Skip to content
2000
Volume 28, Issue 16
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Aim

Psoriasis is an immune-mediated skin disease that occurs worldwide and is characterized by high prevalence and chronicity. Psoriasis has a complex pathogenesis and is difficult to cure. Therefore, continuous exploration of the pathogenesis of psoriasis and the search for new drug treatment methods are crucial for improving treatment efficiency and reducing psychological damage to psoriasis patients. The active ingredients in Dihuang Zicao granules (DHZCG) can effectively treat psoriasis. Therefore, this study aimed to analyze the active ingredients of DHZCG and their potential mechanisms for treating psoriasis.

Methods

The effective components of DHZCG were screened the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Genetic information for psoriasis was retrieved from the GeneCards, OMIM and DisGENET databases. Protein-Protein Interaction (PPI) analysis was performed, and component‒target‒disease networks were constructed. Important molecular biological processes and signaling pathways were screened GO and KEGG analyses. Molecular docking of the active ingredients and key targets was performed AutoDock Vina (1.1.2). A mouse model of psoriasis was established and divided into a control group, model group, low-dose DHZCG group (L-DHZCG), medium-dose DHZCG group (M-DHZCG), and high-dose DHZCG group (H-DHZCG). Hematoxylin and Eosin (HE) staining was performed to determine the pathological changes in the skin of each group of mice, and the Psoriasis Area Severity Index (PASI) score was used to assess skin damage. ELISA and RT‒PCR were used to measure the levels of the inflammatory factors TNF-a, IL-17A, and IL-23 in the serum and skin tissue of the mice, respectively. Western blotting was used to analyze the expression of proteins related to the AGE/RAGE signaling pathway. Immunofluorescence was used to examine the expression of the inflammatory factor NF-kB. Immunohistochemistry was used to measure IL-1β and TNF-a expression in skin tissues.

Results

Sixty genes associated with psoriasis treatment by DHZCG, including core genes encoding IL-6, TNF-a, AKT1, IL-1β, TP53, NFKB1, BCL2, and MAPK3, were identified. Through the construction of a psoriasis mouse model, DHZCG treatment effectively reduced skin damage and significantly decreased the levels of the validated factors TNF-a, IL-17A, IL-23, IL-1b, and NF-kB in the serum and damaged skin. Furthermore, the reduction in the levels of these inflammatory factors by DHZCG is associated with the downregulation of the AGE/RAGE signaling pathway.

Conclusion

DHZCG reduces inflammation and alleviates psoriasis by downregulating the AGE/RAGE/NF-kB signaling pathway. This study is beneficial for providing a theoretical basis for the development of drugs for psoriasis and for offering personalized treatment strategies for the clinical management of psoriasis.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073313333240912080819
2024-10-01
2025-12-31
Loading full text...

Full text loading...

References

  1. DanielsenK. OlsenA.O. WilsgaardT. FurbergA.S. Is the prevalence of psoriasis increasing? A 30-year follow-up of a population-based cohort.Br. J. Dermatol.201316861303131010.1111/bjd.12230 23374051
    [Google Scholar]
  2. LiJ. YuM. WangY. ZhangJ. JuM. ChenK. JiangY. LiM. ChenX.S. Prevalence of psoriasis and associated risk factors in China: Protocol of a nationwide, population-based, cross-sectional study.BMJ Open201997e02768510.1136/bmjopen‑2018‑027685 31345966
    [Google Scholar]
  3. KunzM. SimonJ.C. SaalbachA. Psoriasis: Obesity and Fatty Acids.Front. Immunol.201910180710.3389/fimmu.2019.01807 31417571
    [Google Scholar]
  4. DasD. AkhtarS. KurraS. GuptaS. SharmaA. Emerging role of immune cell network in autoimmune skin disorders: An update on pemphigus, vitiligo and psoriasis.Cytokine Growth Factor Rev.201945354410.1016/j.cytogfr.2019.01.001 30773437
    [Google Scholar]
  5. ZhouJ. SunD. XuL. SunL. FuS. LiY. ADAM33 as a psoriasis susceptibility gene in the Han population of northeastern China.Dermatology2011223435636210.1159/000335417 22269827
    [Google Scholar]
  6. YaoX. HaoS. YuP. Association study of the caspase gene family and psoriasis vulgaris susceptibility in northeastern China.BioMed Res. Int.2019201911110.1155/2019/2417612 30906769
    [Google Scholar]
  7. FanX. WangH. SunL. ZhengX. YinX. ZuoX. PengQ. StandishK.A. ChengH. ZhangY. WangZ. XiaoF. YangS. ZhangX. SchorkN.J. Fine mapping and subphenotyping implicates ADRA1B gene variants in psoriasis susceptibility in a Chinese population.Epigenomics201911445546710.2217/epi‑2018‑0131 30785334
    [Google Scholar]
  8. LuoQ. ZengJ. LiW. LinL. ZhouX. TianX. LiuW. ZhangL. ZhangX. Interaction of MTHFR gene with smoking and alcohol use and haplotype combination susceptibility to psoriasis in Chinese population.Immunol. Res.201866454354710.1007/s12026‑018‑9017‑4 30084051
    [Google Scholar]
  9. LorscheidS. MüllerA. LöfflerJ. ReschC. BucherP. KurschusF.C. WaismanA. SchäkelK. HailfingerS. Schulze-OsthoffK. KramerD. Keratinocyte-derived IκBζ drives psoriasis and associated systemic inflammation.JCI Insight2019422e13083510.1172/jci.insight.130835 31622280
    [Google Scholar]
  10. Purzycka-BohdanD. NedoszytkoB. ZabłotnaM. GleńJ. Szczerkowska-DoboszA. NowickiR.J. Chemokine profile in psoriasis patients in correlation with disease severity and pruritus.Int. J. Mol. Sci.202223211333010.3390/ijms232113330 36362116
    [Google Scholar]
  11. MaL. XueH. QiR. WangY. YuanL. Effect of γ-secretase inhibitor on Th17 cell differentiation and function of mouse psoriasis-like skin inflammation.J. Transl. Med.20181615910.1186/s12967‑018‑1442‑6 29523162
    [Google Scholar]
  12. FengS. WangL. LiuW. ZhongY. XuS. MiR‐126 correlates with increased disease severity and promotes keratinocytes proliferation and inflammation while suppresses cells’ apoptosis in psoriasis.J. Clin. Lab. Anal.2018329e2258810.1002/jcla.22588 29943471
    [Google Scholar]
  13. FukasawaT. ToyamaS. EnomotoA. Yoshizaki-OgawaA. NorimatsuY. TateishiS. KandaH. MiyagawaK. SatoS. YoshizakiA. Utility of nailfold capillary assessment for predicting psoriatic arthritis based on a prospective observational cohort study.Rheumatology (Oxford)20236272418242510.1093/rheumatology/keac664 36440919
    [Google Scholar]
  14. SagonasI. IliopoulosG. BaraliakosX. DaoussisD. Anti-TNF-α induced paradoxical psoriasis in patients with ankylosing spondylitis: A systematic review.Clin. Exp. Rheumatol.2024421178184 37812484
    [Google Scholar]
  15. BrembillaN.C. SenraL. BoehnckeW.H. The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond.Front. Immunol.20189168210.3389/fimmu.2018.01682 30127781
    [Google Scholar]
  16. GhoreschiK. BalatoA. EnerbäckC. SabatR. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis.Lancet20213971027575476610.1016/S0140‑6736(21)00184‑7 33515492
    [Google Scholar]
  17. BlauveltA. ChiricozziA. The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis.Clin. Rev. Allergy Immunol.201855337939010.1007/s12016‑018‑8702‑3 30109481
    [Google Scholar]
  18. KamiyaK. KishimotoM. SugaiJ. KomineM. OhtsukiM. Risk Factors for the Development of psoriasis.Int. J. Mol. Sci.20192018434710.3390/ijms20184347 31491865
    [Google Scholar]
  19. BoehnckeW.H. SchönM.P. Psoriasis.Lancet2015386999798399410.1016/S0140‑6736(14)61909‑7 26025581
    [Google Scholar]
  20. RendonA. SchäkelK. Psoriasis Pathogenesis and Treatment.Int. J. Mol. Sci.2019206147510.3390/ijms20061475 30909615
    [Google Scholar]
  21. ChenX. ZhangR. DuanX. XueM. QuT. LiL. Effectiveness of Xiaoyin Jiedu granules in the treatment of psoriasis vulgaris in patients with blood-heat symptom patterns in terms of Traditional Chinese Medicine.J. Tradit. Chin. Med.2020405863869 33000588
    [Google Scholar]
  22. RenH. LiK. MinY. QiuB. HuangX. LuoJ. QiL. KangM. XiaP. QiaoH. ChenJ. CuiY. GanL. WangP. WangJ. Rehmannia glutinosa Polysaccharides: Optimization of the Decolorization Process and Antioxidant and Anti-Inflammatory Effects in LPS-Stimulated Porcine Intestinal Epithelial Cells.Antioxidants2023124914
    [Google Scholar]
  23. SyarifahA.N. SuryadiH. HayunH. SimamoraA. Mun’imA. Detoxification of comfrey (Symphytum officinale L.) extract using natural deep eutectic solvent (NADES) and evaluation of its anti-inflammatory, antioxidant, and hepatoprotective properties.Front. Pharmacol.20231414101271610.3389/fphar.2023.1012716 36937831
    [Google Scholar]
  24. StickelF. SeitzH.K. The efficacy and safety of comfrey.Public Health Nutr.20003450150810.1017/S1368980000000586
    [Google Scholar]
  25. Tóbon-VelascoJ. CuevasE. Torres-RamosM. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress.CNS Neurol. Disord. Drug Targets20141391615162610.2174/1871527313666140806144831 25106630
    [Google Scholar]
  26. GonzálezI. MoralesM.A. RojasA. Polyphenols and AGEs/RAGE axis. Trends and challenges.Food Res. Int.202012910884310.1016/j.foodres.2019.108843 32036875
    [Google Scholar]
  27. TangD. HeW.J. ZhangZ.T. ShiJ.J. WangX. GuW.T. ChenZ.Q. XuY.H. ChenY.B. WangS.M. Protective effects of Huang-Lian-Jie-Du Decoction on diabetic nephropathy through regulating AGEs/RAGE/Akt/Nrf2 pathway and metabolic profiling in db/db mice.Phytomedicine20229515377710.1016/j.phymed.2021.153777 34815154
    [Google Scholar]
  28. KhalidM. PetroianuG. AdemA. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives.Biomolecules202212454210.3390/biom12040542 35454131
    [Google Scholar]
  29. LiangB. ZhouZ. YangZ. LiuJ. ZhangL. HeJ. LiH. HuangY. YangQ. XianS. WangL. AGEs–RAGE axis mediates myocardial fibrosis via activation of cardiac fibroblasts induced by autophagy in heart failure.Exp. Physiol.2022107887989110.1113/EP090042 35598104
    [Google Scholar]
  30. TerasakiM. ShibataK. MoriY. SaitoT. MatsuiT. OharaM. FukuiT. HasumiK. HigashimotoY. NobeK. YamagishiS. SMTP-44D Inhibits Atherosclerotic Plaque Formation in Apolipoprotein-E Null Mice Partly by Suppressing the AGEs-RAGE Axis.Int. J. Mol. Sci.2023247650510.3390/ijms24076505 37047475
    [Google Scholar]
  31. ZhouM. ZhangY. ShiL. LiL. ZhangD. GongZ. WuQ. Activation and modulation of the AGEs-RAGE axis: Implications for inflammatory pathologies and therapeutic interventions – A review.Pharmacol. Res.202420610728210.1016/j.phrs.2024.107282 38914383
    [Google Scholar]
  32. WangM MaX GaoC Rutin attenuates inflammation by downregulating AGE-RAGE signaling pathway in psoriasis: Network pharmacology analysis and experimental evidence.Int Immunopharmacol.2023125Pt A111033
    [Google Scholar]
  33. KarasA. HolmannovaD. BorskyP. FialaZ. AndrysC. HamakovaK. SvadlakovaT. PalickaV. KrejsekJ. RehacekV. EsterkovaM. KovarikovaH. BorskaL. Significantly Altered Serum Levels of NAD, AGE, RAGE, CRP, and Elastin as Potential Biomarkers of Psoriasis and Aging—A Case-Control Study.Biomedicines2022105113310.3390/biomedicines10051133 35625870
    [Google Scholar]
  34. GuarneriF. CusturoneP. PapaianniV. GangemiS. Involvement of RAGE and Oxidative Stress in Inflammatory and Infectious Skin Diseases.Antioxidants20211018210.3390/antiox10010082 33435332
    [Google Scholar]
  35. ShuM. ChengW. JiaX. BaiX. ZhaoY. LuY. ZhuL. ZhuY. WangL. ShuY. SongY. JinS. AGEs promote atherosclerosis by increasing LDL transcytosis across endothelial cells via RAGE/NF-κB/Caveolin-1 pathway.Mol. Med.202329111310.1186/s10020‑023‑00715‑5 37605109
    [Google Scholar]
  36. LiJ. JiT. SuS. ZhuY. ChenX. ShangE. GuoS. QianD. DuanJ. Mulberry leaves ameliorate diabetes via regulating metabolic profiling and AGEs/RAGE and p38 MAPK/NF-κB pathway.J. Ethnopharmacol.202228311471310.1016/j.jep.2021.114713 34626776
    [Google Scholar]
  37. DingB. LinC. LiuQ. HeY. RuganzuJ.B. JinH. PengX. JiS. MaY. YangW. Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro.J. Neuroinflammation202017130210.1186/s12974‑020‑01981‑4 33054814
    [Google Scholar]
  38. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  39. StelzerG RosenN PlaschkesI The GeneCards Suite: From gene data mining to disease genome sequence analyses.Curr Protoc Bioinformatics.2016541.30.1-1.30.33
    [Google Scholar]
  40. PiñeroJ. Ramírez-AnguitaJ.M. Saüch-PitarchJ. RonzanoF. CentenoE. SanzF. FurlongL.I. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.202048D1D845D855 31680165
    [Google Scholar]
  41. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa1074 33237311
    [Google Scholar]
  42. RagueneauE. ShrivastavaA. MorrisJ.H. del-ToroN. HermjakobH. PorrasP. IntAct App: A Cytoscape application for molecular interaction network visualization and analysis.Bioinformatics202137203684368510.1093/bioinformatics/btab319 33961020
    [Google Scholar]
  43. HuangD.W. ShermanB.T. LempickiR.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat. Protoc.200941445710.1038/nprot.2008.211 19131956
    [Google Scholar]
  44. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The Protein Data Bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  45. MooersB.H.M. Shortcuts for faster image creation in PyMOL.Protein Sci.202029126827610.1002/pro.3781 31710740
    [Google Scholar]
  46. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  47. HouY. ZhuL. TianH. SunH.X. WangR. ZhangL. ZhaoY. IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced Psoriasis.Protein Cell201891210271038
    [Google Scholar]
  48. WangZ. QinZ. WangJ. XuX. ZhangM. LiangY. HuangY. YuZ. GongY. ZhouL. QiuY. MaM. LiD. LiB. Engineering extracellular vesicles with macrophage membrane fusion for ameliorating imiquimod-induced psoriatic skin inflammation.J. Dermatolog. Treat.20233412220445
    [Google Scholar]
  49. MatteiP.L. CoreyK.C. KimballA.B. Psoriasis Area Severity Index (PASI) and the Dermatology Life Quality Index (DLQI): the correlation between disease severity and psychological burden in patients treated with biological therapies.J. Eur. Acad. Dermatol. Venereol.201428333333710.1111/jdv.12106 23425140
    [Google Scholar]
  50. SbidianE. ChaimaniA. AfachS. DoneyL. DresslerC. HuaC. MazaudC. PhanC. HughesC. RiddleD. NaldiL. Garcia-DovalI. Le CleachL. Systemic pharmacological treatments for chronic plaque psoriasis: A network meta-analysis.Cochrane Database Syst. Rev.202011CD011535 31917873
    [Google Scholar]
  51. KirstenN. RustenbachS. von KiedrowskiR. SorbeC. ReichK. AugustinM. Which PASI outcome is most relevant to the patients in real-world care?Life (Basel)20211111115110.3390/life11111151 34833027
    [Google Scholar]
  52. HuJ. ZhangW. XuL. HuL. JAK2 gene knockout inhibits corneal allograft rejection in mice by regulating dendritic cell-induced T cell immune tolerance.Cell Death Discov.20228128910.1038/s41420‑022‑01067‑5 35710633
    [Google Scholar]
  53. ChenG. LvC. NieQ. LiX. LvY. LiaoG. LiuS. GeW. ChenJ. DuY. Essential Oil of Matricaria chamomilla Alleviate Psoriatic-Like Skin Inflammation by Inhibiting PI3K/Akt/mTOR and p38MAPK Signaling Pathway.Clin. Cosmet. Investig. Dermatol.20248175977
    [Google Scholar]
  54. YanovskyR.L. ChenH. LeslieS. CarringtonM. LiaoW. The Interaction of LILRB2 with HLA-B Is Associated with Psoriasis Susceptibility.J. Invest. Dermatol.2020140612921295.e310.1016/j.jid.2019.12.006 31874134
    [Google Scholar]
  55. GriffithsC.E.M. ArmstrongA.W. GudjonssonJ.E. BarkerJ.N.W.N. Psoriasis.Lancet2021397102811301131510.1016/S0140‑6736(20)32549‑6 33812489
    [Google Scholar]
  56. HuP. WangM. GaoH. ZhengA. LiJ. MuD. TongJ. The Role of Helper T Cells in Psoriasis.Front. Immunol.2021121278894010.3389/fimmu.2021.788940 34975883
    [Google Scholar]
  57. FurueK. ItoT. TsujiG. KadonoT. FurueM. Psoriasis and the TNF/IL23/IL17 axis.G. Ital. Dermatol. Venereol.2019154441842410.23736/S0392‑0488.18.06202‑8 30648836
    [Google Scholar]
  58. ArmstrongA.W. ReadC. Pathophysiology,clinical presentation,and treatment of Psoriasis: A review.JAMA2020323191945196010.1001/jama.2020.4006 32427307
    [Google Scholar]
  59. ZhaoN. WangY. QuB. ZhuH. YangD. ZhangX. ZhaoJ. WangY. MengY. ChenZ. LiP. DiT. Jianpi-Yangxue-Jiedu decoction improves the energy metabolism of psoriasis mice by regulating the electron transfer of oxidative phosphorylation.J. Ethnopharmacol.202432432411771410.1016/j.jep.2024.117714 38184027
    [Google Scholar]
  60. ManS. MaW. JiangH. HaiderA. ShiS. LiX. WuZ. SongY. Evaluating the efficacy and mechanisms of Hua-Zhuo-Ning-Fu-Decoction on psoriasis using integrated bioinformatics analysis and metabolomics.J. Ethnopharmacol.202432532511785610.1016/j.jep.2024.117856 38316220
    [Google Scholar]
  61. Guttman-YasskyE. NogralesK.E. KruegerJ.G. Contrasting pathogenesis of atopic dermatitis and psoriasis—Part II: Immune cell subsets and therapeutic concepts.J. Allergy Clin. Immunol.201112761420143210.1016/j.jaci.2011.01.054 21419481
    [Google Scholar]
  62. ShenS. ZhengX. DongX. FangM. WanA. ZhuT. YangQ. XieJ. YanQ. Methotrexate-loaded hyaluronan-modified liposomes integrated into dissolving microneedles for the treatment of psoriasis.Eur. J. Pharm. Sci.202419519510671110.1016/j.ejps.2024.106711 38290610
    [Google Scholar]
  63. TokuyamaM. MabuchiT. Summary of certolizumab pegol in psoriasis including structural features, pharmacokinetics and treatment.Immunotherapy202416527328510.2217/imt‑2023‑0058 38319071
    [Google Scholar]
  64. WangZ. ZhangJ. ChenL. LiJ. ZhangH. GuoX. Glycine Suppresses AGE/RAGE Signaling Pathway and Subsequent Oxidative Stress by Restoring Glo1 Function in the Aorta of Diabetic Rats and in HUVECs.Oxid. Med. Cell. Longev.2019201911410.1155/2019/4628962 30944692
    [Google Scholar]
  65. ChenJ.H. LinX. BuC. ZhangX. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies.Nutr. Metab. (Lond.)20181517210.1186/s12986‑018‑0306‑7 30337945
    [Google Scholar]
  66. NabiR. AlviS.S. ShahA. ChaturvediC.P. FaisalM. AlatarA.A. AhmadS. KhanM.S. Ezetimibe attenuates experimental diabetes and renal pathologies via targeting the advanced glycation, oxidative stress and AGE-RAGE signalling in rats.Arch. Physiol. Biochem.2023129483184610.1080/13813455.2021.1874996 33508970
    [Google Scholar]
  67. ByunK. YooY. SonM. LeeJ. JeongG.B. ParkY.M. SalekdehG.H. LeeB. Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases.Pharmacol. Ther.2017177445510.1016/j.pharmthera.2017.02.030 28223234
    [Google Scholar]
  68. SilswalN. SinghA.K. ArunaB. MukhopadhyayS. GhoshS. EhteshamN.Z. Human resistin stimulates the pro-inflammatory cytokines TNF-α and IL-12 in macrophages by NF-κB-dependent pathway.Biochem. Biophys. Res. Commun.200533441092110110.1016/j.bbrc.2005.06.202 16039994
    [Google Scholar]
  69. RomeroN. Van WaesbergheC. FavoreelH.W. Pseudorabies Virus Infection of Epithelial Cells Leads to Persistent but Aberrant Activation of the NF-κB Pathway, Inhibiting Hallmark NF-κB-Induced Proinflammatory Gene Expression.J. Virol.20209410e00196e2010.1128/JVI.00196‑20 32132236
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073313333240912080819
Loading
/content/journals/cchts/10.2174/0113862073313333240912080819
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test