV. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ.R. CatapanoA.L. ChughS. CooperL.T. CoreshJ. CriquiM.H. DeCleeneN.K. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolaJ. FowkesF.G.R. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN.J. KoroshetzW.J. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. MisganawA.T. MokdadA.H. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. OliveiraG.M.M. OttoC.M. OwolabiM.O. PrattM. RajagopalanS. ReitsmaM.B. RibeiroA.L.P. RigottiN.A. RodgersA. SableC.A. ShakilS.S. SliwaK. StarkB.A. SundströmJ. TimpelP. TleyjehI.I. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL.J. Abbasi-KangevariM. AbdiA. AbediA. AboyansV. AbrhaW.A. Abu-GharbiehE. AbushoukA.I. AcharyaD. AdairT. AdebayoO.M. AdemiZ. AdvaniS.M. AfshariK. AfshinA. AgarwalG. AgasthiP. AhmadS. AhmadiS. AhmedM.B. AjiB. AkaluY. Akande-SholabiW. AkliluA. AkunnaC.J. AlahdabF. Al-EyadhyA. AlhabibK.F. AlifS.M. AlipourV. AljunidS.M. AllaF. Almasi-HashianiA. AlmustanyirS. Al-RaddadiR.M. AmegahA.K. AminiS. AminorroayaA. AmuH. AmugsiD.A. AncuceanuR. AnderliniD. AndreiT. AndreiC.L. Ansari-MoghaddamA. AntenehZ.A. AntonazzoI.C. AntonyB. AnwerR. AppiahL.T. ArablooJ. ÄrnlövJ. ArtantiK.D. AtaroZ. AusloosM. Avila-BurgosL. AwanA.T. AwokeM.A. AyeleH.T. AyzaM.A. AzariS. B, D.B.; Baheiraei, N.; Baig, A.A.; Bakhtiari, A.; Banach, M.; Banik, P.C.; Baptista, E.A.; Barboza, M.A.; Barua, L.; Basu, S.; Bedi, N.; Béjot, Y.; Bennett, D.A.; Bensenor, I.M.; Berman, A.E.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhaskar, S.; Bhattacharyya, K.; Bijani, A.; Bikbov, B.; Birhanu, M.M.; Boloor, A.; Brant, L.C.; Brenner, H.; Briko, N.I.; Butt, Z.A.; Caetano dos Santos, F.L.; Cahill, L.E.; Cahuana-Hurtado, L.; Cámera, L.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, J.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Cerin, E.; Charan, J.; Chattu, V.K.; Chen, S.; Chin, K.L.; Choi, J-Y.J.; Chu, D-T.; Chung, S-C.; Cirillo, M.; Coffey, S.; Conti, S.; Costa, V.M.; Cundiff, D.K.; Dadras, O.; Dagnew, B.; Dai, X.; Damasceno, A.A.M.; Dandona, L.; Dandona, R.; Davletov, K.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Neve, J-W.; Denova-Gutiérrez, E.; Derbew Molla, M.; Derseh, B.T.; Desai, R.; Deuschl, G.; Dharmaratne, S.D.; Dhimal, M.; Dhungana, R.R.; Dianatinasab, M.; Diaz, D.; Djalalinia, S.; Dokova, K.; Douiri, A.; Duncan, B.B.; Duraes, A.R.; Eagan, A.W.; Ebtehaj, S.; Eftekhari, A.; Eftekharzadeh, S.; Ekholuenetale, M.; El Nahas, N.; Elgendy, I.Y.; Elhadi, M.; El-Jaafary, S.I.; Esteghamati, S.; Etisso, A.E.; Eyawo, O.; Fadhil, I.; Faraon, E.J.A.; Faris, P.S.; Farwati, M.; Farzadfar, F.; Fernandes, E.; Fernandez Prendes, C.; Ferrara, P.; Filip, I.; Fischer, F.; Flood, D.; Fukumoto, T.; Gad, M.M.; Gaidhane, S.; Ganji, M.; Garg, J.; Gebre, A.K.; Gebregiorgis, B.G.; Gebregzabiher, K.Z.; Gebremeskel, G.G.; Getacher, L.; Obsa, A.G.; Ghajar, A.; Ghashghaee, A.; Ghith, N.; Giampaoli, S.; Gilani, S.A.; Gill, P.S.; Gillum, R.F.; Glushkova, E.V.; Gnedovskaya, E.V.; Golechha, M.; Gonfa, K.B.; Goudarzian, A.H.; Goulart, A.C.; Guadamuz, J.S.; Guha, A.; Guo, Y.; Gupta, R.; Hachinski, V.; Hafezi-Nejad, N.; Haile, T.G.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hargono, A.; Hartono, R.K.; Hashemian, M.; Hashi, A.; Hassan, S.; Hassen, H.Y.; Havmoeller, R.J.; Hay, S.I.; Hayat, K.; Heidari, G.; Herteliu, C.; Holla, R.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Huang, J.; Humayun, A.; Iavicoli, I.; Ibeneme, C.U.; Ibitoye, S.E.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Iqbal, U.; Irvani, S.S.N.; Islam, S.M.S.; Islam, R.M.; Iso, H.; Iwagami, M.; Jain, V.; Javaheri, T.; Jayapal, S.K.; Jayaram, S.; Jayawardena, R.; Jeemon, P.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joukar, F.; Jozwiak, J.J.; Jürisson, M.; Kabir, A.; Kahlon, T.; Kalani, R.; Kalhor, R.; Kamath, A.; Kamel, I.; Kandel, H.; Kandel, A.; Karch, A.; Kasa, A.S.; Katoto, P.D.M.C.; Kayode, G.A.; Khader, Y.S.; Khammarnia, M.; Khan, M.S.; Khan, M.N.; Khan, M.; Khan, E.A.; Khatab, K.; Kibria, G.M.A.; Kim, Y.J.; Kim, G.R.; Kimokoti, R.W.; Kisa, S.; Kisa, A.; Kivimäki, M.; Kolte, D.; Koolivand, A.; Korshunov, V.A.; Koulmane Laxminarayana, S.L.; Koyanagi, A.; Krishan, K.; Krishnamoorthy, V.; Kuate Defo, B.; Kucuk Bicer, B.; Kulkarni, V.; Kumar, G.A.; Kumar, N.; Kurmi, O.P.; Kusuma, D.; Kwan, G.F.; La Vecchia, C.; Lacey, B.; Lallukka, T.; Lan, Q.; Lasrado, S.; Lassi, Z.S.; Lauriola, P.; Lawrence, W.R.; Laxmaiah, A.; LeGrand, K.E.; Li, M-C.; Li, B.; Li, S.; Lim, S.S.; Lim, L-L.; Lin, H.; Lin, Z.; Lin, R-T.; Liu, X.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Lugo, A.; M, N.K.; Madotto, F.; Mahmoudi, M.; Majeed, A.; Malekzadeh, R.; Malik, A.A.; Mamun, A.A.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; Martini, S.; Mathur, M.R.; Mazzaglia, G.; Mehata, S.; Mehndiratta, M.M.; Meier, T.; Menezes, R.G.; Meretoja, A.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Miller, T.R.; Mirrakhimov, E.M.; Mirzaei, H.; Moazen, B.; Moghadaszadeh, M.; Mohammad, Y.; Mohammad, D.K.; Mohammed, S.; Mohammed, M.A.; Mokhayeri, Y.; Molokhia, M.; Montasir, A.A.; Moradi, G.; Moradzadeh, R.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morze, J.; Mubarik, S.; Muruet, W.; Musa, K.I.; Nagarajan, A.J.; Nalini, M.; Nangia, V.; Naqvi, A.A.; Narasimha Swamy, S.; Nascimento, B.R.; Nayak, V.C.; Nazari, J.; Nazarzadeh, M.; Negoi, R.I.; Neupane Kandel, S.; Nguyen, H.L.T.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nouthe, B.E.; Nowak, C.; Odukoya, O.O.; Ogbo, F.A.; Olagunju, A.T.; Orru, H.; Ortiz, A.; Ostroff, S.M.; Padubidri, J.R.; Palladino, R.; Pana, A.; Panda-Jonas, S.; Parekh, U.; Park, E-C.; Parvizi, M.; Pashazadeh Kan, F.; Patel, U.K.; Pathak, M.; Paudel, R.; Pepito, V.C.F.; Perianayagam, A.; Perico, N.; Pham, H.Q.; Pilgrim, T.; Piradov, M.A.; Pishgar, F.; Podder, V.; Polibin, R.V.; Pourshams, A.; Pribadi, D.R.A.; Rabiee, N.; Rabiee, M.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Ur Rahman, M.H.; Rahman, M.A.; Rahmani, A.M.; Rakovac, I.; Ram, P.; Ramalingam, S.; Rana, J.; Ranasinghe, P.; Rao, S.J.; Rathi, P.; Rawal, L.; Rawasia, W.F.; Rawassizadeh, R.; Remuzzi, G.; Renzaho, A.M.N.; Rezapour, A.; Riahi, S.M.; Roberts-Thomson, R.L.; Roever, L.; Rohloff, P.; Romoli, M.; Roshandel, G.; Rwegerera, G.M.; Saadatagah, S.; Saber-Ayad, M.M.; Sabour, S.; Sacco, S.; Sadeghi, M.; Saeedi Moghaddam, S.; Safari, S.; Sahebkar, A.; Salehi, S.; Salimzadeh, H.; Samaei, M.; Samy, A.M.; Santos, I.S.; Santric-Milicevic, M.M.; Sarrafzadegan, N.; Sarveazad, A.; Sathish, T.; Sawhney, M.; Saylan, M.; Schmidt, M.I.; Schutte, A.E.; Senthilkumaran, S.; Sepanlou, S.G.; Sha, F.; Shahabi, S.; Shahid, I.; Shaikh, M.A.; Shamali, M.; Shamsizadeh, M.; Shawon, M.S.R.; Sheikh, A.; Shigematsu, M.; Shin, M-J.; Shin, J.I.; Shiri, R.; Shiue, I.; Shuval, K.; Siabani, S.; Siddiqi, T.J.; Silva, D.A.S.; Singh, J.A.; Mtech, A.S.; Skryabin, V.Y.; Skryabina, A.A.; Soheili, A.; Spurlock, E.E.; Stockfelt, L.; Stortecky, S.; Stranges, S.; Suliankatchi Abdulkader, R.; Tadbiri, H.; Tadesse, E.G.; Tadesse, D.B.; Tajdini, M.; Tariqujjaman, M.; Teklehaimanot, B.F.; Temsah, M-H.; Tesema, A.K.; Thakur, B.; Thankappan, K.R.; Thapar, R.; Thrift, A.G.; Timalsina, B.; Tonelli, M.; Touvier, M.; Tovani-Palone, M.R.; Tripathi, A.; Tripathy, J.P.; Truelsen, T.C.; Tsegay, G.M.; Tsegaye, G.W.; Tsilimparis, N.; Tusa, B.S.; Tyrovolas, S.; Umapathi, K.K.; Unim, B.; Unnikrishnan, B.; Usman, M.S.; Vaduganathan, M.; Valdez, P.R.; Vasankari, T.J.; Velazquez, D.Z.; Venketasubramanian, N.; Vu, G.T.; Vujcic, I.S.; Waheed, Y.; Wang, Y.; Wang, F.; Wei, J.; Weintraub, R.G.; Weldemariam, A.H.; Westerman, R.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Wubishet, B.L.; Xu, G.; Yadollahpour, A.; Yamagishi, K.; Yan, L.L.; Yandrapalli, S.; Yano, Y.; Yatsuya, H.; Yeheyis, T.Y.; Yeshaw, Y.; Yilgwan, C.S.; Yonemoto, N.; Yu, C.; Yusefzadeh, H.; Zachariah, G.; Zaman, S.B.; Zaman, M.S.; Zamanian, M.; Zand, R.; Zandifar, A.; Zarghi, A.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, Z-J.; Zhang, Y.; Zhang, W.; Zhong, C.; Zou, Z.; Zuniga, Y.M.H.; Murray, C.J.L.; Fuster, V. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019.J. Am. Coll. Cardiol.202076252982302110.1016/j.jacc.2020.11.010 33309175
    [Google Scholar]
  2. KimS.J. MesquitaF.C.P. Hochman-MendezC. New biomarkers for cardiovascular disease.Tex. Heart Inst. J.2023505e23817810.14503/THIJ‑23‑8178 37846107
    [Google Scholar]
  3. ChaudhryM.A. Heart Failure.Curr. Hypertens. Rev.2019151710.2174/157340211501190129144451 30729894
    [Google Scholar]
  4. KongX. SunH. WeiK. MengL. LvX. LiuC. LinF. GuX. WGCNA combined with machine learning algorithms for analyzing key genes and immune cell infiltration in heart failure due to ischemic cardiomyopathy.Front. Cardiovasc. Med.202310105883410.3389/fcvm.2023.1058834 37008314
    [Google Scholar]
  5. CrosierR. AustinP.C. KoD.T. LawlerP.R. StukelT.A. FarkouhM.E. WangX. SpertusJ.A. RossH.J. LeeD.S. Intensity of guideline-directed medical therapy for coronary heart disease and ischemic heart failure outcomes.Am. J. Med.20211345672681.e410.1016/j.amjmed.2020.10.017 33181105
    [Google Scholar]
  6. YangY. TianY. HuS. BiS. LiS. HuY. KouJ. QiJ. YuB. Extract of Sheng-Mai-San Ameliorates Myocardial Ischemia-Induced Heart Failure by Modulating Ca2+-Calcineurin-Mediated Drp1 Signaling Pathways.Int. J. Mol. Sci.2017189182510.3390/ijms18091825 28841143
    [Google Scholar]
  7. JiaC. PanX. WangB. WangP. WangY. ChenR. Mechanism prediction of astragalus membranaceus against cisplatin-induced kidney damage by network pharmacology and molecular docking.Evid. Based Comple. Alter. Med.202120219516726
    [Google Scholar]
  8. LiM. HanB. ZhaoH. XuC. XuD. SieniawskaE. LinX. KaiG. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases.Phytomedicine20229815391810.1016/j.phymed.2021.153918 35104756
    [Google Scholar]
  9. LiangY. ZhangQ. ZhangL. WangR. XuX. HuX. Astragalus membranaceus treatment protects raw 264.7 cells from influenza virus by regulating G1 Phase and the TLR3-mediated signaling pathway.Evid. Based Compl. Alter. Med.201920192971604
    [Google Scholar]
  10. ZhangL. YangY. WangY. GaoX. Astragalus membranaceus extract promotes neovascularisation by VEGF pathway in rat model of ischemic injury.Pharmazie2011662144150 21434579
    [Google Scholar]
  11. LiN.Y. YuH. LiX.L. WangQ.Y. ZhangX.W. MaR.X. ZhaoY. XuH. LiangW. BaiF. YuJ. Astragalus Membranaceus Improving Asymptomatic Left Ventricular Diastolic Dysfunction in Postmenopausal Hypertensive Women with Metabolic Syndrome.Chin. Med. J. (Engl.)2018131551652610.4103/0366‑6999.226077 29483384
    [Google Scholar]
  12. WangT. ZhouY. WangK. JiangX. WangJ. ChenJ. Prediction and validation of potential molecular targets for the combination of Astragalus membranaceus and Angelica sinensis in the treatment of atherosclerosis based on network pharmacology.Medicine (Baltimore)202210126e2976210.1097/MD.0000000000029762 35776988
    [Google Scholar]
  13. HuY.C. HouJ.Y. [Effect of zhimu and huangqi on cardiac hypertrophy and response to stimulation in mice].Zhongguo Zhongyao Zazhi2003284369374 15139154
    [Google Scholar]
  14. ChenQ. WangJ. SunL. BaB. ShenD. Mechanism of Astragalus membranaceus (Huangqi, HQ) for treatment of heart failure based on network pharmacology and molecular docking.J. Cell. Mol. Med.20242810e1833110.1111/jcmm.18331 38780500
    [Google Scholar]
  15. YuanY. LiuH. MengQ. The Cardioprotective Effects and Mechanisms of Astragalus-Safflower Herb Pairs on Coronary Heart Disease Identified by Network Pharmacology and Experimental Verification. Front.Bioscience-Landmark20232859410.31083/j.fbl2805094
    [Google Scholar]
  16. FuS. ZhangJ. Menniti-IppolitoF. GaoX. GaleottiF. MassariM. HuL. ZhangB. FerrelliR. FauciA. FirenzuoliF. ShangH. GuerraR. RaschettiR. Huangqi injection (a traditional Chinese patent medicine) for chronic heart failure: A systematic review.PloS one201165e19604
    [Google Scholar]
  17. MaX. ZhangK. LiH. HanS. MaZ. TuP. Extracts from Astragalus membranaceus limit myocardial cell death and improve cardiac function in a rat model of myocardial ischemia.J. Ethnopharmacol.2013149372072810.1016/j.jep.2013.07.036 23968862
    [Google Scholar]
  18. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  19. ZhangY. LiZ. WeiJ. KongL. SongM. ZhangY. XiaoX. CaoH. JinY. Network pharmacology and molecular docking reveal the mechanism of Angelica dahurica against Osteosarcoma.Medicine (Baltimore)202210144e3105510.1097/MD.0000000000031055 36343039
    [Google Scholar]
  20. PinziL. RastelliG. Molecular Docking: Shifting Paradigms in Drug Discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  21. GuoX. AnS. BaoF. XuT. Challenges and Perspectives in Target Identification and Mechanism Illustration for Chinese Medicine.Chin. J. Integr. Med.202329764465410.1007/s11655‑023‑3629‑9 36809500
    [Google Scholar]
  22. BenderB.J. GahbauerS. LuttensA. LyuJ. WebbC.M. SteinR.M. FinkE.A. BaliusT.E. CarlssonJ. IrwinJ.J. ShoichetB.K. A practical guide to large-scale docking.Nat. Protoc.202116104799483210.1038/s41596‑021‑00597‑z 34561691
    [Google Scholar]
  23. RuanG.Y. YeL.X. LinJ.S. LinH.Y. YuL.R. WangC.Y. MaoX.D. ZhangS.H. SunP.M. An integrated approach of network pharmacology, molecular docking, and experimental verification uncovers kaempferol as the effective modulator of HSD17B1 for treatment of endometrial cancer.J. Transl. Med.202321120410.1186/s12967‑023‑04048‑z 36932403
    [Google Scholar]
  24. ZhangM.X. HuangX.Y. SongY. XuW.L. LiY.L. LiC. Astragalus propinquus schischkin and Salvia miltiorrhiza bunge promote angiogenesis to treat myocardial ischemia via Ang-1/Tie-2/FAK pathway.Front. Pharmacol.202313110355710.3389/fphar.2022.1103557 36699092
    [Google Scholar]
  25. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  26. GaoC. PanH. MaF. ZhangZ. ZhaoZ. SongJ. LiW. FanX. Centipeda minima active components and mechanisms in lung cancer.BMC Compl. Med. Therap.20232389
    [Google Scholar]
  27. YeX. LiuJ. YuanX. YangS. HuangY. ChenY. Molecular Mechanism of Salvia miltiorrhiza Bunge in Treating Cerebral Infarction.Evid. Based Compl. Alter. Med.202220225992394
    [Google Scholar]
  28. BatemanA. MartinM-J. OrchardS. MagraneM. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. Bye-A-JeeH. CukuraA. DennyP. DoganT. EbenezerT.G. FanJ. GarmiriP. da Costa GonzalesL.J. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JoshiV. JyothiD. KandasaamyS. LockA. LucianiA. LugaricM. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MishraA. MoulangK. NightingaleA. PundirS. QiG. RajS. RaposoP. RiceD.L. SaidiR. SantosR. SperettaE. StephensonJ. TotooP. TurnerE. TyagiN. VasudevP. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA.J. AimoL. Argoud-PuyG. AuchinclossA.H. AxelsenK.B. BansalP. BaratinD. Batista NetoT.M. BlatterM.C. BollemanJ.T. BoutetE. BreuzaL. GilB.C. Casals-CasasC. EchioukhK.C. CoudertE. CucheB. de CastroE. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GaudetP. GehantS. GerritsenV. GosA. GruazN. HuloC. Hyka-NouspikelN. JungoF. KerhornouA. Le MercierP. LieberherrD. MassonP. MorgatA. MuthukrishnanV. PaesanoS. PedruzziI. PilboutS. PourcelL. PouxS. PozzatoM. PruessM. RedaschiN. RivoireC. SigristC.J.A. SonessonK. SundaramS. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. ZhangJ. UniProt: the Universal Protein Knowledgebase in 2023.Nucleic Acids Res.202351D1D523D53110.1093/nar/gkac1052 36408920
    [Google Scholar]
  29. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. SteinT. I. NudelR. LiederI. MazorY. KaplanS. DaharyD. WarshawskyD. Guan-GolanY. KohnA. RappaportN. SafranM. LancetD. The genecards suite: From gene data mining to disease genome sequence analyses.Curr. Protocol. Bioinform.2016541.30.31-31.30.33
    [Google Scholar]
  30. AmbergerJ. S. HamoshA. Searching Online Mendelian Inheritance in Man (OMIM): A knowledgebase of human genes and genetic phenotypes.Curr. Prot. Bioinform.2017581.2.1-1.2.12
    [Google Scholar]
  31. YeJ. LiL. HuZ. Exploring the molecular mechanism of action of yinchen wuling powder for the treatment of hyperlipidemia, using network pharmacology, molecular docking, and molecular dynamics simulation.BioMed Res. Int.2021202111410.1155/2021/9965906 34746316
    [Google Scholar]
  32. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac1000 36370105
    [Google Scholar]
  33. ZhangL. HanL. WangX. WeiY. ZhengJ. ZhaoL. TongX. Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking.Biosci. Rep.2021416BSR2020352010.1042/BSR20203520 33634308
    [Google Scholar]
  34. GholaisN.S. ShiC. ZhangJ. LiaoB. AlbarmaqiR.A. TangX. MiL. Pharmacology-based investigation on the mechanism of the jinguanlan formula in treating Acne Vulgaris.Evid. Based Compl. Alter. Med.202220226944792
    [Google Scholar]
  35. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac956 36305812
    [Google Scholar]
  36. BurleyS.K. BhikadiyaC. BiC. BittrichS. ChaoH. ChenL. CraigP.A. CrichlowG.V. DalenbergK. DuarteJ.M. DuttaS. FayaziM. FengZ. FlattJ.W. GanesanS. GhoshS. GoodsellD.S. GreenR.K. GuranovicV. HenryJ. HudsonB.P. KhokhriakovI. LawsonC.L. LiangY. LoweR. PeisachE. PersikovaI. PiehlD.W. RoseY. SaliA. SeguraJ. SekharanM. ShaoC. VallatB. VoigtM. WebbB. WestbrookJ.D. WhetstoneS. YoungJ.Y. ZalevskyA. ZardeckiC. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning.Nucleic Acids Res.202351D1D488D50810.1093/nar/gkac1077 36420884
    [Google Scholar]
  37. LiC. DuX. LiuY. LiuQ.Q. ZhiW.B. WangC.L. ZhouJ. LiY. ZhangH. Systems pharmacology approach for identifying the multiple mechanisms of action for the rougui-fuzi herb pair in the treatment of cardiocerebral Vascular Diseases.Evid. Based Compl. Alter. Med.202020205196302
    [Google Scholar]
  38. GaoS. LiL. LiL. NiJ. GuoR. MaoJ. FanG. Effects of the combination of tanshinone IIA and puerarin on cardiac function and inflammatory response in myocardial ischemia mice.J. Mol. Cell. Cardiol.2019137597010.1016/j.yjmcc.2019.09.012 31629735
    [Google Scholar]
  39. SongR. Xiong, C.; Bai, J.; Bai, Z.; Liu, W. Artemisinin Attenuates Isoproterenol-induced Cardiac Hypertrophy via the ERK1/2 and p38 MAPK Signaling Pathways.Curr. Mol. Pharmacol.2023 38258596
    [Google Scholar]
  40. WangW. HuangX. ShenD. MingZ. ZhengM. ZhangJ. Polyphenol epigallocatechin-3-gallate inhibits hypoxia/reoxygena-tion-induced H9C2 cell apoptosis.Minerva Med.201810929510210.23736/S0026‑4806.17.05349‑6 29115797
    [Google Scholar]
  41. LuM. ZhangY. MaX. CenM. LinS. QianX. YuJ. HuangX. JiangZ. Shenmai Injection Alleviates Myocardial Ferroptosis via Activating the AKT1/mTOR Pathway in Rats with Acute Myocardial Infarction.Ann. Clin. Lab. Sci.20245413546 38514060
    [Google Scholar]
  42. MaghsoudiS. Taghavi ShahrakiB. RamehF. NazarabiM. FatahiY. AkhavanO. RabieeM. MostafaviE. LimaE.C. SaebM.R. RabieeN. A review on computer‐aided chemogenomics and drug repositioning for rational COVID ‐19 drug discovery.Chem. Biol. Drug Des.2022100569972110.1111/cbdd.14136 36002440
    [Google Scholar]
  43. YalabadiA.K. Yazdani-JahromiM. YousefiN. TayebiA. AbdidizajiS. GaribayO.O. FragXsiteDTI: Revealing responsible segments in drug-target interaction with transformer-driven interpretation.28th Annual International Conference, RECOMB 2024April 29–May 2, 2024Cambridge, MA, USA6885
    [Google Scholar]
  44. JiaoX. JinX. MaY. YangY. LiJ. LiangL. LiuR. LiZ. A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine.Comput. Biol. Chem.20219010740210.1016/j.compbiolchem.2020.107402 33338839
    [Google Scholar]
  45. RadM. EbrahimipourG. BandehpourM. AkhavanO. YarianF. SOEing PCR/docking optimization of protein A-G/scFv-Fc-bioconjugated Au nanoparticles for interaction with meningitidis bacterial antigen.Catalysts202313579010.3390/catal13050790
    [Google Scholar]
  46. AnJ. WangW. GuoY. WangC. BaoQ. JiaY. Angiotensin receptor-neprilysin inhibitor attenuates ischemia-hypoxia-induced myocardial injury via inhibition of autophagy.Am. J. Transl. Res.2022141286118620 36628240
    [Google Scholar]
  47. XiangC. ZhangF. GaoJ. GuoF. ZhangM. ZhouR. WeiJ. WangP. ZhangY. ZhangJ. YangH. Yixin-Shu capsules ameliorated ischemia-induced heart failure by restoring Trx2 and inhibiting JNK/p38 activation.Oxid. Med. Cell. Longev.2021202111510.1155/2021/8049079 33643519
    [Google Scholar]
  48. Del ReD.P. AmgalanD. LinkermannA. LiuQ. KitsisR.N. Fundamental mechanisms of regulated cell death and implications for heart disease.Physiol. Rev.20199941765181710.1152/physrev.00022.2018 31364924
    [Google Scholar]
  49. SongH.P. ZhangL. DangY.M. YanH. ChuZ.G. HuangY.S. The phosphatidylinositol 3‐kinase–Akt pathway protects cardiomyocytes from ischaemic and hypoxic apoptosis via mitochondrial function.Clin. Exp. Pharmacol. Physiol.2010375-659860410.1111/j.1440‑1681.2010.05355.x 20082630
    [Google Scholar]
  50. SongH.P. ChuZ.G. ZhangD.X. DangY.M. ZhangQ. PI3K-AKT pathway protects cardiomyocytes against hypoxia-induced apoptosis by mitoKATP-mediated mitochondrial translocation of pAKT.Cellular Physiol. Biochem.2018492717727
    [Google Scholar]
  51. Del BuonoM.G. MoroniF. MontoneR.A. AzzaliniL. SannaT. AbbateA. Ischemic Cardiomyopathy and Heart Failure After Acute Myocardial Infarction.Curr. Cardiol. Rep.202224101505151510.1007/s11886‑022‑01766‑6 35972638
    [Google Scholar]
  52. LinS. ShiQ. GeZ. LiuY. CaoY. YangY. ZhaoZ. BiY. HouY. WangS. WangX. MaoJ. Efficacy and Safety of Traditional Chinese Medicine Injections for Heart Failure With Reduced Ejection Fraction: A Bayesian Network Meta-Analysis of Randomized Controlled Trials.Front. Pharmacol.20211265970710.3389/fphar.2021.659707 34916929
    [Google Scholar]
  53. LiS. NongY. GaoQ. LiuJ. LiY. CuiX. WanJ. LuJ. SunM. WuQ. ShiX. CuiH. LiuW. ZhouM. LiL. LinQ. Astragalus granule prevents Ca(2+) current remodeling in heart failure by the downregulation of CaMKII.Evid. Based Compl. Alter. Med.201720177517358
    [Google Scholar]
  54. WangP. WangZ. ZhangZ. CaoH. KongL. MaW. RenW. A review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of the Astragalus memeranaceus.Front. Pharmacol.202314124231810.3389/fphar.2023.1242318 37680711
    [Google Scholar]
  55. PatelR.V. MistryB.M. ShindeS.K. SyedR. SinghV. ShinH.S. Therapeutic potential of quercetin as a cardiovascular agent.Eur. J. Med. Chem.201815588990410.1016/j.ejmech.2018.06.053 29966915
    [Google Scholar]
  56. ZhangW. ZhengY. YanF. DongM. RenY. Research progress of quercetin in cardiovascular disease.Front. Cardiovasc. Med.202310120371310.3389/fcvm.2023.1203713 38054093
    [Google Scholar]
  57. IqbalI. WilairatanaP. SaqibF. NasirB. WahidM. LatifM.F. IqbalA. NazR. MubarakM.S. Plant polyphenols and their potential benefits on cardiovascular health: A review.Molecules20232817640310.3390/molecules28176403 37687232
    [Google Scholar]
  58. SantosJ.M.S. MonteA.P.O. LinsT.L.B.G. BarberinoR.S. MenezesV.G. GouveiaB.B. MacedoT.J.S. Oliveira JúniorJ.L. DonfackN.J. MatosM.H.T. Kaempferol can be used as the single antioxidant in the in vitro culture medium, stimulating sheep secondary follicle development through the phosphatidylinositol 3-kinase signaling pathway.Theriogenology2019136869410.1016/j.theriogenology.2019.06.036 31254726
    [Google Scholar]
  59. AmaniH. HabibeyR. ShokriF. HajmiresmailS.J. AkhavanO. MashaghiA. Pazoki-ToroudiH. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling.Sci. Rep.201991604410.1038/s41598‑019‑42633‑9 30988361
    [Google Scholar]
  60. LeeD. SonE. KimY.H. Transferrin-mediated increase of labile iron Pool following simulated ischemia causes lipid peroxidation during the early phase of reperfusion.Free Radic. Res.20225611-1271372910.1080/10715762.2023.2169683 36794395
    [Google Scholar]
  61. TánczosB. VassV. SzabóE. LovasM. KattoubR.G. BereczkiI. BorbásA. HerczeghP. TósakiÁ. Effects of H(2)S-donor ascorbic acid derivative and ischemia/reperfusion-induced injury in isolated rat hearts.Europ. J. Pharmaceut. Sci.2024195106721
    [Google Scholar]
  62. AmaniH. HabibeyR. HajmiresmailS.J. LatifiS. Pazoki-ToroudiH. AkhavanO. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries.J. Mater. Chem. B Mater. Biol. Med.20175489452947610.1039/C7TB01689A 32264560
    [Google Scholar]
  63. HuangZ. LiuY. HuangX. Formononetin may protect aged hearts from ischemia/reperfusion damage by enhancing autophagic degradation.Mol. Med. Rep.20181864821483010.3892/mmr.2020.11546 30320398
    [Google Scholar]
  64. ZhangS. TangX. TianJ. LiC. ZhangG. JiangW. ZhangZ. Cardioprotective effect of sulphonated formononetin on acute myocardial infarction in rats.Basic Clin. Pharmacol. Toxicol.2011108639039510.1111/j.1742‑7843.2011.00676.x 21232020
    [Google Scholar]
  65. XuY. TangC. TanS. DuanJ. TianH. YangY. Cardioprotective effect of isorhamnetin against myocardial ischemia reperfusion (I/R) injury in isolated rat heart through attenuation of apoptosis.J. Cell. Mol. Med.202024116253626210.1111/jcmm.15267 32307912
    [Google Scholar]
  66. XueM. ChenX. GuoZ. LiuX. BiY. YinJ. HuH. ZhuP. ZhuangJ. CatesC. RousselleT. LiJ. L-carnitine attenuates cardiac dysfunction by ischemic insults through Akt signaling pathway.Toxicol. Sci.20171602341350
    [Google Scholar]
  67. ZhengB. QiJ. YangY. LiL. LiuY. HanX. QuW. ChuL. Mechanisms of cinnamic aldehyde against myocardial ischemia/hypoxia injury in vivo and in vitro: Involvement of regulating PI3K/AKT signaling pathway.Biomed. pharmacoth.2022147112674
    [Google Scholar]
  68. ShuZ. YangY. YangL. JiangH. YuX. WangY. Cardioprotective effects of dihydroquercetin against ischemia reperfusion injury by inhibiting oxidative stress and endoplasmic reticulum stress-induced apoptosis via the PI3K/Akt pathway.Food Funct.201910120321510.1039/C8FO01256C 30525169
    [Google Scholar]
  69. ZhaoD.D. ZhangX.Q. YangT. LiuQ. LanZ.Z. YangX.L. QuH.Y. ZhouH. Exploring the therapeutic mechanism of Tingli Dazao Xiefei decoction on heart failure based on network pharmacology and experimental study.Evid. Based Compl. Alter. Med.202120216645878
    [Google Scholar]
  70. LiS. HuangC. LiX. MengX. WenR. ZhangX. ZhangC. LiM. Bellidifolin from Gentianella acuta (Michx.) Hulten protects H9c2 cells from hydrogen peroxide-induced injury via the PI3K-Akt signal pathway.Toxicol. Rep.202291655166510.1016/j.toxrep.2022.08.006 36518482
    [Google Scholar]
  71. WeiZ. LuoL. HuS. TianR. LiuZ. KDM2B overexpression prevents myocardial ischemia reperfusion injury in rats through regulating inflammatory response via the TLR4/NF κB p65 axis.Exp. Ther. Med.202123215410.3892/etm.2021.11077 35069835
    [Google Scholar]
  72. LinX. LiuW. ChuY. ZhangH. ZengL. LinY. KangK. PengF. LinJ. HuangC. ChaiD. Activation of AHR by ITE improves cardiac remodelling and function in rats after myocardial infarction.ESC Heart Fail.20231063622363610.1002/ehf2.14532 37798907
    [Google Scholar]
  73. HuangC. GuH. ZhangW. HerrmannJ.L. WangM. Testosterone-down-regulated Akt pathway during cardiac ischemia/reperfusion: A mechanism involving BAD, Bcl-2 and FOXO3a.J. Surg. Res.20101641e1e1110.1016/j.jss.2010.07.041 20850791
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073322602240909113946
Loading
/content/journals/cchts/10.2174/0113862073322602240909113946
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test