Skip to content
2000
Volume 28, Issue 12
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Chlorogenic acid (CHA) is a phenolic substance found in various edible plants, such as tea and green coffee extracts. This chemical has demonstrated significant efficacy in reducing the probability of many diseases in preclinical and clinical environments. Chlorogenic acid (CHA) possesses several pharmacological attributes, such as anticancer, hepatoprotective, antimicrobial, immune-suppressant, antioxidant, and antidiabetic activities. Its applications extend to multiple industries, such as food, chemicals, medicine, and healthcare. Studies have shown that CHA can exert its anticancer effects through numerous mechanisms. It can hinder the process of cell division, trigger cell apoptosis, and suppress an increase in cancerous cell growth. The literature research conducted for this study revealed a variety of molecular and cellular processes influencing distinct signaling pathways. These mechanisms include angiogenesis, invasion and migration, oxidative stress, inflammation, cell cycle arrest, and proliferation. However, significant issues surround the use of CHA, primarily due to its limited bioavailability in animal models. This review focuses on the chemistry, natural sources, pharmacokinetics, and underlying mechanisms of action of CHA and its clinical utility in treating life-threatening diseases, such as cancer. The manuscript provides insight into novel formulation approaches.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073321017240610060637
2024-06-20
2025-10-09
Loading full text...

Full text loading...

References

  1. UICC GLOBOCAN 2020: New Global Cancer Data.2020Available from: https://www.uicc.org/news/globocan-2020-new-global-cancer-data
  2. RGCF Cancer around the world.2018Available from: https://rgcf.org/details/news/cancer-around-the-world
  3. AACR Cancer Progress Report. Cancer in 2023.2023Available from: https://cancerprogressreport.aacr.org/progress/cpr23-contents/cpr23 -cancer-in-2023/
    [Google Scholar]
  4. WHO. Cancer>2022Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
  5. SinghD KumariK AhmedS Natural herbal products for cancer therapy.Understanding Cancer: From Basics to Therapeutics202225726810.1016/B978‑0‑323‑99883‑3.00010‑X
    [Google Scholar]
  6. MacisD. BriataI.M. D’EcclesiisO. JohanssonH. AristarcoV. Buttiron WebberT. OppezziM. GandiniS. BonanniB. DeCensiA. Inflammatory and metabolic biomarker assessment in a randomized presurgical trial of curcumin and anthocyanin supplements in patients with colorectal adenomas.Nutrients20231518389410.3390/nu15183894 37764678
    [Google Scholar]
  7. AhlinR. NørskovN.P. NybackaS. LandbergR. SkokicV. StranneJ. JosefssonA. SteineckG. HedelinM. Effects on serum hormone concentrations after a dietary phytoestrogen intervention in patients with prostate cancer: A randomized controlled trial.Nutrients2023157179210.3390/nu15071792 37049632
    [Google Scholar]
  8. MostafaH. BehrendtI. MeroñoT. González-DomínguezR. FasshauerM. RudloffS. Andres-LacuevaC. KuntzS. Plasma anthocyanins and their metabolites reduce in vitro migration of pancreatic cancer cells, PANC-1, in a FAK- and NF-kB dependent manner: Results from the ATTACH-study a randomized, controlled, crossover trial in healthy subjects.Biomed. Pharmacother.202315811407610.1016/j.biopha.2022.114076 36516693
    [Google Scholar]
  9. CacchioA. PrencipeR. BertoneM. De BenedictisL. TaglieriL. D’EliaE. CentolettiC. Di CarloG. Effectiveness and safety of a product containing diosmin, coumarin, and arbutin (Linfadren®) in addition to complex decongestive therapy on management of breast cancer-related lymphedema.Support. Care Cancer20192741471148010.1007/s00520‑018‑4514‑5 30343411
    [Google Scholar]
  10. MaoJ.T. LuQ.Y. XueB. NeisP. ZamoraF.D. LundmarkL. QuallsC. MassieL. A pilot study of a grape seed procyanidin extract for lung cancer chemoprevention.Cancer Prev. Res. (Phila.)201912855756610.1158/1940‑6207.CAPR‑19‑0053 31138523
    [Google Scholar]
  11. FanY. LiS. DingX. YueJ. JiangJ. ZhaoH. HaoR. QiuW. LiuK. LiY. WangS. ZhengL. YeB. MengK. XuB. First-in-class immune-modulating small molecule Icaritin in advanced hepatocellular carcinoma: Preliminary results of safety, durable survival and immune biomarkers.BMC Cancer201919127910.1186/s12885‑019‑5471‑1 30922248
    [Google Scholar]
  12. PintovaS. DharmupariS. MoshierE. ZubizarretaN. AngC. HolcombeR.F. Genistein combined with FOLFOX or FOLFOX–Bevacizumab for the treatment of metastatic colorectal cancer: Phase I/II pilot study.Cancer Chemother. Pharmacol.201984359159810.1007/s00280‑019‑03886‑3 31203390
    [Google Scholar]
  13. TanaseC. CoșarcăS. MunteanD.L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity.Molecules2019246118210.3390/molecules24061182 30917556
    [Google Scholar]
  14. GuptaA. KumarR. PandeyA.K. Antioxidant and antidiabetic activities of Terminalia bellirica fruit in alloxan induced diabetic rats.S. Afr. J. Bot.202013030831510.1016/j.sajb.2019.12.010
    [Google Scholar]
  15. AlbuquerqueB.R. HelenoS.A. OliveiraM.B.P.P. BarrosL. FerreiraI.C.F.R. Phenolic compounds: Current industrial applications, limitations and future challenges.Food Funct.2021121142910.1039/D0FO02324H 33242057
    [Google Scholar]
  16. AnantharajuP.G. GowdaP.C. VimalambikeM.G. Madhuna-pantulaS.V. An overview on the role of dietary phenolics for the treatment of cancers.Nutr. J.20161519910.1186/s12937‑016‑0217‑2 27903278
    [Google Scholar]
  17. GuptaA. KumarR. GangulyR. SinghA.K. RanaH.K. PandeyA.K. Antioxidant, anti-inflammatory and hepatoprotective activities of Terminalia bellirica and its bioactive component ellagic acid against diclofenac induced oxidative stress and hepatotoxicity.Toxicol. Rep.20218445210.1016/j.toxrep.2020.12.010 33391996
    [Google Scholar]
  18. BriguglioG. CostaC. PollicinoM. GiambòF. CataniaS. FengaC. Polyphenols in cancer prevention: New insights. ReviewInt. J. Func. Nut.202012910.3892/ijfn.2020.9
    [Google Scholar]
  19. KiokiasS. ProestosC. OreopoulouV. Phenolic acids of plant origin-A review on their antioxidant activity in vitro (o/w emulsion systems) along with their in vivo health biochemical properties.Foods20209453410.3390/foods9040534 32344540
    [Google Scholar]
  20. KumarN. GoelN. Phenolic acids: Natural versatile molecules with promising therapeutic applications.Biotechnol. Rep. (Amst.)201924e0037010.1016/j.btre.2019.e00370 31516850
    [Google Scholar]
  21. NaveedM. HejaziV. AbbasM. KambohA.A. KhanG.J. ShumzaidM. AhmadF. BabazadehD. FangFang, X.; Modarresi-Ghazani, F.; WenHua, L.; XiaoHui, Z. Chlorogenic acid (CGA): A pharmacological review and call for further research.Biomed. Pharmacother.201897677410.1016/j.biopha.2017.10.064 29080460
    [Google Scholar]
  22. PlazasM. ProhensJ. CuñatA. VilanovaS. GramazioP. HerraizF. AndújarI. Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) eggplants.Int. J. Mol. Sci.20141510172211724110.3390/ijms151017221 25264739
    [Google Scholar]
  23. NabaviS.F. TejadaS. SetzerW.N. GortziO. SuredaA. BraidyN. DagliaM. ManayiA. NabaviS.M. Chlorogenic acid and mental diseases: From chemistry to medicine.Curr. Neuropharmacol.201715447147910.2174/1570159X14666160325120625 27012954
    [Google Scholar]
  24. GuptaA. SinghA.K. LokaM. PandeyA.K. BishayeeA. Ferulic acid-mediated modulation of apoptotic signaling pathways in cancer.Adv. Protein Chem. Struct. Biol.202112521525710.1016/bs.apcsb.2020.12.005 33931140
    [Google Scholar]
  25. SinghA.K. SinglaR.K. PandeyA.K. Chlorogenic acid: A dietary phenolic acid with promising pharmacotherapeutic potential.Curr. Med. Chem.202330343905392610.2174/0929867329666220816154634 35975861
    [Google Scholar]
  26. GuptaA. AtanasovA.G. LiY. KumarN. BishayeeA. Chlorogenic acid for cancer prevention and therapy: Current status on efficacy and mechanisms of action.Pharmacol. Res.202218610650510.1016/j.phrs.2022.106505 36243332
    [Google Scholar]
  27. UpadhyayR. Mohan RaoL.J. An outlook on chlorogenic acids-occurrence, chemistry, technology, and biological activities.Crit. Rev. Food Sci. Nutr.201353996898410.1080/10408398.2011.576319 23768188
    [Google Scholar]
  28. Alcázar MagañaA. KamimuraN. SoumyanathA. StevensJ.F. MaierC.S. Caffeoylquinic acids: Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity.Plant J.202110751299131910.1111/tpj.15390 34171156
    [Google Scholar]
  29. GilM. WianowskaD. Chlorogenic acids – their properties, occurrence and analysis.Ann. Univ. Mariae Curie-Sklodowska AA Chem.20177216110.17951/aa.2017.72.1.61
    [Google Scholar]
  30. CliffordM.N. Chlorogenic acids and other cinnamates - nature, occurrence, dietary burden, absorption and metabolism.J. Sci. Food Agric.20008071033104310.1002/(SICI)1097‑0010(20000515)80:7<1033:AID‑JSFA595>3.0.CO;2‑T
    [Google Scholar]
  31. DawidowiczA.L. TypekR. Thermal stability of 5-o-caffeoylquinic acid in aqueous solutions at different heating conditions.J. Agric. Food Chem.20105824125781258410.1021/jf103373t 21087030
    [Google Scholar]
  32. DeshpandeS. JaiswalR. MateiM.F. KuhnertN. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.J. Agric. Food Chem.201462379160917010.1021/jf5017384 25116442
    [Google Scholar]
  33. FarahA. de PaulisT. TrugoL.C. MartinP.R. Effect of roasting on the formation of chlorogenic acid lactones in coffee.J. Agric. Food Chem.20055351505151310.1021/jf048701t 15740032
    [Google Scholar]
  34. JaiswalR. MateiM.F. GolonA. WittM. KuhnertN. Understanding the fate of chlorogenic acids in coffee roasting using mass spectrometry based targeted and non-targeted analytical strategies.Food Funct.20123997698410.1039/c2fo10260a 22833076
    [Google Scholar]
  35. DawidowiczA.L. TypekR. Transformation of chlorogenic acids during the coffee beans roasting process.Eur. Food Res. Technol.2017243337939010.1007/s00217‑016‑2751‑8
    [Google Scholar]
  36. XueM. ShiH. ZhangJ. LiuQ.Q. GuanJ. ZhangJ.Y. MaQ. Stability and degradation of caffeoylquinic acids under different storage conditions studied by high-performance liquid chromatography with photo diode array detection and high-performance liquid chromatography with electrospray ionization collision-induced dissociation tandem mass spectrometry.Molecules201621794810.3390/molecules21070948 27455213
    [Google Scholar]
  37. YinS. CuiH. ZhangL. YanJ. QianL. RuanS. Transcriptome and metabolome integrated analysis of two ecotypes of Tetrastigma hemsleyanum reveals candidate genes involved in chlorogenic acid accumulation.Plants2021107128810.3390/plants10071288 34202839
    [Google Scholar]
  38. YeJ. HanW. DengP. JiangY. LiuM. LiL. LiZ. Comparative transcriptome analysis to identify candidate genes related to chlorogenic acid biosynthesis in Eucommia ulmoides Oliv.Trees (Berl.)20193351373138410.1007/s00468‑019‑01865‑y
    [Google Scholar]
  39. WannerL.A. LiG. WareD. SomssichI.E. DavisK.R. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana.Plant Mol. Biol.199527232733810.1007/BF00020187 7888622
    [Google Scholar]
  40. YangH. DongY. LiM. JinW. ZhangY. FuC. Regulation mechanism of chlorogenic acid accumulation during the floral organ development of Lonicera confusa.Int. J. Agric. Biol.201618350951410.17957/IJAB/15.0116
    [Google Scholar]
  41. YuY. WangY. YuY. MaP. JiaZ. GuoX. XieY. BianX. Overexpression of IbPAL1 promotes chlorogenic acid biosynthesis in sweetpotato.Crop J.20219120421510.1016/j.cj.2020.06.003
    [Google Scholar]
  42. YunY.H. KooJ.S. KimS.H. KongW.S. Cloning and expression analysis of phenylalanine ammonia-lyase gene in the mycelium and fruit body of the edible mushroom Flammulina velutipes.Mycobiology201543332733210.5941/MYCO.2015.43.3.327 26539050
    [Google Scholar]
  43. LevshO. ChiangY.C. TungC.F. NoelJ.P. WangY. WengJ.K. Dynamic conformational states dictate selectivity toward the native substrate in a substrate-permissive acyltransferase.Biochemistry201655456314632610.1021/acs.biochem.6b00887 27805809
    [Google Scholar]
  44. LiY. KongD. BaiM. HeH. WangH. WuH. Correlation of the temporal and spatial expression patterns of HQT with the biosynthesis and accumulation of chlorogenic acid in Lonicera japonica flowers.Hortic. Res.2019617310.1038/s41438‑019‑0154‑2 31231531
    [Google Scholar]
  45. MonteiroM. FarahA. PerroneD. TrugoL.C. DonangeloC. Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans.J. Nutr.2007137102196220110.1093/jn/137.10.2196 17884997
    [Google Scholar]
  46. LafayS. Gil-IzquierdoA. ManachC. MorandC. BessonC. ScalbertA. Chlorogenic acid is absorbed in its intact form in the stomach of rats.J. Nutr.200613651192119710.1093/jn/136.5.1192 16614403
    [Google Scholar]
  47. MubarakA. BondonnoC.P. LiuA.H. ConsidineM.J. RichL. MasE. CroftK.D. HodgsonJ.M. Acute effects of chlorogenic acid on nitric oxide status, endothelial function, and blood pressure in healthy volunteers: A randomized trial.J. Agric. Food Chem.201260369130913610.1021/jf303440j 22900702
    [Google Scholar]
  48. WilliamsonG. StalmachA. Absorption and metabolism of dietary chlorogenic acids and procyanidins. Rec. Adv. Polyph. Res.Hoboken, New JerseyWiley201210.1002/9781118299753.ch9
    [Google Scholar]
  49. ErkT. WilliamsonG. RenoufM. MarmetC. SteilingH. DionisiF. BarronD. MelcherR. RichlingE. Dose‐dependent absorption of chlorogenic acids in the small intestine assessed by coffee consumption in ileostomists.Mol. Nutr. Food Res.201256101488150010.1002/mnfr.201200222 22945604
    [Google Scholar]
  50. OlthofM.R. KatanM.B. HollmanP.C.H. Chlorogenic acid and caffeic acid are absorbed in humans.J. Nutr.20011311667110.1093/jn/131.1.66 11208940
    [Google Scholar]
  51. da EncarnaçãoJ.A. FarrellT.L. RyderA. KrautN.U. WilliamsonG. In vitro enzymic hydrolysis of chlorogenic acids in coffee.Mol. Nutr. Food Res.201559223123910.1002/mnfr.201400498 25380542
    [Google Scholar]
  52. PlumbG.W. Garcia-ConesaM.T. KroonP.A. RhodesM. RidleyS. WilliamsonG. Metabolism of chlorogenic acid by human plasma, liver, intestine and gut microflora.J. Sci. Food Agric.199979339039210.1002/(SICI)1097‑0010(19990301)79:3<390:AID‑JSFA258>3.0.CO;2‑0
    [Google Scholar]
  53. FarahA. MonteiroM. DonangeloC.M. LafayS. Chlorogenic acids from green coffee extract are highly bioavailable in humans.J. Nutr.2008138122309231510.3945/jn.108.095554 19022950
    [Google Scholar]
  54. CliffordM.N. KerimiA. WilliamsonG. Bioavailability and metabolism of chlorogenic acids (acyl‐quinic acids) in humans.Compr. Rev. Food Sci. Food Saf.20201941299135210.1111/1541‑4337.12518 33337099
    [Google Scholar]
  55. LiangN. KittsD. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions.Nutrients2015811610.3390/nu8010016 26712785
    [Google Scholar]
  56. MadrigalJ. OlivenzaR. MoroM.A. LizasoainI. LorenzoP. RodrigoJ. LezaJ.C. Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain.Neuropsychopharmacology200124442042910.1016/S0893‑133X(00)00208‑6 11182537
    [Google Scholar]
  57. MateosR. GoyaL. BravoL. Uptake and metabolism of hydroxycinnamic acids (chlorogenic, caffeic, and ferulic acids) by HepG2 cells as a model of the human liver.J. Agric. Food Chem.200654238724873210.1021/jf061664g 17090113
    [Google Scholar]
  58. MillsC.E. TzounisX. Oruna-ConchaM.J. MottramD.S. GibsonG.R. SpencerJ.P.E. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth.Br. J. Nutr.201511381220122710.1017/S0007114514003948 25809126
    [Google Scholar]
  59. WangL. DuH. ChenP. Annexin a2 as a target protein for chlorogenic acid in human lung cancer A549 cells.bioRxiv202010.1101/2020.06.11.146027
    [Google Scholar]
  60. LiW. LiuX. ZhangG. ZhangL. Mechanism of chlorogenic acid in apoptotic regulation through Notch1 pathway in non-small cell lung carcinoma in animal level.Zhongguo Fei Ai Za Zhi2017208555561 28855037
    [Google Scholar]
  61. XueN. ZhouQ. JiM. JinJ. LaiF. ChenJ. ZhangM. JiaJ. YangH. ZhangJ. LiW. JiangJ. ChenX. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype.Sci. Rep.2017713901110.1038/srep39011 28045028
    [Google Scholar]
  62. BandyopadhyayG. BiswasT. RoyK.C. MandalS. MandalC. PalB.C. BhattacharyaS. RakshitS. BhattacharyaD.K. ChaudhuriU. KonarA. BandyopadhyayS. Chlorogenic acid inhibits Bcr-Abl tyrosine kinase and triggers p38 mitogen-activated protein kinase–dependent apoptosis in chronic myelogenous leukemic cells.Blood200410482514252210.1182/blood‑2003‑11‑4065 15226183
    [Google Scholar]
  63. YangJ.S. LiuC.W. MaY.S. WengS.W. TangN.Y. WuS.H. JiB.C. MaC.Y. KoY.C. FunayamaS. KuoC.L. Chlorogenic acid induces apoptotic cell death in U937 leukemia cells through caspase- and mitochondria-dependent pathways.In Vivo2012266971978 23160680
    [Google Scholar]
  64. SalzilloA. RagoneA. SpinaA. NaviglioS. SapioL. Chlorogenic acid enhances doxorubicin-mediated cytotoxic effect in osteosarcoma cells.Int. J. Mol. Sci.20212216858610.3390/ijms22168586 34445291
    [Google Scholar]
  65. LiuY. FengY. LiY. HuY. ZhangQ. HuangY. ShiK. RanC. HouJ. ZhouG. WangX. Chlorogenic acid decreases malignant characteristics of hepatocellular carcinoma cells by inhibiting DNMT1 expression.Front. Pharmacol.20201186710.3389/fphar.2020.00867 32655395
    [Google Scholar]
  66. RomualdoG.R. PrataG.B. da SilvaT.C. EvangelistaA.F. ReisR.M. VinkenM. MorenoF.S. CogliatiB. BarbisanL.F. The combination of coffee compounds attenuates early fibrosis-associated hepatocarcinogenesis in mice: Involvement of miRNA profile modulation.J. Nutr. Biochem.20208510847910.1016/j.jnutbio.2020.108479 32795656
    [Google Scholar]
  67. RomualdoG.R. SilvaE.A. Da SilvaT.C. AloiaT.P.A. NogueiraM.S. De CastroI.A. VinkenM. BarbisanL.F. CogliatiB. Burdock (ARCTIUM LAPPA L.) root attenuates preneoplastic lesion development in a diet and thioacetamide‐induced model of steatohepatitis‐associated hepatocarcinogenesis.Environ. Toxicol.202035451852710.1002/tox.22887 31804025
    [Google Scholar]
  68. YangQ. ZhangX. QinH. LuoF. RenJ. Phenolic acid profiling of Lactarius hatsudake extracts, anti-cancer function and its molecular mechanisms.Foods20221113183910.3390/foods11131839 35804655
    [Google Scholar]
  69. WangL. DuH. ChenP. Chlorogenic acid inhibits the proliferation of human lung cancer A549 cell lines by targeting annexin A2 in vitro and in vivo.Biomed. Pharmacother.202013111067310.1016/j.biopha.2020.110673 32882585
    [Google Scholar]
  70. LiW. PingZ. XuemeiG. HongjuanM. YiH. XiaoliL. ZhongxiangZ. Chlorogenic acid regulates the proliferation and migration of high-grade serous ovarian cancer cells through modulating the miR199a5p/DDR1 axis.Acta Biochim. Pol.202269485586410.18388/abp.2020_6381 36508480
    [Google Scholar]
  71. SchusterC. WolpertN. Moustaid-MoussaN. GollahonL.S. Combinatorial effects of the natural products Arctigenin, chlorogenic acid, and cinnamaldehyde commit oxidation assassination on breast cancer cells.Antioxidants202211359110.3390/antiox11030591 35326241
    [Google Scholar]
  72. RanjbaryA.G. BagherzadehA. SabbaghiS.S. FaghihiA. KarimiD.N. NajiS. kardani, M. Chlorogenic acid induces apoptosis and cell-cycle arrest in colorectal cancer cells.Mol. Biol. Rep.202350129845985710.1007/s11033‑023‑08854‑y 37847443
    [Google Scholar]
  73. Kimsa-DudekM. Synowiec-WojtarowiczA. KrawczykA. KosowskaA. Kimsa-FurdzikM. FrancuzT. The apoptotic effect of caffeic or chlorogenic acid on the C32 cells that have simultaneously been exposed to a static magnetic field.Int. J. Mol. Sci.2022237385910.3390/ijms23073859 35409218
    [Google Scholar]
  74. YouS. WangM.J. HouZ.Y. WangW.D. DuT.T. XueN.N. JiM. ChenX.G. Chlorogenic acid induced neuroblastoma cells differentiation via the ACAT1-TPK1-PDH Pathway.Pharmaceuticals (Basel)202316687710.3390/ph16060877 37375824
    [Google Scholar]
  75. TosocJ.P.S. NuñezaO.M. SudhaT. DarwishN.H.E. MousaS.A. Anticancer effects of the Corchorus olitorius aqueous extract and its bioactive compounds on human cancer cell lines.Molecules20212619603310.3390/molecules26196033 34641577
    [Google Scholar]
  76. HsuP.H. ChenW.H. Juan-LuC. HsiehS.C. LinS.C. MaiR.T. ChenS.Y. Hesperidin and chlorogenic acid synergistically inhibit the growth of breast cancer cells via estrogen receptor/mitochondrial pathway.Life (Basel)202111995010.3390/life11090950 34575098
    [Google Scholar]
  77. ZengA. LiangX. ZhuS. LiuC. WangS. ZhangQ. ZhaoJ. SongL. Chlorogenic acid induces apoptosis, inhibits metastasis and improves antitumor immunity in breast cancer via the NF κB signaling pathway.Oncol. Rep.202045271772710.3892/or.2020.7891 33416150
    [Google Scholar]
  78. LiY. PuR. ZhouL. WangD. LiX. Effects of a chlorogenic acid-containing herbal medicine (LASNB) on colon cancer.Evid. Based Complement. Alternat. Med.2021202111210.1155/2021/9923467 34462643
    [Google Scholar]
  79. ChangiziZ. MoslehiA. RohaniA.H. EidiA. Chlorogenic acid induces 4T1 breast cancer tumor’s apoptosis via p53, Bax, Bcl‐2, and caspase‐3 signaling pathways in BALB/c mice.J. Biochem. Mol. Toxicol.2021352e2264210.1002/jbt.22642 33058431
    [Google Scholar]
  80. XueW. HaoJ. ZhangQ. JinR. LuoZ. YangX. LiuY. LuQ. OuyangY. GuoH. Chlorogenic acid inhibits epithelial-mesenchymal transition and invasion of breast cancer by down-regulating LRP6.J. Pharmacol. Exp. Ther.2023384225426410.1124/jpet.122.001189 36456194
    [Google Scholar]
  81. ChenY.K. NgocN.T.M. ChangH.W. SuY.F. ChenC.H. GoanY.G. ChenJ.Y.F. TungC.W. HourT.C. Chlorogenic acid inhibition of esophageal squamous cell carcinoma metastasis via EGFR/p-Akt/Snail signaling pathways.Anticancer Res.20224273389340210.21873/anticanres.15826 35790282
    [Google Scholar]
  82. PanyathepA. PuntureeK. ChewonarinT. Inhibitory effects of chlorogenic acid containing green coffee bean extract on lipopolysaccharide-induced inflammatory responses and progression of colon cancer cell line.Foods20231214264810.3390/foods12142648 37509740
    [Google Scholar]
  83. SharmaG. KambojM. NarwalA. BhardwajR. YadavP. Cytotoxic role of chlorogenic acid on oral squamous cell carcinoma cell line.Indian J. Otolaryngol. Head Neck Surg.202174Suppl. 357735781 36742612
    [Google Scholar]
  84. YangH. SaidA.M. HuangH. PapaA.P.D. JinG. WuS. MaN. LanL. ShangguanF. ZhangQ. Chlorogenic acid depresses cellular bioenergetics to suppress pancreatic carcinoma through modulating C‐MYC‐TFR1 axis.Phytother. Res.20213542200221010.1002/ptr.6971 33258205
    [Google Scholar]
  85. AlbogamiS. HassanA. Assessment of the efficacy of olive leaf (Olea europaea L.) extracts in the treatment of colorectal cancer and prostate cancer using in vitro cell models.Molecules20212613406910.3390/molecules26134069 34279409
    [Google Scholar]
  86. ZhuL. ZhangY. LiY. WangH. ShenG. WangZ. Inhibitory effect of lingonberry extract on HepG2 cell proliferation, apoptosis, migration, and invasion.PLoS One2022177e027067710.1371/journal.pone.0270677 35802745
    [Google Scholar]
  87. CattivelliA. ConteA. TagliazucchiD. Quercetins, chlorogenic acids and their colon metabolites inhibit colon cancer cell proliferation at physiologically relevant concentrations.Int. J. Mol. Sci.202324151226510.3390/ijms241512265 37569640
    [Google Scholar]
  88. BartolomeuA.R. RomualdoG.R. LisónC.G. BesharatZ.M. CorralesJ.A.M. ChavesM.Á.G. BarbisanL.F. Caffeine and chlorogenic acid combination attenuate early-stage chemically induced colon carcinogenesis in mice: Involvement of oncomiR miR-21a-5p.Int. J. Mol. Sci.20222311629210.3390/ijms23116292 35682971
    [Google Scholar]
  89. AyouazS. Oliveira-AlvesS.C. SerraA.T. LefsihK. SamahM. Bento da SilvaA. MadaniK. BronzeM.R. LC-DAD-ESI-MS/MS analysis and cytotoxic and antiproliferative effects of chlorogenic acid derivative rich extract from Nerium oleander L. pink flowers.Food Funct.20211283624363410.1039/D0FO02640A 33900304
    [Google Scholar]
  90. OwczarekK. SosnowskaD. KajszczakD. LewandowskaU. Evaluation of phenolic composition, antioxidant and cytotoxic activity of aronia melanocarpa leaf extracts.J. Physiol. Pharmacol.2022732233243 35988931
    [Google Scholar]
  91. MontenegroJ. dos SantosL.S. de SouzaR.G.G. LimaL.G.B. MattosD.S. VianaB.P.P.B. da Fonseca BastosA.C.S. MuzziL. Conte-JúniorC.A. GimbaE.R.P. Freitas-SilvaO. TeodoroA.J. Bioactive compounds, antioxidant activity and antiproliferative effects in prostate cancer cells of green and roasted coffee extracts obtained by microwave-assisted extraction (MAE).Food Res. Int.202114011001410.1016/j.foodres.2020.110014 33648246
    [Google Scholar]
  92. MeneghettiD. CezarottoV.S. do NascimentoN.P. MigitaN.A. CorrêaJ.R. RiccioM.F. ZambaldiL.G. YunesJ.A. ArticoL.L. Hydroalcoholic leaves extract of Vaccinium ashei Reade promotes cell cycle arrest and apoptosis on T-cell acute lymphoblastic leukemia.Nat. Prod. Res.202236174514451810.1080/14786419.2021.1990281 34711101
    [Google Scholar]
  93. TüfekçiA.R. Demirtaşİ. AkşitH. ArslanŞ. KocabıyıkK. ZeybekS. OzenT. KöksalE. Two new compounds from endemic Centaurea paphlagonica (Bornm.) Wagenitz and their cytotoxic activities.Chem. Biol. Drug Des.20241031e1440910.1111/cbdd.14409 38030403
    [Google Scholar]
  94. SalamH.S. TawfikM.M. ElnagarM.R. MohammedH.A. ZarkaM.A. AwadN.S. Potential apoptotic activities of Hylocereus undatus peel and pulp extracts in MCF-7 and Caco-2 cancer cell lines.Plants20221117219210.3390/plants11172192 36079573
    [Google Scholar]
  95. AyanIC ÇetinkayaS DursunHG GüneşCE ŞirinS Anticancer effect and phytochemical profile of the extract from achillea ketenoglui against human colorectal cancer cell lines.Anticancer. Agents Med. Chem.20222291769177910.2174/1871520621666210908110422
    [Google Scholar]
  96. YousefbeykF. HemmatiG. GholipourZ. GhasemiS. EvazalipourM. SchubertC. KoohiD.E. BöhmV. Phytochemical analysis, antioxidant, cytotoxic, and antimicrobial activities of golden chamomile (Matricaria aurea (Loefl.) Schultz Bip).Z. Naturforsch. C J. Biosci.2022777-833134210.1515/znc‑2021‑0269 35231163
    [Google Scholar]
  97. SaleemA. AfzalM. NaveedM. MakhdoomS.I. MazharM. AzizT. KhanA.A. KamalZ. ShahzadM. AlharbiM. AlshammariA. HPLC, FTIR and GC-MS Analyses of Thymus vulgaris phytochemicals executing in vitro and in vivo biological activities and effects on COX-1, COX-2 and gastric cancer genes computationally.Molecules20222723851210.3390/molecules27238512 36500601
    [Google Scholar]
  98. ShahabadiN. AkbariA. KarampourF. FalsafiM. ZendehcheshmS. In vitro cytotoxicity, antibacterial activity and HSA and ct-DNA interaction studies of chlorogenic acid loaded on γ-Fe2O3@SiO2 as new nanoparticles.J. Biomol. Struct. Dyn.20234162300232010.1080/07391102.2022.2030799 35120416
    [Google Scholar]
  99. ZhangY. YangY. YeJ. GaoY. LiaoH. ZhouJ. FengY. LiuD. MengY. ChenX. GaoL. LiuY. Construction of chlorogenic acid-containing liposomes with prolonged antitumor immunity based on T cell regulation.Sci. China Life Sci.20216471097111510.1007/s11427‑020‑1739‑6 33009993
    [Google Scholar]
  100. NeelakandanM. ManoharanS. MuralinaiduR. TharaJ.M. Tumor preventive and antioxidant efficacy of chlorogenic acid–loaded chitosan nanoparticles in experimental skin carcinogenesis.Naunyn Schmiedebergs Arch. Pharmacol.2023396353354610.1007/s00210‑022‑02330‑3 36418466
    [Google Scholar]
  101. YangY. ZhengY. LiuJ. ChangZ. WangY. ShaoY. HouR. ZhangX. Natural chlorogenic acid planted nanohybrids with steerable hyperthermia for osteosarcoma suppression and bone regeneration.Adv. Healthc. Mater.20231223230032510.1002/adhm.202300325 37167574
    [Google Scholar]
  102. KeY. MaZ. YeH. GuanX. XiangZ. XiaY. ShiQ. Chlorogenic acid‐conjugated nanoparticles suppression of platelet activation and disruption to tumor vascular barriers for enhancing drug penetration in tumor.Adv. Healthc. Mater.2023129220220510.1002/adhm.202202205 36509084
    [Google Scholar]
  103. ZhuS. LiX. LuoZ. DingM. ShiS. ZhangT. Combined immunochemotherapy achieving targeted co-delivery of chlorogenic acid and doxorubicin by sialic acid-modified liposomes enhances anti-cancer efficacy.Drug Deliv. Transl. Res.2024143718729 37679600
    [Google Scholar]
  104. Luque-BadilloA. Hernandez-TapiaG. Ramirez-CastilloD. Espinoza-SerranoD. Cortes-LimonA. Cortes-GallardoJ. Jacobo-VelázquezD. Martinez-FierroM. Rios-IbarraC. Gold nanoparticles enhance microRNA 31 detection in colon cancer cells after inhibition with chlorogenic acid.Oncol. Lett.202122474210.3892/ol.2021.13003 34466154
    [Google Scholar]
  105. YaoL. ZhaoM.M. LuoQ.W. ZhangY.C. LiuT.T. YangZ. LiaoM. TuP. ZengK.W. Carbon quantum dots-based nanozyme from coffee induces cancer cell ferroptosis to activate antitumor immunity.ACS Nano20221669228923910.1021/acsnano.2c01619 35622408
    [Google Scholar]
  106. Kavi RajanR. HusseinM.Z. FakuraziS. YusoffK. MasarudinM.J. Increased ROS scavenging and antioxidant efficiency of chlorogenic acid compound delivered via a chitosan nanoparticulate system for efficient in vitro visualization and accumulation in human renal adenocarcinoma cells.Int. J. Mol. Sci.20192019466710.3390/ijms20194667 31547100
    [Google Scholar]
  107. LiX. ZhuS. YinP. ZhangS. XuJ. ZhangQ. ShiS. ZhangT. Combination immunotherapy of chlorogenic acid liposomes modified with sialic acid and PD-1 blockers effectively enhances the anti-tumor immune response and therapeutic effects.Drug Deliv.20212811849186010.1080/10717544.2021.1971797 34515617
    [Google Scholar]
  108. BuskaranK. HusseinM.Z. MoklasM.A.M. MasarudinM.J. FakuraziS. Graphene oxide loaded with protocatechuic acid and chlorogenic acid dual drug nanodelivery system for human hepatocellular carcinoma therapeutic application.Int. J. Mol. Sci.20212211578610.3390/ijms22115786 34071389
    [Google Scholar]
  109. JieZ. Anti-tumor combined medicine and application thereof in preparing anti-cancer medicine.CN Patent 107412777B2021
  110. JeffreyA. 1,2,4-trioxane compounds and compositions containing them for use in the prevention and treatment of cancer.JP Patent 2023529362A2021
  111. Soo-yeolK. A cancer sensitizer comprising chlorogenic acid.KR Patent 100947209B12007
  112. JieZ. Novel anticancer application of chlorogenic acid.CN Patent 102579419B2012
  113. WangH. Antitumor combination drug and use thereof in preparation of anticancer drug.WO Patent 2019034069A12017
  114. JieZ. Application of chlorogenic acid in WNT signal channel of activated body and research method for chlorogenic acid.CN Patent 105147657A2015
  115. OgasawaraM. Cancer metastasis inhibitor and functional food.JP Patent 2007131604A2005
  116. JieZ. Use of chlorogenic acid and derivative thereof in preparation of sensitizer for tumour immunotherapeutic drug.WO Patent 2018068399A12016
  117. JieZ. Application of chlorogenic acid in preparing medicines for treating melanoma and medicines for treating melanoma.WO Patent 2016127847A12015
  118. XiaomeiL. Uses of chlorogenic acid in preparation of drugs treating multidrug resistance of cancer.CN Patent 104758277A2015
  119. JieZ. Purposes of the chlorogenic acid in the medicine for preparing treatment mesoglioma.CN Patent 104188949B2014
  120. JieZ. Use of chlorogenic acid in preparing pharmaceuticals for treatment of LAG-3-mediated disease.US Patent 11135160B22017
  121. JieZ. Chlorogenic acid and/or derivative thereof and pharmacotherapeutic application of same for use against cancer stem cell.WO Patent 2017121364A12017
  122. JieZ. Use of chlorogenic acid in manufacturing medicaments for treating oligodendroglioma.WO Patent 2016058116A12014
  123. RomyJ. Nutritional supplement composition for treating coronavirus infections, cancer, ME, post viral & Chronic fatigue syndrome & neurodegeneration in an individual.GB Patent 2596849A2020
  124. TopçuG. ErenlerR. ÇakmakO. JohanssonC.B. ÇelikC. ChaiH.B. PezzutoJ.M. Diterpenes from the berries of Juniperus excelsa.Phytochemistry19995071195119910.1016/S0031‑9422(98)00675‑X 10234860
    [Google Scholar]
  125. ElmastasM. OzturkL. GokceI. ErenlerR. Aboul-EneinH.Y. Determination of antioxidant activity of marshmallow flower (Althaea officinalis L.).Anal. Lett.20043791859186910.1081/AL‑120039431
    [Google Scholar]
  126. DemirtasI. ErenlerR. ElmastasM. GoktasogluA. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction.Food Chem.20131361344010.1016/j.foodchem.2012.07.086 23017389
    [Google Scholar]
  127. ErenlerR. TelciI. UlutasM. DemirtasI. GulF. ElmastasM. KayirO. Chemical constituents, quantitative analysis and antioxidant activities of E chinacea purpurea (L.) M oench and E chinacea pallida (N utt.) N utt.J. Food Biochem.201539562263010.1111/jfbc.12168
    [Google Scholar]
  128. ElmastasM. ErenlerR. IsnacB. AksitH. SenO. GencN. DemirtasI. Isolation and identification of a new neo-clerodane diterpenoid from Teucrium chamaedrys L.Nat. Prod. Res.201630329930410.1080/14786419.2015.1057583 26264529
    [Google Scholar]
  129. ErenlerR. PabuccuK. YagliogluA.S. DemirtasI. GulF. Chemical constituents and antiproliferative effects of cultured Mougeotia nummuloides and Spirulina major against cancerous cell lines.Z. Naturforsch. C J. Biosci.2016713-4879210.1515/znc‑2016‑0010 26985685
    [Google Scholar]
  130. ErenlerR. SenO. AksitH. DemirtasI. YagliogluA.S. ElmastasM. Telciİ. Isolation and identification of chemical constituents from Origanum majorana and investigation of antiproliferative and antioxidant activities.J. Sci. Food Agric.201696382283610.1002/jsfa.7155 25721137
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073321017240610060637
Loading
/content/journals/cchts/10.2174/0113862073321017240610060637
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; caffeic acid; Chlorogenic acid; proliferation; quinic acid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test