Skip to content
2000
Volume 28, Issue 12
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Lamiaceae (Labiatae) is a medicinally significant plant family featuring key species like and . These species exhibit diverse pharmacological activities attributed to essential oils and phytochemicals, including antioxidant, antiasthmatic, antitumor, anti-inflammatory, analgesic, . This review covers extensive phytomedicinal aspects of some important plants of the genus .

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073315816240627050225
2024-07-09
2025-10-10
Loading full text...

Full text loading...

References

  1. Ramos da SilvaL.R. FerreiraO.O. CruzJ.N. de Jesus Pereira FrancoC. Oliveira dos AnjosT. CascaesM.M. Almeida da CostaW. Helena de Aguiar AndradeE. Santana de OliveiraM. Lamiaceae essential oils, phytochemical profile, antioxidant, and biological activities.Evid. Based Complement. Alternat. Med.2021202111810.1155/2021/6748052 34950215
    [Google Scholar]
  2. Gobbo-NetoL. LopesN.P. Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários.Quim. Nova200730237438110.1590/S0100‑40422007000200026
    [Google Scholar]
  3. a SimL.Y. Abd RaniN.Z. HusainK. Lamiaceae: An insight on their anti-allergic potential and its mechanisms of action.Front. Pharmacol.20191067710.3389/fphar.2019.0067731275149
    [Google Scholar]
  4. b XuZ. ChangL. Identification and Control of Common Weeds.Springer201710.1007/978‑981‑10‑5403‑7_8
    [Google Scholar]
  5. ÖzgenU. MaviA. TerziZ. YιldιrιmA. CoşkunM. HoughtonP.J. Antioxidant properties of some medicinal Lamiaceae (Labiatae) species.Pharm. Biol.200644210711210.1080/13880200600592061
    [Google Scholar]
  6. AdodoA. IwuM.M. Healing plants of Nigeria: Ethnomedicine and therapeutic applications.CRC Press20201510.1201/9780429440922
    [Google Scholar]
  7. GioffrèG. UrsinoD. LabateM.L.C. GiuffrèA.M. The peel essential oil composition of bergamot fruit (Citrus bergamia, Risso) of Reggio Calabria (Italy): a review.Emir. J. Food Agric.20201583584510.9755/ejfa.2020.v32.i11.2197
    [Google Scholar]
  8. CasigliaS. BrunoM. ScandoleraE. SenatoreF. SenatoreF. Influence of harvesting time on composition of the essential oil of Thymus capitatus (L.) Hoffmanns. & Link. growing wild in northern Sicily and its activity on microorganisms affecting historical art crafts.Arab. J. Chem.20191282704271210.1016/j.arabjc.2015.05.017
    [Google Scholar]
  9. MariaG.A. RiccardoN. Citrus bergamia, Risso: the peel, the juice and the seed oil of the bergamot fruit of Reggio Calabria (South Italy).Emir. J. Food Agric.20203252253210.9755/ejfa.2020.v32.i7.2128
    [Google Scholar]
  10. SharmaN. SinghB. WaniM.S. GuptaR.C. HabeebT.H. Determination of the volatile composition in essential oil of Azadirachta indica A. Juss from different areas of north indian plains by gas chromatography/mass spectrometry (GC/MS).Anal. Chem. Lett.2021111738210.1080/22297928.2021.1877195
    [Google Scholar]
  11. ChatterjeeS. GuptaS. VariyarP.S. Comparison of essential oils obtained from different extraction techniques as an aid in identifying aroma significant compounds of nutmeg (Myristica fragrans).Nat. Prod. Commun.201510814431446
    [Google Scholar]
  12. Factsheet 134: Traditional Medicine. Geneva: World Health Organization.2008Available from: https://www.scirp.org/reference/referencespapers?referenceid=2254747#:~:text=Factsheet%20134%3A%20Traditional%20Medicine.,Geneva%3A%20World%20Health%20Organization.text=ABSTRACT%3A%20Objectives%3A%20The%20use%20of,medicine%20for%20their%20health%20needs(accessed on 7-6-2024)
    [Google Scholar]
  13. HarleyR.M. AtkinsS. BudantsevA.L. CantinoP.D. ConnB.J. GrayerR. HarleyM.M. de KokR. KrestovskajaT. MoralesR. PatonA.J. RydingO. UpsonT.J.W. Flowering Plants – Dicotyledons, Labiatae.In: Flowering plants· Dicotyledons: Lamiales (except Acanthaceae including Avicenniaceae).Berlin, HeidelbergSpringer2004
    [Google Scholar]
  14. Sharifi-RadM. OzcelikB. AltınG. Daşkaya-DikmenC. MartorellM. Ramírez-AlarcónK. Alarcón-ZapataP. Morais-BragaM.F.B. CarneiroJ.N.P. Alves Borges LealA.L. CoutinhoH.D.M. GyawaliR. TahergorabiR. IbrahimS.A. Sahrifi-RadR. SharopovF. SalehiB. del Mar ContrerasM. Segura-CarreteroA. SenS. AcharyaK. Sharifi-RadJ. Salvia spp. plants-from farm to food applications and phytopharmacotherapy.Trends Food Sci. Technol.20188024226310.1016/j.tifs.2018.08.008
    [Google Scholar]
  15. Irtegun KandemirS. FidanH.S. YenerI. MeteN. ErtasA. TopcuG. KolakU. Investigation of cytotoxic and apoptotic effects of 63 compounds obtained from Salvia species: Promising anticancer agents.J. Food Biochem.2022469e1422610.1111/jfbc.14226 35608363
    [Google Scholar]
  16. ZhaoH. HanB. LiX. SunC. ZhaiY. LiM. JiangM. ZhangW. LiangY. KaiG. Salvia miltiorrhiza in breast cancer treatment: A review of its phytochemistry, derivatives, nanoparticles, and potential mechanisms.Front. Pharmacol.20221387208510.3389/fphar.2022.872085 35600860
    [Google Scholar]
  17. XiaF. WuC.Y. YangX.W. LiX. XuG. Diterpenoids from the roots of Salvia yunnanensis.Nat. Prod. Bioprospect.20155630731210.1007/s13659‑015‑0080‑4 26667937
    [Google Scholar]
  18. List of plants in the family Lamiaceae.2021Available from: https://www.britannica.com/topic/list-of-plants-in-the-family-Lamiaceae-2035853
    [Google Scholar]
  19. KudryashevS.N. Materials for the study of the sage of Central Asia.Proceedings of the Plant Resources Sector of the Committee of Sciences of the UzSSRTashkent, Uzbekistan1937135
    [Google Scholar]
  20. TurdiboevO.A. ShormanovaA.A. SheludyakovaM.B. AkbarovF. DrewB.T. CelepF. Synopsis of the Central Asian Salvia species with identification key.Phytotaxa202254312010.11646/phytotaxa.543.1.1
    [Google Scholar]
  21. KhassanovF.O. Conspectus Florae Asiae Mediae; Ed. "Fan" of the Uzbek SSR.2015
    [Google Scholar]
  22. LiW. TojibaevK.S. HisorievH. ShomurodovK.F. LuoM. FengY. MaK. Mapping Asia Plants: Current status of floristic information for Central Asian flora.Glob. Ecol. Conserv.202024e0122010.1016/j.gecco.2020.e01220
    [Google Scholar]
  23. GhorbaniA. EsmaeilizadehM. Pharmacological properties of Salvia officinalis and its components.J. Tradit. Complement. Med.20177443344010.1016/j.jtcme.2016.12.014 29034191
    [Google Scholar]
  24. PavlovN.V. Flora of Kazakhstan.Almaty1964515
    [Google Scholar]
  25. KasimuR. WangX. WangX. HuJ. WangX. MuY. Antithrombotic effects and related mechanisms of Salvia deserta Schang root EtOAc extracts.Sci. Rep.2018811775310.1038/s41598‑018‑36026‑7 30532017
    [Google Scholar]
  26. SavonaG. BrunoM. RodríguezB. MarcoJ.L. Triterpenoids from Salvia deserta.Phytochemistry1987263305330810.1016/S0031‑9422(00)82493‑0
    [Google Scholar]
  27. TezukaY. KasimuR. LiJ.X. BasnetP. TanakaK. NambaT. KadotaS. Constituents of roots of Salvia deserta Schang. (Xinjiang-Danshen).Chem. Pharmaceut Bull.1998461107112
    [Google Scholar]
  28. JakovljevićM. JokićS. MolnarM. JašićM. BabićJ. JukićH. BanjariI. Bioactive profile of various Salvia officinalis L. preparations.Plants2019835510.3390/plants8030055 30845696
    [Google Scholar]
  29. BúfaloJ. CantrellC.L. JacobM.R. SchraderK.K. TekwaniB.L. KustovaT.S. AliA. BoaroC.S. Antimicrobial and antileishmanial activities of diterpenoids isolated from the roots of Salvia deserta.Planta Med.2016821-2131137 26308356
    [Google Scholar]
  30. UlubelenA. TopcuG. SönmezU. ErisC. Terpenoids from Salvia nemorosa.Phytochemistry19943541065106710.1016/S0031‑9422(00)90672‑1
    [Google Scholar]
  31. NaderiN. AkhavanN. Aziz AhariF. ZamaniN. KamalinejadM. ShokrzadehM. AhangarN. MotamediF. Effects of hydroalcoholic extract from Salvia verticillata on pharmacological models of seizure, anxiety and depression in mice.Iran. J. Pharm. Res.2011103535545 24250386
    [Google Scholar]
  32. BarjaktarevicA.R. CirovicT. ArsenijevicN. VolarevicV. Antioxidant, antimicrobial and cytotoxic activities of Salvia verticillata L. extracts.Indian J. Pharm. Sci.20218312801287
    [Google Scholar]
  33. SrivedavyasasriR. WhiteM.B. KustovaT.S. GemejiyevaN.G. CantrellC.L. RossS.A. New tetranorlabdanoic acid from aerial parts of Salvia aethiopis.Nat. Prod. Res.2018321141710.1080/14786419.2017.1324961 28475363
    [Google Scholar]
  34. ChukalinaO.N. DarbaevaT.E. Salvia aethiopis L. in West-Kazakhstan region.Mordovian Univ. Biol. Sci. Bull.20133-4145146
    [Google Scholar]
  35. NurmahanovaA. IbishevaN. KurbatovaN. AtabayevaS. SeilkhanA. TynybekovB. AbidkulovaK. ChildibaevaA. AkhmetovaA. SadyrovaG. Comparative anatomical and morphological study of three populations of Salvia aethiopis L. growing in the Southern Balkhash region.J. Ecol. Eng.20232492738[PubMed]10.12911/22998993/168252
    [Google Scholar]
  36. IshmuratovaM.Y. ButumbayevaM.K. TakhanovaD.A. ZholdybayevaK.B. Silant’evaM.M. Analysis of representatives of Lamiaceae family in the flora of the Central Kazakhstan.Bull. Karaganda Uni. Biol. Med.20209823744
    [Google Scholar]
  37. SokolovP.D. Plant Resources of the USSR. Flowering Plants, Their Chemical Composition, Use; Families Hippuridaceae—Lobeliaceae.St. Petersburg, RussiaNauka19917283
    [Google Scholar]
  38. LevayaY.K. AtazhanovaG.A. Chemical composition and pharmacological activity of certain types of sage.2020
    [Google Scholar]
  39. AbdulinaS.A. List of Vascular Plants of Kazakhstan.Almaty, KazakhstanInstitute of Botany and Phytointroduction1999
    [Google Scholar]
  40. BaytenovM.S. Flora of Kazakhstan.Generic Comp. Flora2001181280
    [Google Scholar]
  41. GrudzinskayaL. GemejiyevaN. KarzhaubekovaZ. NelinaN. Botanical coverage of the leading families of medicinal flora of Kazakhstan.BIO Web Conf.,2021. [CrossRef]10.1051/bioconf/20213100007
    [Google Scholar]
  42. SaparbaevaN.A. Distribution and diversity of plant endemic species ridge Jungar Alatau.Bull. Karaganda Univ. Biol. Med. Geogr. Ser.,201744350.
    [Google Scholar]
  43. LevayaY.K. AtazhanovaG.A. Distribution of some species of Salvia stepposa Des.-Shost. and Salvia sclarea L. in the Republic of Kazakhstan.Pharm. Kazakhstan2019122228
    [Google Scholar]
  44. LevayaY.K. AtazhanovaG.A. Marketing analysis of the Kazakhstani pharmaceutical market of drugs containing sage.Vestnik KazNMU.20201546548
    [Google Scholar]
  45. Report on the Results of the First Half of 2022: Uninterrupted Provision of Medicines and Medical Products within the Framework of Creating a Fairer and Healthier Kazakhstan, Approved by the SK-Pharmacy LLP Supervisory Board on August 26, 2022 (Protocol No. 7); SK Pharmacy LLP: Nur-Sultan, Kazakhstan,202217
    [Google Scholar]
  46. Review of the Kazakhstan healthcare system: results of 2021.2022Available from: https://primeminister.kz/ru/news/reviews/obzor-kazahstanskoy-sistemy-zdravoohraneniya-itogi-2021-goda-1933931
    [Google Scholar]
  47. GrudzinskayaL. GemejiyevaN. KarzhaubekovaZ. The Kazakhstan medicinal flora survey in a leading families volume.Bulletin of the Karaganda University. “Biology, medicine, geographySeries”20201004395110.31489/2020BMG4/39‑51
    [Google Scholar]
  48. AlkhateebH. BonenA. Thujone, a component of medicinal herbs, rescues palmitate-induced insulin resistance in skeletal muscle.Am. J. Physiol. Regul. Integr. Comp. Physiol.20102993R804R81210.1152/ajpregu.00216.2010 20573988
    [Google Scholar]
  49. De SousaD.P. Analgesic-like activity of essential oils constituents.Molecules20111632233225210.3390/molecules16032233 21383660
    [Google Scholar]
  50. SiveenK.S. KuttanG. Augmentation of humoral and cell mediated immune responses by Thujone.Int. Immunopharmacol.201111121967197510.1016/j.intimp.2011.08.006 21884824
    [Google Scholar]
  51. LuY. Yeap FooL. Polyphenolics of Salvia—a review.Phytochemistry200259211714010.1016/S0031‑9422(01)00415‑0 11809447
    [Google Scholar]
  52. LucaS.V. Skalicka-WoźniakK. MihaiC.T. GradinaruA.C. MandiciA. CiocarlanN. MironA. AprotosoaieA.C. Chemical Profile and Bioactivity Evaluation of Salvia Species from Eastern Europe.Antioxidants2023128151410.3390/antiox12081514 37627509
    [Google Scholar]
  53. El GabbasZ. BezzaK. LaadraouiJ. Ait LaaradiaM. KebbouA. OufquirS. BoukhiraA. AboufatimaR. ChaitA. Salvia officinalis, rosmarinic and caffeic acids attenuate neuropathic pain and improve function recovery after sciatic nerve chronic constriction in mice.Evid. Based Complement. Alternat. Med.2019201911710.1155/2019/1702378 31341489
    [Google Scholar]
  54. BorsW. MichelC. StettmaierK. LuY. FooL.Y. Antioxidant mechanisms of polyphenolic caffeic acid oligomers, constituents of Salvia officinalis.Biol. Res.200437230131110.4067/S0716‑97602004000200017 15455660
    [Google Scholar]
  55. SharmilaR. ManoharanS. Anti-tumor activity of rosmarinic acid in 7,12-dimethylbenz(a)anthracene (DMBA) induced skin carcinogenesis in Swiss albino mice.Indian J. Exp. Biol.2012503187194 22439433
    [Google Scholar]
  56. XuY. JiangZ. JiG. LiuJ. Inhibition of bone metastasis from breast carcinoma by rosmarinic acid.Planta Med.2010761095696210.1055/s‑0029‑1240893 20157877
    [Google Scholar]
  57. HuangS. ZhengR. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro.Cancer Lett.2006239227128010.1016/j.canlet.2005.08.025 16239062
    [Google Scholar]
  58. SeoS. OhS. ShinY. JungS. KimY. Reduction of body weight by rutin is associated with an increase of brown adipose tissue mitochondrial biogenesis in high‐fat diet induced obese rat (LB430).FASEB J.201428S1LB43010.1096/fasebj.28.1_supplement.lb430
    [Google Scholar]
  59. SeoS. LeeM.S. ChangE. ShinY. OhS. KimI.H. KimY. Rutin increases muscle mitochondrial biogenesis with AMPK activation in high-fat diet-induced obese rats.Nutrients2015798152816910.3390/nu7095385 26402699
    [Google Scholar]
  60. OliveiraK.B. PalúÉ. Weffort-SantosA.M. OliveiraB.H. Influence of rosmarinic acid and Salvia officinalis extracts on melanogenesis of B16F10 cells.Rev. Bras. Farmacogn.201323224925810.1590/S0102‑695X2012005000135
    [Google Scholar]
  61. XingY. CaiL. YinT. ChenY. YuJ. WangY. DingZ. Improving the antioxidant activity and enriching salvianolic acids by the fermentation of Salvia miltiorrhizae with Geomyces luteus.J. Zhejiang Univ. Sci. B201617539139810.1631/jzus.B1500264 27143267
    [Google Scholar]
  62. HuangM. WangP. XuS. XuW. XuW. ChuK. LuJ. Biological activities of salvianolic acid B from Salvia miltiorrhiza on type 2 diabetes induced by high-fat diet and streptozotocin.Pharm. Biol.20155371058106510.3109/13880209.2014.959611 25612777
    [Google Scholar]
  63. HoJ. HongC.Y. Salvianolic acids: small compounds with multiple mechanisms for cardiovascular protection.J. Biomed. Sci.20111813010.1186/1423‑0127‑18‑30 21569331
    [Google Scholar]
  64. FengY. YouZ. YanS. HeG. ChenY. GouX. PengC. Antidepressant-like effects of Salvianolic acid B in the mouse forced swim and tail suspension tests.Life Sci.20129025-261010101410.1016/j.lfs.2012.05.021 22683428
    [Google Scholar]
  65. BraidaD. CapurroV. ZaniA. RubinoT. ViganòD. ParolaroD. SalaM. Potential anxiolytic‐ and antidepressant‐like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents.Br. J. Pharmacol.2009157584485310.1111/j.1476‑5381.2009.00230.x 19422370
    [Google Scholar]
  66. HoriuchiK. ShiotaS. HatanoT. YoshidaT. KurodaT. TsuchiyaT. Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE).Biol. Pharm. Bull.20073061147114910.1248/bpb.30.1147 17541170
    [Google Scholar]
  67. KalaycıoğluZ. UzaşçıS. DirmenciT. ErimF.B. α-Glucosidase enzyme inhibitory effects and ursolic and oleanolic acid contents of fourteen Anatolian Salvia species.J. Pharm. Biomed. Anal.201815528428710.1016/j.jpba.2018.04.014 29677678
    [Google Scholar]
  68. BaricevicD. SosaS. Della LoggiaR. TubaroA. SimonovskaB. KrasnaA. ZupancicA. Topical anti-inflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid.J. Ethnopharmacol.2001752-312513210.1016/S0378‑8741(00)00396‑2 11297842
    [Google Scholar]
  69. ZhaoJ. LouJ. MouY. LiP. WuJ. ZhouL. Diterpenoid tanshinones and phenolic acids from cultured hairy roots of Salvia miltiorrhiza Bunge and their antimicrobial activities.Molecules20111632259226710.3390/molecules16032259 21383662
    [Google Scholar]
  70. JedinákA. MučkováM. Košt’álováD. MaliarT. MašterováI. Antiprotease and antimetastatic activity of ursolic acid isolated from Salvia officinalis.Z. Naturforsch. C J. Biosci.20066111-1277778210.1515/znc‑2006‑11‑1203 17294686
    [Google Scholar]
  71. BadieeP. NasirzadehA.R. MotaffafM. Comparison of Salvia officinalis L. essential oil and antifungal agents against candida species.J. Pharm. Technol. Drug Res.201211710.7243/2050‑120X‑1‑7
    [Google Scholar]
  72. HayouniE.A. ChraiefI. AbedrabbaM. BouixM. LeveauJ.Y. MohammedH. HamdiM. Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat.Int. J. Food Microbiol.2008125324225110.1016/j.ijfoodmicro.2008.04.005 18511141
    [Google Scholar]
  73. ŽivkovićJ. RistićM. KschonsekJ. WestphalA. MihailovićM. FilipovićV. BöhmV. Comparison of chemical profile and antioxidant capacity of seeds and oils from Salvia sclarea and Salvia officinalis.Chem. Biodivers.20171412e170034410.1002/cbdv.201700344 28865183
    [Google Scholar]
  74. Abou BakerD.H. AmarowiczR. KandeilA. AliM.A. IbrahimE.A. Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. essential oils against avian influenza H5N1 virus.J. Agric. Food Res.2021410013510.1016/j.jafr.2021.100135 36570026
    [Google Scholar]
  75. Longaray DelamareA.P. Moschen-PistorelloI.T. ArticoL. Atti-SerafiniL. EcheverrigarayS. Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil.Food Chem.2007100260360810.1016/j.foodchem.2005.09.078
    [Google Scholar]
  76. BakirD. AkdenizM. ErtasA. YilmazM.A. YenerI. FiratM. KolakU. A GC–MS method validation for quantitative investigation of some chemical markers in Salvia hypargeia Fisch. & C.A. Mey. of Turkey: Enzyme inhibitory potential of ferruginol.J. Food Biochem.2020449e1335010.1111/jfbc.13350 32686189
    [Google Scholar]
  77. FronzaM. MurilloR. ŚlusarczykS. AdamsM. HamburgerM. HeinzmannB. LauferS. MerfortI. In vitro cytotoxic activity of abietane diterpenes from Peltodon longipes as well as Salvia miltiorrhiza and Salvia sahendica.Bioorg. Med. Chem.201119164876488110.1016/j.bmc.2011.06.067 21775156
    [Google Scholar]
  78. UlubelenA. TopcuG. EriC. SönmezU. KartalM. KurucuS. Bozok-JohanssonC. Terpenoids from Salvia sclarea.Phytochemistry199436497197410.1016/S0031‑9422(00)90474‑6 7765213
    [Google Scholar]
  79. DevanshM. Salvia officinalis Linn.: Relevance to modern research drive.Inven. Impact Planta Act.20124203207
    [Google Scholar]
  80. SienkiewiczM. GłowackaA. Poznańska-KurowskaK. KaszubaA. UrbaniakA. KowalczykE. The effect of clary sage oil on staphylococci responsible for wound infections.Postepy Dermatol. Alergol.201511212610.5114/pdia.2014.40957 25821423
    [Google Scholar]
  81. GavyarP.H.H. AmiriH. Chemical composition of essential oil and antioxidant activity of an endemic species from Iran.J. Essent. Oil-Bear. Plants2018211138114510.1080/0972060X.2018.1489307
    [Google Scholar]
  82. El HadriA. del RíoM.Á.G. SanzJ. Cytotoxic activity of α-humulene and transcaryophyllene from Salvia officinalis in animal and human tumor cells.An. R. Acad. Nac. Farm.201076343356
    [Google Scholar]
  83. MaacheS. ZbadiL. GhouiziA.E. SouloN. SaghrouchniH. SiddiqueF. SitotawB. SalamatullahA.M. NafidiH.A. BourhiaM. LyoussiB. ElarabiI. Antioxidant and antimicrobial effects of essential oils from two salvia species with in vitro and] in silico analysis targeting 1AJ6 and 1R4U proteins.Sci. Rep.20231311403810.1038/s41598‑023‑41178‑2 37640782
    [Google Scholar]
  84. Porres-MartínezM. González-BurgosE. CarreteroM.E. Gómez-SerranillosM.P. Major selected monoterpenes α-pinene and 1,8-cineole found in Salvia lavandulifolia (Spanish sage) essential oil as regulators of cellular redox balance.Pharm. Biol.201553692192910.3109/13880209.2014.950672 25474583
    [Google Scholar]
  85. BauerJ. KuehnlS. RollingerJ.M. SchererO. NorthoffH. StuppnerH. WerzO. KoeberleA. Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E2 synthase-1.J. Pharmacol. Exp. Ther.2012342116917610.1124/jpet.112.193847 22511203
    [Google Scholar]
  86. MaioneF. CantoneV. PaceS. ChiniM.G. BisioA. RomussiG. PierettiS. WerzO. KoeberleA. MascoloN. BifulcoG. Anti‐inflammatory and analgesic activity of carnosol and carnosic acid in vivo and in vitro and in silico analysis of their target interactions.Br. J. Pharmacol.2017174111497150810.1111/bph.13545 27464306
    [Google Scholar]
  87. NicolellaH.D. FernandesG. OzelinS.D. Rinaldi-NetoF. RibeiroA.B. FurtadoR.A. SenedeseJ.M. EsperandimT.R. VenezianiR.C.S. TavaresD.C. Manool, a diterpene from Salvia officinalis, exerts preventive effects on chromosomal damage and preneoplastic lesions.Mutagenesis202136217718510.1093/mutage/geab001 33512444
    [Google Scholar]
  88. NicolellaH.D. OliveiraP.F. MunariC.C. CostaG.F.D. MoreiraM.R. VenezianiR.C.S. TavaresD.C. Differential effect of manool – A diterpene from Salvia officinalis, on genotoxicity induced by methyl methanesulfonate in V79 and HepG2 cells.Food Chem. Toxicol.20147281210.1016/j.fct.2014.06.025 25007786
    [Google Scholar]
  89. de OliveiraP.F. MunariC.C. NicolellaH.D. VenezianiR.C.S. TavaresD.C. Manool, a Salvia officinalis diterpene, induces selective cytotoxicity in cancer cells.Cytotechnology20166852139214310.1007/s10616‑015‑9927‑0 26547581
    [Google Scholar]
  90. ĐurovićS. MicićD. PezoL. RadićD. BazarnovaJ.G. SmyatskayaY.A. BlagojevićS. The effect of various extraction techniques on the quality of sage (Salvia officinalis L.) essential oil, expressed by chemical composition, thermal properties and biological activity.Food Chem. X20221310021310.1016/j.fochx.2022.100213 35498992
    [Google Scholar]
  91. NajarB. MecacciG. NardiV. CervelliC. NardoniS. ManciantiF. EbaniV.V. GiannecchiniS. PistelliL. Volatiles and antifungal-antibacterial-antiviral activity of South African Salvia spp. essential oils cultivated in uniform conditions.Molecules2021269282610.3390/molecules26092826 34068756
    [Google Scholar]
  92. HuangL. ZhuJ. ZhengM. ZouR. ZhouY. ZhuM. Tanshinone IIA protects against subclinical lipopolysaccharide induced cardiac fibrosis in mice through inhibition of NADPH oxidase.Int. Immunopharmacol.201860596310.1016/j.intimp.2018.04.036 29704740
    [Google Scholar]
  93. GongY. LiY. LuY. LiL. AbdolmalekyH. BlackburnG.L. ZhouJ.R. Bioactive tanshinones in Salvia miltiorrhiza inhibit the growth of prostate cancer cells in vitro and in mice.Int. J. Cancer201112951042105210.1002/ijc.25678 20848589
    [Google Scholar]
  94. JiangZ. GaoW. HuangL. Tanshinones, critical pharmacological components in Salvia miltiorrhiza.Front. Pharmacol.20191020210.3389/fphar.2019.00202 30923500
    [Google Scholar]
  95. Jasicka-MisiakI. PoliwodaA. PeteckaM. BuslovychO. ShlyapnikovV.A. WieczorekP.P. Antioxidant phenolic compounds in Salvia officinalis L. and Salvia sclarea L.Ecol. Chem. Eng. S201825113314210.1515/eces‑2018‑0009
    [Google Scholar]
  96. PriviteraG. LucaT. CastorinaS. PassanisiR. RubertoG. NapoliE. Anticancer activity of Salvia officinalis essential oil and its principal constituents against hormone-dependent tumour cells.Asian Pac. J. Trop. Biomed.201991242810.4103/2221‑1691.250266
    [Google Scholar]
  97. SchwagerJ. RichardN. FowlerA. SeifertN. RaederstorffD. Carnosol and related substances modulate chemokine and cytokine production in macrophages and chondrocytes.Molecules201621446510.3390/molecules21040465 27070563
    [Google Scholar]
  98. WangL.C. WeiW.H. ZhangX.W. LiuD. ZengK.W. TuP.F. An integrated proteomics and bioinformatics approach reveal the anti-inflammatory mechanism of carnosic acid.Front. Pharmacol.2018937010.3389/fphar.2018.00370 29713284
    [Google Scholar]
  99. HoffmannM. SchwertassekU. SeydelA. WeberK. HauschildtS. LehmannJ. Therapeutic efficacy of a combined sage and bitter apple phytopharmaceutical in chronic DSS-induced colitis.Sci. Rep.2017711421410.1038/s41598‑017‑13985‑x 29079781
    [Google Scholar]
  100. MaS. ZhangD. LouH. SunL. JiJ. Evaluation of the anti-inflammatory activities of tanshinones isolated from Salvia miltiorrhiza var. alba roots in THP-1 macrophages.J. Ethnopharmacol.201618819319910.1016/j.jep.2016.05.018 27178632
    [Google Scholar]
  101. BrindisiM. BouzidiC. FrattaruoloL. LoizzoM.R. CappelloM.S. DugayA. DeguinB. LauriaG. CappelloA.R. TundisR. New insights into the antioxidant and anti-inflammatory effects of italian Salvia officinalis leaf and flower extracts in lipopolysaccharide and tumor-mediated inflammation models.Antioxidants202110231110.3390/antiox10020311 33669555
    [Google Scholar]
  102. Al-EzzyR.M. Al-SamarraeK. Ad’haihA.H. Effect of sage (Salvia officinalis) aqueous extract on mitotic index in albino male mice.Res. J. Biotechnol.201041
    [Google Scholar]
  103. ShinJ. KimO. KimS. BaeD. LeeJ. ParkJ. JunW. Immunomodulatory effect of a Salvia plebeia R. aqueous extract in forced swimming exercise-induced mice.Nutrients2020128226010.3390/nu12082260 32731626
    [Google Scholar]
  104. SalomónR. FirminoJ.P. Reyes-LópezF.E. AndreeK.B. González-SilveraD. EstebanM.A. TortL. QuintelaJ.C. Pinilla-RosasJ.M. Vallejos-VidalE. GisbertE. The growth promoting and immunomodulatory effects of a medicinal plant leaf extract obtained from Salvia officinalis and Lippia citriodora in gilthead seabream (Sparus aurata).Aquaculture202052473529110.1016/j.aquaculture.2020.735291
    [Google Scholar]
  105. SalomónR. Reyes-LópezF.E. TortL. FirminoJ.P. SarasqueteC. Ortiz-DelgadoJ.B. QuintelaJ.C. Pinilla-RosasJ.M. Vallejos-VidalE. GisbertE. Medicinal plant leaf extract from sage and lemon verbena promotes intestinal immunity and barrier function in gilthead seabream (Sparus aurata).Front. Immunol.20211267027910.3389/fimmu.2021.670279 34054843
    [Google Scholar]
  106. RevajováV. PistlJ. LevkutM. MarcinA. LevkutováM. Influence of oregano and salvia extracts on lymphocyte subpopulation and functional activity of blood phagocytes and lymphocytes in chickens.Food Agric. Immunol.201021430731610.1080/09540105.2010.497533
    [Google Scholar]
  107. MargettsG. KleidonasS. ZaibiN.S. ZaibiM.S. EdwardsK.D. Evidence for anti-inflammatory effects and modulation of neurotransmitter metabolism by Salvia officinalis L.BMC Complement. Med. Ther.202222113110.1186/s12906‑022‑03605‑1 35550086
    [Google Scholar]
  108. JurcaT. BaldeaI. FilipG.A. OlteanuD. ClichiciS. PallagA. VicaşL. MarianE. MicleO. CriviiC.B. MureşanM. A phytocomplex consisting of Tropaeolum majus L. and Salvia officinalis L. extracts alleviates the inflammatory response of dermal fibroblasts to bacterial lipopolysaccharides.Oxid. Med. Cell. Longev.2020202011410.1155/2020/8516153 32566105
    [Google Scholar]
  109. RasouliB. MovahhedkhahS. SeidaviA. HaqQ.M.I. KadimI. LaudadioV. MazzeiD. TufarelliV. Effect of sage (Salvia officinalis L.) aqueous leaf extract on performance, blood constituents, immunity response and ileal microflora of broiler chickens.Agrofor. Syst.20209441179118710.1007/s10457‑019‑00401‑8
    [Google Scholar]
  110. Dal PraV. BisolL.B. DetoniS. DentiM. GrandoJ. PolloC. PasqualiT.R. HoffmannA.E. MazuttiM.A. MacedoS.M.D. Anti-inflammatory activity of fractionated extracts of Salvia officinalis.J. Appl. Pharm. Sci.2011016771
    [Google Scholar]
  111. MeloG.A. FonsecaJ.P. Oliveira FarinhaT. PinhoR.J. DamiãoM.J. GrespanR. da SilvaE.L. Bersani-AmadoC.A. Nakamura CumanR.K. Anti-inflammatory activity of Salvia officinalis L.J. Med. Plants Res.2012649344939
    [Google Scholar]
  112. KolacU.K. UstunerM.C. TekinN. UstunerD. ColakE. EntokE. The anti-inflammatory and antioxidant effects of Salvia officinalis on lipopolysaccharide-induced inflammation in rats.J. Med. Food201720121193120010.1089/jmf.2017.0035 29131698
    [Google Scholar]
  113. El EuchS.K. HassineD.B. CazauxS. BouzouitaN. BouajilaJ. Salvia officinalis essential oil: Chemical analysis and evaluation of anti-enzymatic and antioxidant bioactivities.S. Afr. J. Bot.201912025326010.1016/j.sajb.2018.07.010
    [Google Scholar]
  114. El JeryA. HasanM. RashidM.M. Al MesferM.K. DanishM. Ben RebahF. Phytochemical characterization, and antioxidant and antimicrobial activities of essential oil from leaves of the common sage Salvia officinalis L. from Abha, Saudi Arabia.Asian Biomed.202014626127010.1515/abm‑2020‑0035 37551305
    [Google Scholar]
  115. BonacciniL. KariotiA. BergonziM. BiliaA. Effects of Salvia miltiorrhiza on CNS neuronal injury and degeneration: A plausible complementary role of tanshinones and depsides.Planta Med.20158112/131003101610.1055/s‑0035‑1546196 26190397
    [Google Scholar]
  116. CapursoA. CrepaldiG. CapursoC. Benefits of Mediterranean Diet in Elderly Patients.Springer201810.1007/978‑3‑319‑78084‑9
    [Google Scholar]
  117. ZhussupovaA. ZhumaliyevaG. OgayV. IssabekovaA. RossS.A. ZhusupovaG.E. Immunomodulatory effects of plant extracts from Salvia deserta Schang. and Salvia sclarea L.Plants20221120269010.3390/plants11202690 36297710
    [Google Scholar]
  118. ZhangJ.M. AnJ. Cytokines, inflammation, and pain.Int. Anesthesiol. Clin.2007452273710.1097/AIA.0b013e318034194e 17426506
    [Google Scholar]
  119. YinM. ZhangY. LiH. Advances in research on immunoregulation of macrophages by plant polysaccharides.Front. Immunol.20191014510.3389/fimmu.2019.00145 30804942
    [Google Scholar]
  120. KangB.Y. ChungS.W. KimS.H. RyuS.Y. KimT.S. Inhibition of interleukin-12 and interferon-γ production in immune cells by tanshinones from Salvia miltiorrhiza.Immunopharmacology200049335536110.1016/S0162‑3109(00)00256‑3 10996033
    [Google Scholar]
  121. ImS.A. LeeY.R. LeeY.H. OhS.T. GerelchuluunT. KimB.H. KimY. YunY.P. SongS. LeeC.K. Synergistic activation of monocytes by polysaccharides isolated from Salicornia herbacea and interferon-γ.J. Ethnopharmacol.2007111236537010.1016/j.jep.2006.11.027 17204386
    [Google Scholar]
  122. HanC. YangJ. SongP. WangX. ShiW. Effects of Salvia miltiorrhiza polysaccharides on lipopolysaccharide-induced inflammatory factor release in RAW264.7 cells.J. Interferon Cytokine Res.2018381293710.1089/jir.2017.0087 29328882
    [Google Scholar]
  123. LoprestiA.L. Salvia (sage): A review of its potential cognitive-enhancing and protective effects.Drugs R D.2017171536410.1007/s40268‑016‑0157‑5 27888449
    [Google Scholar]
  124. AfonsoA.F. PereiraO.R. CardosoS.M. Salvia species as nutraceuticals: Focus on antioxidant, antidiabetic and anti-obesity properties.Appl. Sci.20211120936510.3390/app11209365
    [Google Scholar]
  125. GongJ. JuA. ZhouD. LiD. ZhouW. GengW. LiB. LiL. LiuY. HeY. SongM. WangY. YeZ. LinR. Salvianolic acid Y: a new protector of PC12 cells against hydrogen peroxide-induced injury from Salvia officinalis.Molecules201520168369210.3390/molecules20010683 25569522
    [Google Scholar]
  126. XiaoZ. LiuW. MuY. ZhangH. WangX. ZhaoC. ChenJ. LiuP. Pharmacological Effects of Salvianolic Acid B Against Oxidative Damage.Front. Pharmacol.20201157237310.3389/fphar.2020.572373 33343348
    [Google Scholar]
  127. ShahrzadK. MahyaN. FatemehT.B. MaryamK. MohammadrezaF.B. JahromyM.H. Hepatoprotective and antioxidant effects of salvia officinalis l. hydroalcoholic extract in male rats.Chin. Med.20145213013610.4236/cm.2014.52016
    [Google Scholar]
  128. MohammedH.A. EldeebH.M. KhanR.A. Al-OmarM.S. MohammedS.A.A. SajidM.S.M. AlyM.S.A. AhmadA.M. AbdellatifA.A.H. EidS.Y. El-ReadiM.Z. Sage, Salvia officinalis L.; constituents, hepatoprotective activity, and cytotoxicity evaluations of the essential oils obtained from fresh and differently timed dried herbs: A comparative analysis.Molecules20212619575710.3390/molecules26195757 34641301
    [Google Scholar]
  129. DoğanM. AkıcıN. DikenM.E. DoğanS. Yilmaz KardasB. DirmenciT. Biological activities of some Salvia species.Z. Naturforsch. C J. Biosci.2022773-413314310.1515/znc‑2021‑0136 34547196
    [Google Scholar]
  130. MiuraK. KikuzakiH. NakataniN. Antioxidant activity of chemical components from sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.) measured by the oil stability index method.J. Agric. Food Chem.20025071845185110.1021/jf011314o 11902922
    [Google Scholar]
  131. MotM.D. GavrilașS. LupituA.I. MoisaC. ChambreD. TitD.M. BogdanM.A. BodescuA.M. CopoloviciL. CopoloviciD.M. BungauS.G. Salvia officinalis L. Essential Oil: Characterization, Antioxidant Properties, and the Effects of Aromatherapy in Adult Patients.Antioxidants202211580810.3390/antiox11050808 35624672
    [Google Scholar]
  132. KoubaaF.G. ChaâbaneM. TurkiM. AyadiF.M. El FekiA. Retracted Article: Anti-oxidant and hepatoprotective effects of Salvia officinalis essential oil against vanadium-induced oxidative stress and histological changes in the rat liver.Environ. Sci. Pollut. Res. Int.2021289110011101510.1007/s11356‑020‑11303‑z 33106906
    [Google Scholar]
  133. AminA. HamzaA.A. Hepatoprotective effects of Hibiscus, Rosmarinus and Salvia on azathioprine-induced toxicity in rats.Life Sci.200577326627810.1016/j.lfs.2004.09.048 15878355
    [Google Scholar]
  134. BabaultN. NoureddineA. AmiezN. GuillemetD. ComettiC. Acute effects of salvia supplementation on cognitive function in athletes during a fatiguing cycling exercise: A randomized cross-over, placebo-controlled, and double-blind study.Front. Nutr.2021877151810.3389/fnut.2021.771518 34926550
    [Google Scholar]
  135. EdwardsK.D. DubberkeA. MeyerN. KugelS. HellhammerJ. Assessment of the effects of a sage (Salvia officinalis) extract on cognitive performance in adolescents and young adults.medRxiv05.28.21257776202110.1101/2021.05.28.21257776
    [Google Scholar]
  136. TengY. ZhangM.Q. WangW. LiuL.T. ZhouL.M. MiaoS.K. WanL.H. Compound danshen tablet ameliorated aβ25-35-induced spatial memory impairment in mice via rescuing imbalance between cytokines and neurotrophins.BMC Complement. Altern. Med.20141412310.1186/1472‑6882‑14‑23 24422705
    [Google Scholar]
  137. BowlingH. BhattacharyaA. KlannE. ChaoM. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology.Neural Regen. Res.201611336336710.4103/1673‑5374.179031 27127458
    [Google Scholar]
  138. DinelA.L. LucasC. GuillemetD. LayéS. PalletV. JoffreC. Chronic supplementation with a mix of Salvia officinalis and Salvia lavandulaefolia improves Morris water maze learning in normal adult C57Bl/6J mice.Nutrients2020126177710.3390/nu12061777 32549250
    [Google Scholar]
  139. WightmanE.L. JacksonP.A. SpittlehouseB. HeffernanT. GuillemetD. KennedyD.O. The acute and chronic cognitive effects of a sage extract: A randomized, placebo controlled study in healthy humans.Nutrients202113121810.3390/nu13010218 33466627
    [Google Scholar]
  140. KeshavarzM. MostafaieA. MansouriK. BidmeshkipourA. MotlaghH.R.M. ParvanehS. In vitro and ex vivo antiangiogenic activity of salvia officinalis.Phytother. Res.201024101526153110.1002/ptr.3168 20878705
    [Google Scholar]
  141. AhmedO.H. Antiangiogenic effect of Salvia officinalis.Int. J. Psychosoc. Rehabil.20202425352543
    [Google Scholar]
  142. ZihlifM. AfifiF. Abu-DahabR. Abdul MajidA.M.S. SomrainH. SalehM.M. NassarZ.D. NaffaR. The antiangiogenic activities of ethanolic crude extracts of four Salvia species.BMC Complement. Altern. Med.201313135810.1186/1472‑6882‑13‑358 24330494
    [Google Scholar]
  143. DatN.T. JinX. LeeJ.H. LeeD. HongY.S. LeeK. KimY.H. LeeJ.J. Abietane diterpenes from Salvia miltiorrhiza inhibit the activation of hypoxia-inducible factor-1.J. Nat. Prod.20077071093109710.1021/np060482d 17583950
    [Google Scholar]
  144. ChoiJ.G. KimY.S. KimJ.H. KimT.I. LiW. OhT.W. JeonC.H. KimS.J. ChungH.S. Anticancer effect of Salvia plebeia and its active compound by improving T-cell activity via blockade of PD-1/PD-L1 interaction in humanized PD-1 mouse model.Front. Immunol.20201159855610.3389/fimmu.2020.598556 33224152
    [Google Scholar]
  145. EzemaC.A. EzeorbaT.P.C. AguchemR.N. OkaguI.U. Therapeutic benefits of Salvia species: A focus on cancer and viral infection.Heliyon202281e0876310.1016/j.heliyon.2022.e08763 35146151
    [Google Scholar]
  146. LeeC.Y. SherH.F. ChenH.W. LiuC.C. ChenC.H. LinC.S. YangP.C. TsayH.S. ChenJ.J.W. Anticancer effects of tanshinone I in human non-small cell lung cancer.Mol. Cancer Ther.20087113527353810.1158/1535‑7163.MCT‑07‑2288 19001436
    [Google Scholar]
  147. XieJ. LiuJ. LiuH. LiangS. LinM. GuY. LiuT. WangD. GeH. MoS. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line.Acta Pharm. Sin. B20155655456310.1016/j.apsb.2015.07.008 26713270
    [Google Scholar]
  148. NooriS. HassanZ.M. MohammadiM. HabibiZ. SohrabiN. BayanolhaghS. Sclareol modulates the Treg intra-tumoral infiltrated cell and inhibits tumor growth in vivo.Cell. Immunol.2010263214815310.1016/j.cellimm.2010.02.009 20409537
    [Google Scholar]
  149. ZhangT. WangT. CaiP. Sclareol inhibits cell proliferation and sensitizes cells to the antiproliferative effect of bortezomib via upregulating the tumor suppressor caveolin-1 in cervical cancer cells.Mol. Med. Rep.20171563566357410.3892/mmr.2017.6480 28440485
    [Google Scholar]
  150. RóżalskiM. KuźmaŁ. WysokińskaH. KrajewskaU. Cytotoxic and proapoptotic activity of diterpenoids from in vitro cultivated Salvia sclarea roots. Studies on the leukemia cell lines.Z. Naturforsch. C J. Biosci.2006617-848348810.1515/znc‑2006‑7‑804 16989306
    [Google Scholar]
  151. Balaei-KahnamoeiM. EftekhariM. ArdekaniM.R.S. AkbarzadehT. SaeediM. JamalifarH. SafaviM. SamS. ZhalehjooN. KhanaviM. Phytochemical constituents and biological activities of Salvia macrosiphon Boiss.BMC Chem.2021151410.1186/s13065‑020‑00728‑9 33468228
    [Google Scholar]
  152. HalderS. YadavK.K. SarkarR. MukherjeeS. SahaP. HaldarS. KarmakarS. SenT. Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents.Springerplus20154167210.1186/s40064‑015‑1476‑7 26558175
    [Google Scholar]
  153. Beheshti-RouyM. AzarsinaM. Rezaie-SoufiL. AlikhaniM.Y. RoshanaieG. KomakiS. The antibacterial effect of sage extract (Salvia officinalis) mouthwash against Streptococcus mutans in dental plaque: a randomized clinical trial.Iran. J. Microbiol.201573173177 26668706
    [Google Scholar]
  154. StanciuG. LupsorS. OanceaE. MititeluM. Biological activity of essential sage oil.J. Sci. Arts202222121121810.46939/J.Sci.Arts‑22.1‑b02
    [Google Scholar]
  155. CuiH. ZhangX. ZhouH. ZhaoC. LinL. Antimicrobial activity and mechanisms of Salvia sclarea essential oil.Bot. Stud.20155611610.1186/s40529‑015‑0096‑4 28510825
    [Google Scholar]
  156. TserennadmidR. TakóM. GalgóczyL. PappT. PestiM. VágvölgyiC. AlmássyK. KrischJ. Anti yeast activities of some essential oils in growth medium, fruit juices and milk.Int. J. Food Microbiol.2011144348048610.1016/j.ijfoodmicro.2010.11.004 21131081
    [Google Scholar]
  157. GutierrezJ. Barry-RyanC. BourkeP. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients.Int. J. Food Microbiol.20081241919710.1016/j.ijfoodmicro.2008.02.028 18378032
    [Google Scholar]
  158. LiaoW. BadriW. DumasE. GhnimiS. ElaissariA. SaurelR. GharsallaouiA. Nanoencapsulation of Essential Oils as Natural Food Antimicrobial Agents: An Overview.Appl. Sci.20211113577810.3390/app11135778
    [Google Scholar]
  159. Djaković SekulićT. BožinB. SmolińskiA. Chemometric study of biological activities of 10 aromatic Lamiaceae species’ essential oils.J. Chemometr.201630418819610.1002/cem.2786
    [Google Scholar]
  160. ImanshahidiM. HosseinzadehH. The pharmacological effects of Salvia species on the central nervous system.Phytother. Res.200620642743710.1002/ptr.1898 16619340
    [Google Scholar]
  161. RzepaJ. WojtalL. StaszekD. GrygierczykG. LabeK. HajnosM. KowalskaT. Waksmundzka-HajnosM. Fingerprint of selected Salvia species by HS-GC-MS analysis of their volatile fraction.J. Chromatogr. Sci.200947757558010.1093/chromsci/47.7.575 19772730
    [Google Scholar]
  162. Kumar SinghV. DasS. Kumar DwivedyA. Kumar ChaudhariA. UpadhyayN. DubeyN.K. Assessment of chemically characterized Salvia sclarea L. essential oil and its combination with linalyl acetate as novel plant based antifungal, antiaflatoxigenic and antioxidant agent against herbal drugs contamination and probable mode of action.Nat. Prod. Res.202135578278710.1080/14786419.2019.1593168 30938173
    [Google Scholar]
  163. KačániováM. VukovicN.L. ČmikováN. GalovičováL. SchwarzováM. ŠimoraV. KowalczewskiP.Ł. KluzM.I. PuchalskiC. BakayL. VukicM.D. Salvia sclarea Essential Oil Chemical Composition and Biological Activities.Int. J. Mol. Sci.2023246517910.3390/ijms24065179 36982252
    [Google Scholar]
  164. LevayaY.K. ZholdasbaevM.E. AtazhanovaG.A. AkhmetovaS.B. Antibacterial activity of ultrasonic extracts of Salvia stepposa growing in Kazakhstan.Bull. Karaganda Uni.20211011454910.31489/2021BMG1/45‑49
    [Google Scholar]
  165. UltanbekovaG.D. MukhataevaK.A. ZhusupovaA.I. GelaniC.D. IbishevaN. NurmakhanovaA.S. ZhalgasbaevaM.O. SagyndykovaA.A. DastanZ.D. A survey of endophytes from the kazakhstanispecies of Salvia aethiopis L.; Salvia stepposa Desshost and Salvia sclarea L. Microbiol. Virol.20233
    [Google Scholar]
  166. ÜrgeováE. UváčkováĽ. VanekováM. MaliarT. Antibacterial potential of microwave-assisted extraction prepared hydrolates from different salvia species.Plants2023126132510.3390/plants12061325 36987013
    [Google Scholar]
  167. JeshanM. YousefbeykF. RahmatiH. Hosein ShoormeijA. RezazadehM. ZamaniE. Salvia spinosa L. protects against diabetes-induced nephropathy by attenuation of mitochondrial oxidative damage in mice.Adv. Pharmacol. Pharm. Sci.2021202111010.1155/2021/4657514 34988461
    [Google Scholar]
  168. EidiA. EidiM. Antidiabetic effects of sage (Salvia officinalis L.) leaves in normal and streptozotocin-induced diabetic rats, diabetes and metabolic syndrome.Clin. Res. Rev.200934044
    [Google Scholar]
  169. KananaF.M. MainaC.M. KibetJ.M. ClementJ.M. Hypoglycaemic effects of Salvia officinalis extracts on alloxan-induced diabetic Swiss albino mice.J. Med. Plants Res.2020141051852510.5897/JMPR2019.6822
    [Google Scholar]
  170. LimaC.F. AzevedoM.F. AraujoR. Fernandes-FerreiraM. Pereira-WilsonC. Metformin-like effect of Salvia officinalis (common sage): is it useful in diabetes prevention?Br. J. Nutr.200696232633310.1079/BJN20061832 16923227
    [Google Scholar]
  171. MocanA. BabotaM. PopA. FizeșanI. DiuzhevaA. LocatelliM. CarradoriS. CampestreC. MenghiniL. SiseaC.R. SokovićM. ZenginG. PăltineanR. BadarauS.C. VodnarD.C. CrișanG. Chemical constituents and biologic activities of sage species: A comparison between Salvia officinalis L., S. glutinosa L. and S. transsylvanica (schur ex griseb. & schenk) schur.Antioxidants20209648010.3390/antiox9060480 32498441
    [Google Scholar]
  172. TundisR. LeporiniM. BonesiM. RovitoS. PassalacquaN.G. Salvia officinalis L. from Italy: A comparative chemical and biological study of its essential oil in the mediterranean context.Molecules20202524582610.3390/molecules25245826 33321838
    [Google Scholar]
  173. OsmanN.N. Abd El–AzimeA. Salvia officinalis L. (sage) ameliorates radiation-induced oxidative brain damage in rats.Arab J. Nucl. Sci. Appl.201346297304
    [Google Scholar]
  174. JedidiS. AlouiF. SelmiS. SelmiH. SammariH. AyariA. AbbesC. SebaiH. Antioxidant properties of Salvia officinalis decoction extract and mechanism of its protective effects on ethanol-induced liver and kidney injuries.J. Med. Food202225554655610.1089/jmf.2021.0134 35325568
    [Google Scholar]
  175. AhnY.M. KimS.K. LeeS.H. AhnS.Y. KangS.W. ChungJ.H. KimS.D. LeeB.C. Renoprotective effect of Tanshinone IIA, an active component of Salvia miltiorrhiza, on rats with chronic kidney disease.Phytother. Res.201024121886189210.1002/ptr.3347 21043035
    [Google Scholar]
  176. LeeS.H. KimY.S. LeeS.J. LeeB.C. The protective effect of Salvia miltiorrhiza in an animal model of early experimentally induced diabetic nephropathy.J. Ethnopharmacol.201113731409141410.1016/j.jep.2011.08.007 21856399
    [Google Scholar]
  177. BorkarP. YadavV. TiwariR.R. SamarthR.M. A systematic review of potential candidates of herbal medicine in treatment of chronic kidney disease.Phytomed. Plus20222410036110.1016/j.phyplu.2022.100361
    [Google Scholar]
  178. RashwanH.M. MohammedH.E. El-NekeetyA.A. HamzaZ.K. Abdel-AziemS.H. HassanN.S. Abdel-WahhabM.A. Bioactive phytochemicals from Salvia officinalis attenuate cadmium-induced oxidative damage and genotoxicity in rats.Environ. Sci. Pollut. Res. Int.20212848684986851210.1007/s11356‑021‑15407‑y 34275073
    [Google Scholar]
  179. WannesW.A. TounsiM.S. Tunisian nephroprotective plants: A review.J. Explor. Res. Pharmacol.202387491
    [Google Scholar]
  180. HosivandiS. AsadiF. SalimikiaI. Evaluation of the protective effect of Salvia macrosiphon Boiss on the serum urea and creatinine levels in renal ischemia reperfusion injury.Yafte2021237988
    [Google Scholar]
  181. KimJ. KimW. HyunJ. LeeJ. KwonJ. SeoC. SongM.J. ChoiC. HongS. ParkK. KimP. SungH. LeeJ. ChoiY. Salvia plebeia extract inhibits xanthine oxidase activity in vitro and reduces serum uric acid in an animal model of hyperuricemia.Planta Med.201783171335134110.1055/s‑0043‑111012 28521370
    [Google Scholar]
  182. LiuX. ChenR. ShangY. JiaoB. HuangC. Lithospermic acid as a novel xanthine oxidase inhibitor has anti-inflammatory and hypouricemic effects in rats.Chem. Biol. Interact.20081762-313714210.1016/j.cbi.2008.07.003 18694741
    [Google Scholar]
  183. ZhangX.W. ZhouM. AnL. ZhangP. LiP. ChenJ. Lipophilic extract and tanshinone IIA derived from Salvia miltiorrhiza attenuate uric acid nephropathy through suppressing oxidative stress-activated MAPK pathways.Am. J. Chin. Med.20204861455147310.1142/S0192415X20500718 32933312
    [Google Scholar]
  184. BahadoriM.B. ValizadehH. AsghariB. DinparastL. Moridi FarimaniM. BahadoriS. Chemical composition and antimicrobial, cytotoxicity, antioxidant and enzyme inhibitory activities of Salvia spinosa L.J. Funct. Foods20151872773610.1016/j.jff.2015.09.011
    [Google Scholar]
  185. HudaibM. MohammadM.K. IssaA.Y. AburjaiT.A. BustanjiY.K. TawahaK.A. AssafA.M. AlaliF.Q. Xanthine oxidase inhibitory activity of the methanolic extracts of selected Jordanian medicinal plants.Pharmacogn. Mag.201172832032410.4103/0973‑1296.90413 22262935
    [Google Scholar]
  186. MoralesP. HerreraP.G. GonzálezM.C.M. HurtadoM.C. MataM.C.S. Wild Greens as Source of Nutritive and Bioactive Compounds Over the World.In: Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications. FerreiraI.C.F.R. LillianB. MoralesP. Chichester, UKJohn Wiley and Sons, Ltd2017159198
    [Google Scholar]
  187. BrewerM.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications.Compr. Rev. Food Sci. Food Saf.201110422124710.1111/j.1541‑4337.2011.00156.x
    [Google Scholar]
  188. LinD. XiaoM. ZhaoJ. LiZ. XingB. LiX. KongM. LiL. ZhangQ. LiuY. ChenH. QinW. WuH. ChenS. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes.Molecules20162110137410.3390/molecules21101374 27754463
    [Google Scholar]
  189. RavishankarD. RajoraA.K. GrecoF. OsbornH.M.I. Flavonoids as prospective compounds for anti-cancer therapy.Int. J. Biochem. Cell Biol.201345122821283110.1016/j.biocel.2013.10.004 24128857
    [Google Scholar]
  190. LiuR.H. Dietary bioactive compounds and their health implications.J. Food Sci.201378s1Suppl. 1A18A2510.1111/1750‑3841.12101 23789932
    [Google Scholar]
  191. Carović-StankoK. PetekM. GrdišaM. PintarJ. BedekovićD. Herak ĆustićM. SatovicZ. Medicinal plants of the family Lamiaceae as functional foods - A review.Czech J. Food Sci.201634537739010.17221/504/2015‑CJFS
    [Google Scholar]
  192. PinelaJ. CarochoM. DiasM.I. CalejaC. BarrosL. FerreiraI.C.F.R. Wild Plant-Based Functional Foods, Drugs, and Nutraceuticals. Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications; Ferreira, I.C.F.R.; Lillian, B. MoralesP. Chichester, UKJohn Wiley and Sons, Ltd2017315351
    [Google Scholar]
  193. WalkerJ.B. SytsmaK.J. TreutleinJ. WinkM. Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae.Am. J. Bot.20049171115112510.3732/ajb.91.7.1115 21653467
    [Google Scholar]
  194. KarousouR. HanlidouE. KokkiniS. The Sage Plants of Greece: Distribution and Infraspecific Variation. Sage, the Genus Salvia. KintziosS.E. Amsterdam, the NetherlandsTaylor and Francis e-Library20052746
    [Google Scholar]
  195. DweckA.C. Introduction. The Folklore and Cosmetic Use of Various Salvia Species.Sage, the Genus Salvia. KintziosS.E. Amsterdam, the NetherlandsTaylor and Francis e-Library2005125
    [Google Scholar]
  196. UlubelenA. Chemical constituents, 4. Terpenoids in the genus Salvia. Sage, The Genus Salvia. KintziosS.E. Amsterdam, the NetherlandsTaylor and Francis e-Library2005Vol. 145568
    [Google Scholar]
  197. KaramanosA.J. Cultivation and breeding: The cultivation of sage. Sage, The Genus Salvia. KintziosS.E. Amsterdam, the NetherlandsTaylor and Francis e-Library2005Vol. 1493108
    [Google Scholar]
  198. WalkerJ.B. SytsmaK.J. Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the staminal lever.Ann. Bot. (Lond.)2007100237539110.1093/aob/mcl176 16926227
    [Google Scholar]
  199. ZhangX. SawhneyV.K. DavisA.R. Annular floral nectary with oil‐producing trichomes in Salvia farinacea (Lamiaceae): Anatomy, histochemistry, ultrastructure, and significance.Am. J. Bot.2014101111849186710.3732/ajb.1400368 25366851
    [Google Scholar]
  200. LiM. LiQ. ZhangC. ZhangN. CuiZ. An ethnopharmacological investigation of medicinal Salvia plants (Lamiaceae) in China.Acta Pharm.20133273280
    [Google Scholar]
  201. FiruziO. MiriR. AsadollahiM. EslamiS. JassbiA.R. Cytotoxic, antioxidant and antimicrobial activities and phenolic contents of eleven salvia species from iran.Iran. J. Pharm. Res.2013124801810 24523760
    [Google Scholar]
  202. SáC.M. RamosA.A. AzevedoM.F. LimaC.F. Fernandes-FerreiraM. Pereira-WilsonC. Sage tea drinking improves lipid profile and antioxidant defences in humans.Int. J. Mol. Sci.20091093937395010.3390/ijms10093937 19865527
    [Google Scholar]
  203. Abu-DarwishM.S. CabralC. FerreiraI.V. GonçalvesM.J. CavaleiroC. CruzM.T. Al-bdourT.H. SalgueiroL. Essential oil of common sage (Salvia officinalis L.) from Jordan: Assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential.BioMed Res. Int.201320131910.1155/2013/538940 24224168
    [Google Scholar]
  204. HamidpourM. HamidpourR. HamidpourS. ShahlariM. Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer.J. Tradit. Complement. Med.201442828810.4103/2225‑4110.130373 24860730
    [Google Scholar]
  205. Abd RashedA. Abd RahmanA.Z. RathiD.N.G. Essential oils as a potential neuroprotective remedy for age-related neurodegenerative diseases: A review.Molecules2021264110710.3390/molecules26041107 33669787
    [Google Scholar]
  206. PirintsosS.A. BariotakisM. KampaM. SourvinosG. LionisC. CastanasE. The therapeutic potential of the essential oil of Thymbra capitata (L.) Cav., Origanum dictamnus L. and Salvia fruticosa mill. and a case of plant-based pharmaceutical development.Front. Pharmacol.20201152221310.3389/fphar.2020.522213 33390932
    [Google Scholar]
  207. AdrarN. OukilN. BedjouF. Antioxidant and antibacterial activities of Thymus numidicus and Salvia officinalis essential oils alone or in combination.Ind. Crops Prod.20168811211910.1016/j.indcrop.2015.12.007
    [Google Scholar]
  208. TosunA. KhanS. KimY.S. Calín-SánchezA. HysenajX. Carbonell-BarrachinaA. Essential oil composition and anti-inflammatory activity of Salvia officinalis L (Lamiaceae) in murin macrophages.Trop. J. Pharm. Res.201413693794210.4314/tjpr.v13i6.16
    [Google Scholar]
  209. PouliosE. GiaginisC. VasiosG.K. Current state of the art on the antioxidant activity of sage (salvia spp.) and its bioactive components.Planta Med.202086422423810.1055/a‑1087‑8276 31975363
    [Google Scholar]
  210. AfonsoA.F. PereiraO.R. FernandesÂ.S.F. CalhelhaR.C. SilvaA.M.S. FerreiraI.C.F.R. CardosoS.M. The health-benefits and phytochemical profile of Salvia apiana and Salvia farinacea var. Victoria blue decoctions.Antioxidants20198824110.3390/antiox8080241 31349575
    [Google Scholar]
  211. AfonsoA.F. PereiraO.R. FernandesÂ. CalhelhaR.C. SilvaA.M.S. FerreiraI.C.F.R. CardosoS.M. Phytochemical composition and bioactive effects of Salvia africana, Salvia officinalis “Icterina” and Salvia mexicana aqueous Extracts.Molecules20192423432710.3390/molecules24234327 31783509
    [Google Scholar]
  212. PereiraO. CatarinoM. AfonsoA. SilvaA. CardosoS. Salvia elegans, Salvia greggii and Salvia officinalis Decoctions: Antioxidant activities and inhibition of carbohydrate and lipid metabolic enzymes.Molecules20182312316910.3390/molecules23123169 30513773
    [Google Scholar]
  213. ManggeH. BeckerK. FuchsD. GostnerJ.M. Antioxidants, inflammation and cardiovascular disease.World J. Cardiol.20146646247710.4330/wjc.v6.i6.462 24976919
    [Google Scholar]
  214. HeL. HeT. FarrarS. JiL. LiuT. MaX. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species.Cell. Physiol. Biochem.201744253255310.1159/000485089 29145191
    [Google Scholar]
  215. BiswasS.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox?Oxid. Med. Cell. Longev.201620161910.1155/2016/5698931 26881031
    [Google Scholar]
  216. Guillaumet-AdkinsA. YañezY. Peris-DiazM.D. CalabriaI. Palanca-BallesterC. SandovalJ. Epigenetics and Oxidative Stress in Aging.Oxid. Med. Cell. Longev.201720171810.1155/2017/9175806 28808499
    [Google Scholar]
  217. LiA.N. LiS. ZhangY.J. XuX.R. ChenY.M. LiH.B. Resources and biological activities of natural polyphenols.Nutrients20146126020604710.3390/nu6126020 25533011
    [Google Scholar]
  218. Tressera-RimbauA. ArranzS. EderM. Vallverdú-QueraltA. Dietary polyphenols in the prevention of stroke.Oxid. Med. Cell. Longev.2017201711010.1155/2017/7467962 29204249
    [Google Scholar]
  219. OzkanG. KamilogluS. OzdalT. BoyaciogluD. CapanogluE. Potential use of Turkish medicinal plants in the treatment of various diseases.Molecules201621325710.3390/molecules21030257 26927038
    [Google Scholar]
  220. JassbiA.R. ZareS. FiruziO. XiaoJ. Bioactive phytochemicals from shoots and roots of Salvia species.Phytochem. Rev.201615582986710.1007/s11101‑015‑9427‑z
    [Google Scholar]
  221. KulczyńskiB. Kobus-CisowskaJ. TaczanowskiM. KmiecikD. Gramza-MichałowskaA. The Chemical Composition and Nutritional Value of Chia Seeds-Current State of Knowledge.Nutrients2019116124210.3390/nu11061242 31159190
    [Google Scholar]
  222. AfonsoA.F. PereiraO.R. CardosoS.M. Health-promoting effects of thymus phenolic-rich extracts: Antioxidant, anti-inflammatory and antitumoral properties.Antioxidants20209981410.3390/antiox9090814 32882987
    [Google Scholar]
  223. KasoteD.M. KatyareS.S. HegdeM.V. BaeH. Significance of antioxidant potential of plants and its relevance to therapeutic applications.Int. J. Biol. Sci.201511898299110.7150/ijbs.12096 26157352
    [Google Scholar]
  224. PedroD.F.N. RamosA.A. LimaC.F. BaltazarF. Pereira-WilsonC. Modulation of DNA damage prevention and signaling pathways in diet induced colon cancer prevention.BMC Proc.20104S25810.1186/1753‑6561‑4‑S2‑P58
    [Google Scholar]
  225. Aghaei JeshvaghaniZ. RahimmalekM. TalebiM. GoliS.A.H. Comparison of total phenolic content and antioxidant activity in different Salvia species using three model systems.Ind. Crops Prod.20157740941410.1016/j.indcrop.2015.09.005
    [Google Scholar]
  226. FarhatM.B. LandoulsiA. Chaouch-HamadaR. SotomayorJ.A. JordánM.J. Characterization and quantification of phenolic compounds and antioxidant properties of Salvia species growing in different habitats.Ind. Crops Prod.20134990491410.1016/j.indcrop.2013.06.047
    [Google Scholar]
  227. AlbanoS.M. MiguelM.G. Biological activities of extracts of plants grown in Portugal.Ind. Crops Prod.201133233834310.1016/j.indcrop.2010.11.012
    [Google Scholar]
  228. BrahmiN. ScognamiglioM. PacificoS. MekhoukheA. MadaniK. FiorentinoA. MonacoP. 1 H NMR based metabolic profiling of eleven Algerian aromatic plants and evaluation of their antioxidant and cytotoxic properties.Food Res. Int.201576Pt 333434110.1016/j.foodres.2015.07.005 28455012
    [Google Scholar]
  229. KozicsK. KlusováV. SrančíkováA. MučajiP. SlameňováD. HunákováĽ. KusznierewiczB. HorváthováE. Effects of Salvia officinalis and Thymus vulgaris on oxidant-induced DNA damage and antioxidant status in HepG2 cells.Food Chem.201314132198220610.1016/j.foodchem.2013.04.089 23870948
    [Google Scholar]
  230. WalchS. TinzohL.N. ZimmermannB.F. StühlingerW. LachenmeierD.W. Antioxidant capacity and polyphenolic composition as quality indicators for aqueous infusions of Salvia officinalis L. (sage tea).Front. Pharmacol.201127910.3389/fphar.2011.00079 22194722
    [Google Scholar]
  231. MartinsN. BarrosL. Santos-BuelgaC. HenriquesM. SilvaS. FerreiraI.C.F.R. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L.Food Chem.201517037838510.1016/j.foodchem.2014.08.096 25306360
    [Google Scholar]
  232. VieiraS.F. FerreiraH. NevesN.M. Antioxidant and anti-inflammatory activities of cytocompatible Salvia officinalis Extracts: A comparison between traditional and soxhlet extraction.Antioxidants2020911115710.3390/antiox9111157 33233648
    [Google Scholar]
  233. KamatouG.P.P. ViljoenA.M. SteenkampP. Antioxidant, antiinflammatory activities and HPLC analysis of South African Salvia species.Food Chem.2010119268468810.1016/j.foodchem.2009.07.010
    [Google Scholar]
  234. AlimpićA. KneževićA. MilutinovićM. StevićT. ŠavikinK. StajićM. MarkovićS. MarinP.D. MatevskiV. Duletić-LauševićS. Biological activities and chemical composition of Salvia amplexicaulis Lam. extracts.Ind. Crops Prod.20171051910.1016/j.indcrop.2017.04.051
    [Google Scholar]
  235. AlimpićA. PljevljakušićD. ŠavikinK. KneževićA. ĆurčićM. VeličkovićD. StevićT. PetrovićG. MatevskiV. VukojevićJ. MarkovićS. MarinP.D. Duletić-LauševićS. Composition and biological effects of Salvia ringens (Lamiaceae) essential oil and extracts.Ind. Crops Prod.20157670270910.1016/j.indcrop.2015.07.053
    [Google Scholar]
  236. BahadoriM.B. DinparastL. ZenginG. SarikurkcuC. BahadoriS. AsghariB. MovahhedinN. Functional components, antidiabetic, anti-Alzheimer’s disease, and antioxidant activities of Salvia syriaca L.Int. J. Food Prop.20172081761177210.1080/10942912.2016.1218893
    [Google Scholar]
  237. SarrouE. MartensS. ChatzopoulouP. Metabolite profiling and antioxidative activity of Sage (Salvia fruticosa Mill.) under the influence of genotype and harvesting period.Ind. Crops Prod.20169424025010.1016/j.indcrop.2016.08.022
    [Google Scholar]
  238. KocakM.S. SarikurkcuC. CengizM. KocakS. UrenM.C. TepeB. Salvia cadmica: Phenolic composition and biological activity.Ind. Crops Prod.20168520421210.1016/j.indcrop.2016.03.015
    [Google Scholar]
  239. KoşarM. GögerF. Hüsnü Can BaşerK. In vitro antioxidant properties and phenolic composition of Salvia halophila Hedge from Turkey.Food Chem.2011129237437910.1016/j.foodchem.2011.04.086 30634240
    [Google Scholar]
  240. Almada-TaylorG. Díaz-RubioL. Salazar-ArandaR. Waksman de TorresN. Uranga-SolisC. Delgadillo-RodríguezJ. RamosM. PadrónJ. Hernández-MartínezR. Córdova-GuerreroI. Biological activities of extracts from aerial parts of Salvia pachyphylla epling ex munz.Plants20187410510.3390/plants7040105 30477162
    [Google Scholar]
  241. AsadiS. AhmadianiA. EsmaeiliM.A. SonboliA. AnsariN. KhodagholiF. In vitro antioxidant activities and an investigation of neuroprotection by six Salvia species from Iran: A comparative study.Food Chem. Toxicol.20104851341134910.1016/j.fct.2010.02.035 20197079
    [Google Scholar]
  242. KostićM. KitićD. PetrovićM.B. Jevtović-StoimenovT. JovićM. PetrovićA. ŽivanovićS. Anti-inflammatory effect of the Salvia sclarea L. ethanolic extract on lipopolysaccharide-induced periodontitis in rats.J. Ethnopharmacol.2017199525910.1016/j.jep.2017.01.020 28093319
    [Google Scholar]
  243. BahadoriM.B. AsghariB. DinparastL. ZenginG. SarikurkcuC. Abbas-MohammadiM. BahadoriS. Salvia nemorosa L.: A novel source of bioactive agents with functional connections.Lebensm. Wiss. Technol.201775425010.1016/j.lwt.2016.08.048
    [Google Scholar]
  244. ŠulniūtėV. RagažinskienėO. VenskutonisP.R. Comprehensive evaluation of antioxidant potential of 10 salvia species using high pressure methods for the isolation of lipophilic and hydrophilic plant fractions.Plant Foods Hum. Nutr.2016711647110.1007/s11130‑015‑0526‑1 26781308
    [Google Scholar]
  245. JedidiS. AlouiF. RtibiK. SammariH. SelmiH. RejebA. ToumiL. SebaiH. Individual and synergistic protective properties of Salvia officinalis decoction extract and sulfasalazine against ethanol-induced gastric and small bowel injuries.RSC Advances20201059359983601310.1039/D0RA03265D 35517119
    [Google Scholar]
  246. BandonieneD. MurkovicM. VenskutonisP.R. Determination of rosmarinic acid in sage and borage leaves by high-performance liquid chromatography with different detection methods.J. Chromatogr. Sci.200543737237610.1093/chromsci/43.7.372 16176651
    [Google Scholar]
  247. PavićV. JakovljevićM. MolnarM. JokićS. Extraction of carnosic acid and carnosol from sage (Salvia officinalis l.) leaves by supercritical fluid extraction and their antioxidant and antibacterial activity.Plants2019811610.3390/plants8010016 30634542
    [Google Scholar]
  248. EtsassalaN.G.E.R. BadmusJ.A. WaryoT.T. MarnewickJ.L. CupidoC.N. HusseinA.A. IwuohaE.I. Alpha-glucosidase and alpha-amylase inhibitory activities of novel abietane diterpenes from Salvia Africana -Lutea.Antioxidants201981042110.3390/antiox8100421 31547166
    [Google Scholar]
  249. EtsassalaN.G.E.R. BadmusJ.A. MarnewickJ.L. IwuohaE.I. NchuF. HusseinA.A. Alpha-glucosidase and alpha-amylase inhibitory activities, molecular docking, and antioxidant capacities of salvia aurita constituents.Antioxidants2020911114910.3390/antiox9111149 33228164
    [Google Scholar]
  250. IbrahimT.A. Chemical composition and biological activity of extracts from Salvia bicolor Desf. growing in Egypt.Molecules20121710113151133410.3390/molecules171011315 23011275
    [Google Scholar]
  251. RavipatiA.S. ZhangL. KoyyalamudiS.R. JeongS.C. ReddyN. BartlettJ. SmithP.T. ShanmugamK. MünchG. WuM.J. SatyanarayananM. VysettiB. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content.BMC Complement. Altern. Med.201212117310.1186/1472‑6882‑12‑173 23038995
    [Google Scholar]
  252. ChenC.Y. LiH. YuanY.N. DaiH.Q. YangB. Antioxidant activity and components of a traditional chinese medicine formula consisting of Crataegus pinnatifida and Salvia miltiorrhiza.BMC Complement. Altern. Med.20131319910.1186/1472‑6882‑13‑99 23663253
    [Google Scholar]
  253. Al-QudahM.A. Al-JaberH.I. Abu ZargaM.H. Abu OrabiS.T. Flavonoid and phenolic compounds from Salvia palaestina L. growing wild in Jordan and their antioxidant activities.Phytochemistry20149911512010.1016/j.phytochem.2014.01.001 24472393
    [Google Scholar]
  254. RamosA.A. AzquetaA. Pereira-WilsonC. CollinsA.R. Polyphenolic compounds from Salvia species protect cellular DNA from oxidation and stimulate DNA repair in cultured human cells.J. Agric. Food Chem.201058127465747110.1021/jf100082p 20486687
    [Google Scholar]
  255. TavakkoliM. MiriR. JassbiA.R. ErfaniN. AsadollahiM. GhasemiM. SasoL. FiruziO. Carthamus, Salvia and Stachys species protect neuronal cells against oxidative stress-induced apoptosis.Pharm. Biol.201452121550155710.3109/13880209.2014.908394 25243877
    [Google Scholar]
  256. PutievskyE. RavidU. DudaiN. The influence of season and harvest frequency on essential oil and herbal yields from a pure clone of sage (Salvia officinalis) grown under cultivated conditions.J. Nat. Prod.198649232632910.1021/np50044a023
    [Google Scholar]
  257. GüzelS. ÖzayY. KumaşM. UzunC. ÖzkorkmazE.G. YıldırımZ. ÜlgerM. GülerG. ÇelikA. ÇamlıcaY. KahramanA. Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats.Biomed. Pharmacother.20191111260127610.1016/j.biopha.2019.01.038 30841440
    [Google Scholar]
  258. AbdelkaderM. AhcenB. RachidD. HakimH. Phytochemical study and biological activity of sage (Salvia officinalis L.).Int. J. Biol. Biomol. Agricult. Food Biotechnol. Eng.2014812531257
    [Google Scholar]
  259. HorváthováE. SrančíkováA. Regendová-SedláčkováE. MelušováM. MelušV. NetriováJ. KrajčovičováZ. SlameňováD. PastorekM. KozicsK. Enriching the drinking water of rats with extracts of Salvia officinalis and Thymus vulgaris increases their resistance to oxidative stress.Mutagenesis20163115159 26297740
    [Google Scholar]
  260. LiuX. LiuY. YangY. XuJ. DaiD. YanC. LiX. TangR. YuC. RenH. Antioxidative stress effects of Salvia przewalskii extract in experimentally injured podocytes.Nephron J.2016134425327110.1159/000448223 27529846
    [Google Scholar]
  261. EsmaeiliM.A. SonbolA. KananiM.R. SadeghiH. Karimian PourN. Salvia sahendica prevents tissue damages induced by alcohol in oxidative stress conditions: Effect on liver and kidney oxidative parameters.J. Med. Plants Res.20093276283
    [Google Scholar]
  262. MahdyK. ShakerO. WafayH. NassarY. HassanH. HusseinA. Effect of some medicinal plant extracts on the oxidative stress status in Alzheimer’s disease induced in rats.Eur. Rev. Med. Pharmacol. Sci.201216Suppl. 33142 22957416
    [Google Scholar]
  263. World Health Organization Global Strategy on Diet, Physical Activity and Health.2004Available from: https://www.who.int/publications/i/item/9241592222(accessed on 7-6-2024)
    [Google Scholar]
  264. WHO Obesity and Overweight.Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 7-6-2024)
    [Google Scholar]
  265. KlopB. ElteJ. CabezasM. Dyslipidemia in obesity: mechanisms and potential targets.Nutrients2013541218124010.3390/nu5041218 23584084
    [Google Scholar]
  266. KumarS. PandeyA.K. Chemistry and biological activities of flavonoids: an overview.Sci.WorldJ.2013201311610.1155/2013/162750 24470791
    [Google Scholar]
  267. LyuH. ChenJ. LiW. Natural triterpenoids for the treatment of diabetes mellitus: A review.Nat. Prod. Commun.201611101934578X160110110.1177/1934578X160110103730549625
    [Google Scholar]
  268. EtsassalaN.G.E.R. HusseinA.A. NchuF. Potential application of some lamiaceae species in the management of diabetes.Plants202110227910.3390/plants10020279 33535455
    [Google Scholar]
  269. AlamM.A. SubhanN. HossainH. HossainM. RezaH.M. RahmanM.M. UllahM.O. Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity.Nutr. Metab. (Lond.)20161312710.1186/s12986‑016‑0080‑3 27069498
    [Google Scholar]
  270. CamM.E. Hazar-YavuzA.N. YildizS. ErtasB. Ayaz AdakulB. TaskinT. AlanS. KabasakalL. The methanolic extract of Thymus praecox subsp. skorpilii var. skorpilii restores glucose homeostasis, ameliorates insulin resistance and improves pancreatic β-cell function on streptozotocin/nicotinamide-induced type 2 diabetic rats.J. Ethnopharmacol.2019231293810.1016/j.jep.2018.10.028 30399410
    [Google Scholar]
  271. LunagariyaN.A. PatelN.K. JagtapS.C. BhutaniK.K. Inhibitors of pancreatic lipase: state of the art and clinical perspectives.EXCLI J.201413897921 26417311
    [Google Scholar]
  272. ZenginG. Llorent-MartínezE.J. CórdovaM.L.F. BahadoriM.B. MocanA. LocatelliM. AktumsekA. AktumsekA. Chemical composition and biological activities of extracts from three Salvia species: S. blepharochlaena, S. euphratica var. leiocalycina and S. verticillata subsp. amasiaca.Ind. Crops Prod.2018111112110.1016/j.indcrop.2017.09.065
    [Google Scholar]
  273. LoizzoM.R. SaabA.M. TundisR. MenichiniF. BonesiM. PiccoloV. StattiG.A. de CindioB. HoughtonP.J. MenichiniF. In vitro inhibitory activities of plants used in Lebanon traditional medicine against angiotensin converting enzyme (ACE) and digestive enzymes related to diabetes.J. Ethnopharmacol.2008119110911610.1016/j.jep.2008.06.003 18601990
    [Google Scholar]
  274. AsghariB. SalehiP. SonboliA. Nejad EbrahimiS. Flavonoids from Salvia chloroleuca with α-Amylsae and α-Glucosidase Inhibitory Effect.Iran. J. Pharm. Res.2015142609615 25901170
    [Google Scholar]
  275. MaH.Y. GaoH.Y. SunL. HuangJ. XuX.M. WuL.J. Constituents with α-glucosidase and advanced glycation end-product formation inhibitory activities from Salvia miltiorrhiza Bge.J. Nat. Med.2011651374210.1007/s11418‑010‑0453‑2 20835851
    [Google Scholar]
  276. NinomiyaK. MatsudaH. ShimodaH. NishidaN. KasajimaN. YoshinoT. MorikawaT. YoshikawaM. Carnosic acid, a new class of lipid absorption inhibitor from sage.Bioorg. Med. Chem. Lett.20041481943194610.1016/j.bmcl.2004.01.091 15050633
    [Google Scholar]
  277. ArabiyatS. Al-Rabi’eeA. ZalloumH. HudaibM. MohammadM. BustanjiY. Antilipolytic and hypotriglyceridemic effects of dietary Salvia triloba Lf (Lamiaceae) in experimental rats.Trop. J. Pharm. Res.201615472372810.4314/tjpr.v15i4.8
    [Google Scholar]
  278. BassilM. DaherC.F. MrouehM. ZeeniN. Salvia libanotica improves glycemia and serum lipid profile in rats fed a high fat diet.BMC Complement. Altern. Med.201515138410.1186/s12906‑015‑0917‑8 26497894
    [Google Scholar]
  279. MoradabadiL. Montasser KouhsariS. Fehresti SaniM. Hypoglycemic effects of three medicinal plants in experimental diabetes: Inhibition of rat intestinal α-glucosidase and enhanced pancreatic Insulin and cardiac Glut-4 mRNAs expression.Iran. J. Pharm. Res.2013123387397 24250646
    [Google Scholar]
  280. BehradmaneshS. DereesF. Rafieian-KopaeiM. Effect of Salvia officinalis on diabetic patients.J. Renal Inj. Prev.2013225154 25340127
    [Google Scholar]
  281. KianbakhtS. DabaghianF.H. Improved glycemic control and lipid profile in hyperlipidemic type 2 diabetic patients consuming Salvia officinalis L. leaf extract: A randomized placebo. Controlled clinical trial.Complement. Ther. Med.201321544144610.1016/j.ctim.2013.07.004 24050577
    [Google Scholar]
  282. KianbakhtS. AbasiB. PerhamM. Hashem DabaghianF. Antihyperlipidemic effects of Salvia officinalis L. leaf extract in patients with hyperlipidemia: a randomized double-blind placebo-controlled clinical trial.Phytother. Res.201125121849185310.1002/ptr.3506 21506190
    [Google Scholar]
  283. ChangC.C. ChangY.C. HuW.L. HungY.C. Oxidative Stress and Salvia miltiorrhiza in Aging-Associated Cardiovascular Diseases.Oxid. Med. Cell. Longev.2016201611110.1155/2016/4797102 27807472
    [Google Scholar]
  284. QianS. WangS. FanP. HuoD. DaiL. QianQ. Effect of Salvia miltiorrhiza hydrophilic extract on the endothelial biomarkers in diabetic patients with chronic artery disease.Phytother. Res.201226101575157810.1002/ptr.4611 22318996
    [Google Scholar]
  285. VuksanV. JenkinsA.L. BrissetteC. CholevaL. JovanovskiE. GibbsA.L. BazinetR.P. Au-YeungF. ZurbauA. HoH.V.T. DuvnjakL. SievenpiperJ.L. JosseR.G. HannaA. Salba-chia (Salvia hispanica L.) in the treatment of overweight and obese patients with type 2 diabetes: A double-blind randomized controlled trial.Nutr. Metab. Cardiovasc. Dis.201727213814610.1016/j.numecd.2016.11.124 28089080
    [Google Scholar]
  286. SugawaraY. HaraC. TamuraK. FujiiT. NakamuraK. MasujimaT. AokiT. Sedative effect on humans of inhalation of essential oil of linalool.Anal. Chim. Acta19983651-329329910.1016/S0003‑2670(97)00639‑9
    [Google Scholar]
  287. YalcinH. OzturkI. TulukcuE. SagdicO. Effect of γ-irradiation on bioactivity, fatty acid compositions and volatile compounds of clary sage seed (Salvia sclarea L.).J. Food Sci.2011767C1056C106110.1111/j.1750‑3841.2011.02331.x 22417543
    [Google Scholar]
  288. MaurerB. HauserA. New sesquiterpenoids from clary sage oil (Salvia sclarea L.).Helv. Chim. Acta19836672223223510.1002/hlca.19830660734
    [Google Scholar]
  289. KuźmaŁ. BruchajzeE. WysokińskaH. Diterpenoid production in hairy root culture of Salvia sclarea L.Z. Naturforsch. C J. Biosci.2008637-862162410.1515/znc‑2008‑7‑827 18811013
    [Google Scholar]
  290. LiangY. WanX. NiuF. XieS. GuoH. YangY. GuoL. ZhouC. Salvia plebeia R. Br.: An overview about its traditional uses, chemical constituents, pharmacology and modern applications.Biomed. Pharmacother.202012110958910.1016/j.biopha.2019.109589 31810130
    [Google Scholar]
  291. WangJ.F. YanW.W. XuJ.X. Research progress in chemical constituents and pharmacological effects of Salvia plebeia R.Br. J. Hunan Univ. Chi.Med.20183804482485
    [Google Scholar]
  292. RenD.B. QinY.H. YunY.H. LuH.M. ChenX.Q. LiangY.Z. Separation of nine compounds from Salvia plebeia R.Br. using two-step high-speed counter-current chromatography with different elution modes.J. Sep. Sci.201437162118212510.1002/jssc.201400293 24854200
    [Google Scholar]
  293. PajeL.A. ChoiJ. LeeH.D. KimJ. YuA.R. BaeM.J. GeraldinoP.J.L. LeeS. Phenolic acids and flavonoids from Salvia plebeia and HPLC-UV profiling of four Salvia species.Heliyon202283e0904610.1016/j.heliyon.2022.e09046 35287319
    [Google Scholar]
  294. GuL. WengX. Antioxidant activity and components of Salvia plebeia R.Br. — a Chinese herb.Food Chem.200173329930510.1016/S0308‑8146(00)00300‑9
    [Google Scholar]
  295. JinM.R. XuH. DuanC.H. ChouG.X. Two new flavones from Salvia plebeia.Nat. Prod. Res.201529141315132210.1080/14786419.2014.999241 25675267
    [Google Scholar]
  296. ZouY.H. ZhaoL. XuY.K. BaoJ.M. LiuX. ZhangJ.S. LiW. AhmedA. YinS. TangG.H. Anti-inflammatory sesquiterpenoids from the Traditional Chinese Medicine Salvia plebeia: Regulates pro-inflammatory mediators through inhibition of NF-κB and Erk1/2 signaling pathways in LPS-induced Raw264.7 cells.J. Ethnopharmacol.20182109510610.1016/j.jep.2017.08.034 28847754
    [Google Scholar]
  297. JiangX. QuZ.Y. LiX. Research progress of traditional Chinese medicine Salvia plebeia R.Br. Asian J. Tradit. Med.201814039496
    [Google Scholar]
  298. XiangL. ChenH.N. XuC.M. Study on flavanoids from Salvia plebeian.Chung Kuo Yao Hsueh Tsa Chih200811813815
    [Google Scholar]
  299. ChenT. XuJ.B. Simultaneous determination of rosmarinic acid, homoplantaginin, hispidulin and apigenin in extract of Salvia Plebeia by HPLC.China pharm.201827162325
    [Google Scholar]
  300. GuoQ.Y. XuY. LeiZ.J. Research progress in pharmacological effects and clinical study of Salvia Plebeia.Zhong Yi Xue20182503136140
    [Google Scholar]
  301. PeiY.P. FangY. WuZ.H. HPLC determination of aucubin in compound Salvia plebeia granules.Chin. J. Integr. Med.200209709710
    [Google Scholar]
  302. BangS. Quy HaT.K. LeeC. LiW. OhW.K. ShimS.H. WangS. YangB. WangQ. KuangH. Antiviral activities of compounds from aerial parts of Salvia plebeia R.Br. J. Ethnopharmacol.201619239840510.1016/j.jep.2016.09.030 27647011
    [Google Scholar]
  303. GongX. YangS.S. Isolation, identification and antioxidant properties of flavonoids from Salvia plebeia.Zhongguo Yesheng Zhiwu Ziyuan2013322427
    [Google Scholar]
  304. StavropoulouL.S. EfthimiouI. GiovaL. ManoliC. SinouP.S. ZografidisA. LamariF.N. VlastosD. DailianisS. AntonopoulouM. Phytochemical profile and evaluation of the antioxidant, cyto-genotoxic, and antigenotoxic potential of Salvia verticillata hydromethanolic extract.Plants202413573110.3390/plants13050731 38475577
    [Google Scholar]
  305. JangH.J. OhH.M. HwangJ.T. KimM.H. LeeS. JungK. KimY.H. LeeS.W. RhoM.C. Eudesmane-type sesquiterpenoids from Salvia plebeia inhibit IL-6-induced STAT3 activation.Phytochemistry201613033534210.1016/j.phytochem.2016.08.001 27506573
    [Google Scholar]
  306. MaL.F. WangP.F. WangJ.D. TongX.M. ShanW.G. ZhangH. ZhanZ.J. New eudesmane sesquiterpenoids from Salvia plebeia R. BR.Chem. Biodivers.2017148e170012710.1002/cbdv.201700127 28452167
    [Google Scholar]
  307. JangH.J. LeeS. LeeS.J. LimH.J. JungK. KimY.H. LeeS.W. RhoM.C. Anti-inflammatory activity of eudesmane-type sesquiterpenoids from Salvia plebeia.J. Nat. Prod.201780102666267610.1021/acs.jnatprod.7b00326 28960981
    [Google Scholar]
  308. ZhangB.B. HeB.Q. SunJ.B. ZengB. ShiX.J. ZhouY. NiuY. NieS.Q. FengF. LiangY. WuF.H. Diterpenoids from Saliva plebeia R Br. and their antioxidant and anti-inflammatory activities.Molecules2015208148791488810.3390/molecules200814879 26287144
    [Google Scholar]
  309. ChoiM. YoonJ. YangS.H. KimJ.K. ParkS.U. Production of phenolic compounds and antioxidant activity in hairy root cultures of Salvia plebeia.Plants20231222384010.3390/plants12223840 38005737
    [Google Scholar]
  310. DaiY. YeZ. LiuH. ZhuR. SunL. LiS. XieG. ZhuY. ZhaoY. QinM. The chemical profiling of Salvia plebeia during different growth periods and the biosynthesis of its main flavonoids ingredients.Front. Plant Sci.202314122835610.3389/fpls.2023.1228356 37645462
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073315816240627050225
Loading
/content/journals/cchts/10.2174/0113862073315816240627050225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test