Skip to content
2000
Volume 28, Issue 12
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

Shen Qi Gui oral liquid (SQG) may be beneficial for chemotherapy-induced myelosuppression (CIM). However, the underlying mechanism of CIM treated with SQG is still lacking.

Methods

A total of 27 blood samples from cancer patients were selected to perform RNA-seq to obtain the Differentially Expressed Genes (DEGs). Then, the active components and target genes of SQG were acquired. Next, the drug targets and DEGs were intersected to obtain the intersection genes, followed by functional enrichment analysis and construction of a drug-compound-gene-disease network. Subsequently, core genes were selected. Then, immune cell infiltration, molecular docking, pharmacokinetic and toxicity prediction, and RT-qPCR were performed.

Results

A total of 1,341 DEGs, 51 active compounds, and 264 target genes were identified. Then, 30 intersection genes were acquired. Next, a drug-compound-gene-disease network was constructed, and 7 core genes were acquired. Immune infiltration analysis exhibited that only T follicular helper cells were significantly increased in the CIM group, which was significantly negatively correlated with MAPK1, MAPK14, MCL1, PTEN, and PTGS2. The luteolin, quercetin, and beta-sitosterol showed better affinity with core genes. Luteolin and quercetin, which satisfied Lipinski's rule of five, were likely absorbed by the gastrointestinal system. Toxicity predictions showed that neither luteolin nor quercetin exhibited carcinogenicity or hepatotoxicity.

Conclusion

PTEN, PTGS2, CCL2, FOS, MCL1, MAPK1, and MAPK14 were identified as the core genes in CIM patients, which were involved in the MAPK and PI3K-Akt signaling pathways. Luteolin and quercetin may be the promising drugs against CIM.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073316774240708110250
2024-07-09
2025-10-10
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  2. BarretoJ.N. McCulloughK.B. IceL.L. SmithJ.A. Antineoplastic agents and the associated myelosuppressive effects: A review.J. Pharm. Pract.201427544044610.1177/0897190014546108 25147158
    [Google Scholar]
  3. EpsteinR.S. AaproM.S. Basu RoyU.K. SalimiT. KrenitskyJ. Leone-PerkinsM.L. GirmanC. SchlusserC. CrawfordJ. Patient burden and real-world management of chemotherapy-induced myelosuppression: Results from an online survey of patients with solid tumors.Adv. Ther.20203783606361810.1007/s12325‑020‑01419‑6 32642965
    [Google Scholar]
  4. HouB. LiuR. QinZ. LuoD. WangQ. HuangS. Oral chinese herbal medicine as an adjuvant treatment for chemotherapy, or radiotherapy, induced myelosuppression: A systematic review and meta-analysis of randomized controlled trials.Evid. Based Complement. Alternat. Med.2017201711310.1155/2017/3432750 28855947
    [Google Scholar]
  5. JiaY. DuH. YaoM. CuiX. ShiQ. WangY. YangY. Chinese herbal medicine for myelosuppression induced by chemotherapy or radiotherapy: A systematic review of randomized controlled trials.Evid. Based Complement. Alternat. Med.2015201511210.1155/2015/690976 25802542
    [Google Scholar]
  6. GuH. ZhangX. Clinical observation of sanqi decoction in preventing and treating bone Marrow suppression of Qi and Yin deficiency type non-small cell lung Cancer after chemotherapy.Shanghai J. Traditi. Chin. Med.201753941
    [Google Scholar]
  7. LiP. Study on the quality standard of Shen Qi Gui oral liquid.Xiandai Yiyao Weisheng20092504508510
    [Google Scholar]
  8. ZhangY. LiuJ. WangY. SunC. LiW. QiuJ. QiaoY. WuF. HuoX. AnY. ZhangB. MaS. ZhengJ. MaX. Nucleosides and amino acids, isolated from Cordyceps sinensis, protected against cyclophosphamide-induced myelosuppression in mice.Nat. Prod. Res.202236236056605910.1080/14786419.2022.2043307 35188001
    [Google Scholar]
  9. YangX. LangS. LiS. JiangC. HanJ. Preparation of icariside I and icariside II, an exploration of their protective mechanism against cyclophosphamide-induced bone marrow suppression in mice, and their regulatory effects on immune function.Pharmazie2022771323710.1691/ph.2022.177135045923
    [Google Scholar]
  10. LeeY.Y. IrfanM. QuahY. SabaE. KimS.D. ParkS.C. JeongM.G. KwakY.S. RheeM.H. The increasing hematopoietic effect of the combined treatment of Korean Red Ginseng and Colla corii asini on cyclophosphamide-induced immunosuppression in mice.J. Ginseng Res.202145559159810.1016/j.jgr.2021.02.004 34803429
    [Google Scholar]
  11. BaoW. ZhangQ. ZhengH. LiL. LiuM. ChengH. WongT. ZhangG. LuA. BianZ. MaD. LeungC. HanQ. Radix Astragali polysaccharide RAP directly protects hematopoietic stem cells from chemotherapy-induced myelosuppression by increasing FOS expression.Int. J. Biol. Macromol.20211831715172210.1016/j.ijbiomac.2021.05.120 34044030
    [Google Scholar]
  12. KangM. ParkS. ChungY. LimJ.O. KangJ.S. ParkJ.H. Hematopoietic Effects of Angelica gigas Nakai Extract on Cyclophosphamide-Induced Myelosuppression.Plants20221124347610.3390/plants11243476 36559587
    [Google Scholar]
  13. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  14. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: Methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd1549 15520816
    [Google Scholar]
  15. DuZ. WangH. GaoY. ZhengS. KouX. SunG. SongJ. DongJ. WangG. Exploring the potential molecular mechanism of sijunzi decoction in the treatment of non-segmental vitiligo based on network pharmacology and molecular docking.Clin. Cosmet. Investig. Dermatol.20231682183610.2147/CCID.S403732 37033783
    [Google Scholar]
  16. GuoM. ZengJ. LiW. HuZ. ShenY. Danggui Jixueteng decoction for the treatment of myelosuppression after chemotherapy: A combined metabolomics and network pharmacology analysis.Heliyon2024103e2469510.1016/j.heliyon.2024.e24695 38314262
    [Google Scholar]
  17. BrownJ. PirrungM. McCueL.A. FQC Dashboard: Integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool.Bioinformatics201733193137313910.1093/bioinformatics/btx373 28605449
    [Google Scholar]
  18. HoweK.L. AchuthanP. AllenJ. AllenJ. Alvarez-JarretaJ. AmodeM.R. ArmeanI.M. AzovA.G. BennettR. BhaiJ. BillisK. BodduS. CharkhchiM. CumminsC. Da Rin FiorettoL. DavidsonC. DodiyaK. El HoudaiguiB. FatimaR. GallA. Garcia GironC. GregoT. Guijarro-ClarkeC. HaggertyL. HemromA. HourlierT. IzuoguO.G. JuettemannT. KaikalaV. KayM. LavidasI. LeT. LemosD. Gonzalez MartinezJ. MarugánJ.C. MaurelT. McMahonA.C. MohananS. MooreB. MuffatoM. OhehD.N. ParaschasD. ParkerA. PartonA. ProsovetskaiaI. SakthivelM.P. SalamA.I.A. SchmittB.M. SchuilenburgH. SheppardD. SteedE. SzpakM. SzubaM. TaylorK. ThormannA. ThreadgoldG. WaltsB. WinterbottomA. ChakiachviliM. ChaubalA. De SilvaN. FlintB. FrankishA. HuntS.E. IIsley, G.R.; Langridge, N.; Loveland, J.E.; Martin, F.J.; Mudge, J.M.; Morales, J.; Perry, E.; Ruffier, M.; Tate, J.; Thybert, D.; Trevanion, S.J.; Cunningham, F.; Yates, A.D.; Zerbino, D.R.; Flicek, P. Ensembl 2021.Nucleic Acids Res.202149D1D884D89110.1093/nar/gkaa942 33137190
    [Google Scholar]
  19. KimD. PaggiJ.M. ParkC. BennettC. SalzbergS.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype.Nat. Biotechnol.201937890791510.1038/s41587‑019‑0201‑4 31375807
    [Google Scholar]
  20. RobinsonM.D. McCarthyD.J. SmythG.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics201026113914010.1093/bioinformatics/btp616 19910308
    [Google Scholar]
  21. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  22. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx1037 29126136
    [Google Scholar]
  23. UniProt: the universal protein knowledgebase.Nucleic Acids Res.201745D1D158D16910.1093/nar/gkw1099 27899622
    [Google Scholar]
  24. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac194 35325185
    [Google Scholar]
  25. HuangD.W. ShermanB.T. LempickiR.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat. Protoc.200941445710.1038/nprot.2008.211 19131956
    [Google Scholar]
  26. El-KafrawyS.A. El-DalyM.M. BajraiL.H. AlandijanyT.A. FaizoA.A. MobashirM. AhmedS.S. AhmedS. AlamS. JeetR. KamalM.A. AnwerS.T. KhanB. TashkandiM. RizviM.A. AzharE.I. Genomic profiling and network-level understanding uncover the potential genes and the pathways in hepatocellular carcinoma.Front. Genet.20221388044010.3389/fgene.2022.880440 36479247
    [Google Scholar]
  27. ChinC.H. ChenS.H. WuH.H. HoC.W. KoM.T. LinC.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20148S4Suppl. 4S1110.1186/1752‑0509‑8‑S4‑S11 25521941
    [Google Scholar]
  28. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.019 28052254
    [Google Scholar]
  29. BarbieD.A. TamayoP. BoehmJ.S. KimS.Y. MoodyS.E. DunnI.F. SchinzelA.C. SandyP. MeylanE. SchollC. FröhlingS. ChanE.M. SosM.L. MichelK. MermelC. SilverS.J. WeirB.A. ReilingJ.H. ShengQ. GuptaP.B. WadlowR.C. LeH. HoerschS. WittnerB.S. RamaswamyS. LivingstonD.M. SabatiniD.M. MeyersonM. ThomasR.K. LanderE.S. MesirovJ.P. RootD.E. GillilandD.G. JacksT. HahnW.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.Nature2009462726910811210.1038/nature08460 19847166
    [Google Scholar]
  30. AhmedS. MobashirM. Al-KeridisL.A. AlshammariN. AdnanM. AbidM. HassanM.I. A network-guided approach to discover phytochemical-based anticancer therapy: Targeting MARK4 for hepatocellular carcinoma.Front. Oncol.20221291403210.3389/fonc.2022.914032 35936719
    [Google Scholar]
  31. BurleyS.K. BermanH.M. KleywegtG.J. MarkleyJ.L. NakamuraH. VelankarS. Protein data bank (PDB): The single global macromolecular structure archive.Methods Mol. Biol.20171607627641
    [Google Scholar]
  32. WangY. YuanY. WangW. HeY. ZhongH. ZhouX. ChenY. CaiX.J. LiuL. Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking.Comput. Biol. Med.202214510545410.1016/j.compbiomed.2022.105454 35367781
    [Google Scholar]
  33. El-HachemN. Haibe-KainsB. KhalilA. KobeissyF.H. NemerG. Autodock and autodocktools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study.Methods Mol. Biol.2017159839140310.1007/978‑1‑4939‑6952‑4_20 28508374
    [Google Scholar]
  34. BaughE.H. LyskovS. WeitznerB.D. GrayJ.J. Real-time PyMOL visualization for rosetta and pyrosetta.PLoS One201168e2193110.1371/journal.pone.0021931 21857909
    [Google Scholar]
  35. DainaA. MichielinO. ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  36. DainaA. MichielinO. ZoeteV. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach.J. Chem. Inf. Model.201454123284330110.1021/ci500467k 25382374
    [Google Scholar]
  37. DainaA. ZoeteV. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules.ChemMedChem201611111117112110.1002/cmdc.201600182 27218427
    [Google Scholar]
  38. ChoudharyK. PrasadS.R. LokhandeK.B. MurtiK. SinghS. RavichandiranV. KumarN. 4-Methylesculetin ameliorates LPS-induced depression-like behavior through the inhibition of NLRP3 inflammasome.Front. Pharmacol.202314112050810.3389/fphar.2023.1120508 36909194
    [Google Scholar]
  39. MacabeoA.P.G. PilapilL.A.E. GarciaK.Y.M. QuimqueM.T.J. PhukhamsakdaC. CruzA.J.C. HydeK.D. StadlerM. Alpha-glucosidase- and lipase-inhibitory phenalenones from a new species of Pseudolophiostoma originating from Thailand.Molecules202025496510.3390/molecules25040965 32093426
    [Google Scholar]
  40. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab255 33893803
    [Google Scholar]
  41. Escobedo-GonzálezR. Vargas-RequenaC. Moyers-MontoyaE. Aceves-HernándezJ. Nicolás-VázquezM. Miranda-RuvalcabaR. In silico study of the pharmacologic properties and cytotoxicity pathways in cancer cells of various indolylquinone analogues of perezone.Molecules2017227106010.3390/molecules22071060 28672837
    [Google Scholar]
  42. FerrarottoR. AndersonI. MedgyasszayB. García-CampeloM.R. EdenfieldW. FeinsteinT.M. JohnsonJ.M. KalmadiS. LammersP.E. Sanchez-HernandezA. PritchettY. MorrisS.R. MalikR.K. CsősziT. Trilaciclib prior to chemotherapy reduces the usage of supportive care interventions for chemotherapy‐induced myelosuppression in patients with small cell lung cancer: Pooled analysis of three randomized phase 2 trials.Cancer Med.202110175748575610.1002/cam4.4089 34405547
    [Google Scholar]
  43. EpsteinR.S. WeerasingheR.K. ParrishA.S. KrenitskyJ. SanbornR.E. SalimiT. Real-world burden of chemotherapy-induced myelosuppression in patients with small cell lung cancer: a retrospective analysis of electronic medical data from community cancer care providers.J. Med. Econ.202225110811810.1080/13696998.2021.2020570 34927520
    [Google Scholar]
  44. Di CristofanoA. PandolfiP.P. The multiple roles of PTEN in tumor suppression.Cell2000100438739010.1016/S0092‑8674(00)80674‑1 10693755
    [Google Scholar]
  45. TaylorH. LaurenceA.D.J. UhligH.H. The role of pten in innate and adaptive immunity.Cold Spring Harb. Perspect. Med.2019912a03699610.1101/cshperspect.a036996 31501268
    [Google Scholar]
  46. WuY. ZhuH. WuH. PTEN in regulating hematopoiesis and leukemogenesis.Cold Spring Harb. Perspect. Med.20201010a03624410.1101/cshperspect.a036244 31712222
    [Google Scholar]
  47. YilmazÖ.H. ValdezR. TheisenB.K. GuoW. FergusonD.O. WuH. MorrisonS.J. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells.Nature2006441709247548210.1038/nature04703 16598206
    [Google Scholar]
  48. FrejborgE. SaloT. SalemA. Role of cyclooxygenase-2 in head and neck tumorigenesis.Int. J. Mol. Sci.20202123924610.3390/ijms21239246
    [Google Scholar]
  49. LauK.H.W. PopaN.L. RundleC.H. Microarray analysis of gene expression reveals that cyclo-oxygenase-2 gene therapy up-regulates hematopoiesis and down-regulates inflammation during endochondral bone fracture healing.J. Bone Metab.201421316918810.11005/jbm.2014.21.3.169 25247155
    [Google Scholar]
  50. WeiY. MaD. GaoY. ZhangC. WangL. LiuF. Ncor2 is required for hematopoietic stem cell emergence by inhibiting Fos signaling in zebrafish.Blood2014124101578158510.1182/blood‑2013‑11‑541391 25006126
    [Google Scholar]
  51. BroxmeyerH.E. PelusL.M. KimC.H. HangocG. CooperS. HromasR. Synergistic inhibition in vivo of bone marrow myeloid progenitors by myelosuppressive chemokines and chemokine-accelerated recovery of progenitors after treatment of mice with Ara-C.Exp. Hematol.20063481069107710.1016/j.exphem.2006.04.007 16863913
    [Google Scholar]
  52. ClohessyJ.G. ZhuangJ. BradyH.J.M. Characterisation of Mcl‐1 cleavage during apoptosis of haematopoietic cells.Br. J. Haematol.2004125565566510.1111/j.1365‑2141.2004.04949.x 15147382
    [Google Scholar]
  53. HuangH.M. HuangC.J. YenJ.J.Y. Mcl-1 is a common target of stem cell factor and interleukin-5 for apoptosis prevention activity via MEK/MAPK and PI-3K/Akt pathways.Blood20009651764177110.1182/blood.V96.5.1764 10961875
    [Google Scholar]
  54. LuL. WangY.Y. ZhangJ.L. LiD.G. MengA.M. p38 MAPK inhibitor insufficiently attenuates HSC senescence administered long-term after 6 Gy total body irradiation in mice.Int. J. Mol. Sci.201617690510.3390/ijms17060905 27338355
    [Google Scholar]
  55. López-LázaroM. Distribution and biological activities of the flavonoid luteolin.Mini Rev. Med. Chem.200991315910.2174/138955709787001712 19149659
    [Google Scholar]
  56. HoH.Y. ChenP.J. LoY.S. LinC.C. ChuangY.C. HsiehM.J. ChenM.K. LUTEOLIN‐7‐O ‐glucoside inhibits cell proliferation and modulates apoptosis through the AKT signaling pathway in human nasopharyngeal carcinoma.Environ. Toxicol.202136102013202410.1002/tox.23319 34165247
    [Google Scholar]
  57. LiY. YaoJ. HanC. YangJ. ChaudhryM. WangS. LiuH. YinY. Quercetin, inflammation and immunity.Nutrients20168316710.3390/nu8030167 26999194
    [Google Scholar]
  58. PapieżM.A. The effect of quercetin on oxidative DNA damage and myelosuppression induced by etoposide in bone marrow cells of rats.Acta Biochim. Pol.201461171110.18388/abp.2014_1915 24644549
    [Google Scholar]
  59. DuttaA. DahiyaA. VermaS. Quercetin-3-rutinoside protects against gamma radiation inflicted hematopoietic dysfunction by regulating oxidative, inflammatory, and apoptotic mediators in mouse spleen and bone marrow.Free Radic. Res.202155323024510.1080/10715762.2021.1914334 34044723
    [Google Scholar]
  60. Bin SayeedM.S. AmeenS.S. Beta-Sitosterol: A promising but orphan nutraceutical to fight against cancer.Nutr. Cancer20156781216122210.1080/01635581.2015.1087042 26473555
    [Google Scholar]
  61. AwadA.B. BurrA.T. FinkC.S. Effect of resveratrol and β-sitosterol in combination on reactive oxygen species and prostaglandin release by PC-3 cells.Prostaglandins Leukot. Essent. Fatty Acids200572321922610.1016/j.plefa.2004.11.005 15664307
    [Google Scholar]
  62. WangL. LiH. ShenX. ZengJ. YueL. LinJ. YangJ. ZouW. LiY. QinD. WuA. WuJ. Elucidation of the molecular mechanism of Sanguisorba Officinalis L. against leukopenia based on network pharmacology.Biomed. Pharmacother.202013211093410.1016/j.biopha.2020.110934 33254437
    [Google Scholar]
  63. GeestC.R. CofferP.J. MAPK signaling pathways in the regulation of hematopoiesis.J. Leukoc. Biol.200986223725010.1189/jlb.0209097 19498045
    [Google Scholar]
  64. RamalingamP. PoulosM.G. LazzariE. GutkinM.C. LopezD. KlossC.C. CrowleyM.J. KatsnelsonL. FreireA.G. GreenblattM.B. ParkC.Y. ButlerJ.M. Chronic activation of endothelial MAPK disrupts hematopoiesis via NFKB dependent inflammatory stress reversible by SCGF.Nat. Commun.202011166610.1038/s41467‑020‑14478‑8 32015345
    [Google Scholar]
  65. LiuQ. DongL. LiH. YuanJ. PengY. DaiS. Lentinan mitigates therarubicin-induced myelosuppression by activating bone marrow-derived macrophages in an MAPK/NF-κB-dependent manner.Oncol. Rep.201636131532310.3892/or.2016.4769 27121155
    [Google Scholar]
  66. GurskaL.M. AmesK. GritsmanK. Signaling pathways in leukemic stem cells.Adv. Exp. Med. Biol.2019114313910.1007/978‑981‑13‑7342‑8_1 31338813
    [Google Scholar]
  67. LiuC. LiJ. MengF.Y. LiangS.X. DengR. LiC.K. PongN.H. LauC.P. ChengS.W. YeJ.Y. ChenJ.L. YangS.T. YanH. ChenS. ChongB.H. YangM. Polysaccharides from the root of Angelica sinensis promotes hematopoiesis and thrombopoiesis through the PI3K/AKT pathway.BMC Complement. Altern. Med.20101017910.1186/1472‑6882‑10‑79 21176128
    [Google Scholar]
  68. ChenM. LinX. Cheukfai Li; Olsen, N.; He, X.; Zheng, S.G. Advances in T follicular helper and T follicular regulatory cells in transplantation immunity.Transplant. Rev. (Orlando)201832418719310.1016/j.trre.2018.07.002 30139705
    [Google Scholar]
  69. HouY. CaoY. DongL. HuangY. ZhangZ. BiY. LiuG. Regulation of follicular T helper cell differentiation in antitumor immunity.Int. J. Cancer2023153226527710.1002/ijc.34368 36408905
    [Google Scholar]
  70. JacqueminC. SchmittN. Contin-BordesC. LiuY. NarayananP. SeneschalJ. MaurouardT. DougallD. DavizonE.S. DumortierH. DouchetI. RaffrayL. RichezC. LazaroE. DuffauP. TruchetetM.E. KhoryatiL. MerciéP. CouziL. MervilleP. SchaeverbekeT. ViallardJ.F. PellegrinJ.L. MoreauJ.F. MullerS. ZurawskiS. CoffmanR.L. PascualV. UenoH. BlancoP. OX40 ligand contributes to human lupus pathogenesis by promoting t follicular helper response.Immunity20154261159117010.1016/j.immuni.2015.05.012 26070486
    [Google Scholar]
  71. KimC.J. LeeC.G. JungJ.Y. GhoshA. HasanS.N. HwangS.M. KangH. LeeC. KimG.C. RudraD. SuhC.H. Im, S.H. The transcription factor Ets1 suppresses t follicular helper type 2 cell differentiation to halt the onset of systemic lupus erythematosus.Immunity201849610341048.e810.1016/j.immuni.2018.10.012 30566881
    [Google Scholar]
  72. ArkatkarT. DuS.W. JacobsH.M. DamE.M. HouB. BucknerJ.H. RawlingsD.J. JacksonS.W. B cell–derived IL-6 initiates spontaneous germinal center formation during systemic autoimmunity.J. Exp. Med.2017214113207321710.1084/jem.20170580 28899868
    [Google Scholar]
  73. ShirotaH. KlinmanD.M. ItoS. ItoH. KuboM. IshiokaC. IL4 from t follicular helper cells downregulates antitumor immunity.Cancer Immunol. Res.201751617110.1158/2326‑6066.CIR‑16‑0113 27920023
    [Google Scholar]
  74. YangZ.Z. KimH.J. WuH. TangX. YuY. KrullJ. LarsonD.P. MooreR.M. MaurerM.J. PavelkoK.D. JalaliS. PritchettJ.C. MudappathiR. WangJ. VillasboasJ.C. MondelloP. NovakA.J. AnsellS.M. T-cell phenotype including CD57+ T follicular helper cells in the tumor microenvironment correlate with a poor outcome in follicular lymphoma.Blood Cancer J.202313112410.1038/s41408‑023‑00899‑3 37591873
    [Google Scholar]
  75. YuH. ZhangJ. FuR. LiuH. WangH. DingK. WangY. LiL. WangH. ShaoZ. Increased frequency of bone marrow T follicular helper cells in patients with immune-related pancytopenia.Clin. Dev. Immunol.2013201311010.1155/2013/730450 24069044
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073316774240708110250
Loading
/content/journals/cchts/10.2174/0113862073316774240708110250
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test