Skip to content
2000
Volume 28, Issue 13
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Zinc finger C3H1-type containing (ZFC3H1) might regulate RNA processes. However, research lacks the prognostic value of ZFC3H1 in hepatocellular carcinoma (HCC).

Methods

The study analyzed ZFC3H1 expression in HCC cells and its correlation with patient prognosis using transcriptomics, immunohistochemistry, and quantitative real-time reverse transcription PCR, as well as single-cell RNA expression data. Additionally, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were used to investigate the potential ZFC3H1-related cellular functions and signaling pathways. The impact of ZFC3H1 expression on the tumor microenvironment and tumor mutational burden (TMB) was assessed using the ESTIMATE algorithm. Cell-based assays, including cell counting kit 8, proliferation, colony formation, cell cycle, wound healing, and Transwell assays, were conducted to evaluate the influence of ZFC3H1 on hepatocellular carcinoma proliferation and migration.

Results

ZFC3H1 is upregulated in HCC and linked to tumor progression. High ZFC3H1 expression is a prognostic risk factor for HCC, according to Kaplan-Meier and Cox regression analyses. ESTIMATE analysis suggested that ZFC3H1 reduces immune cell infiltration and increases the TMB. Patients with low ZFC3H1 expression might respond better to immunotherapy. High ZFC3H1 expression is associated with increased half-maximal inhibitory concentration (IC50) of sorafenib. Functional experiments demonstrated that reducing ZFC3H1 expression inhibited HCC cell proliferation and migration.

Conclusion

ZFC3H1 is upregulated in HCC, promoting the proliferation and migration of liver cancer cells, impacting the prognosis of HCC patients and the effectiveness of immunotherapy. ZFC3H1 might serve as a therapeutic target and biomarker for HCC.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073317938240729055626
2025-08-02
2025-10-28
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. JindalA. ThadiA. ShailubhaiK. Hepatocellular Carcinoma: Etiology and Current and Future Drugs.J. Clin. Exp. Hepatol.20199222123210.1016/j.jceh.2019.01.004 31024205
    [Google Scholar]
  3. HeimbachJ.K. KulikL.M. FinnR.S. SirlinC.B. AbecassisM.M. RobertsL.R. ZhuA.X. MuradM.H. MarreroJ.A. AASLD guidelines for the treatment of hepatocellular carcinoma.Hepatology201867135838010.1002/hep.29086 28130846
    [Google Scholar]
  4. HasanS. AbelS. UemuraT. VermaV. KoayE.J. HermanJ. ThaiN. KirichenkoA. Liver transplant mortality and morbidity following preoperative radiotherapy for hepatocellular carcinoma.HPB (Oxford)202022577077810.1016/j.hpb.2019.10.006 31685379
    [Google Scholar]
  5. ChenZ. XieH. HuM. HuangT. HuY. SangN. ZhaoY. Recent progress in treatment of hepatocellular carcinoma.Am. J. Cancer Res.202010929933036 33042631
    [Google Scholar]
  6. FornerA. ReigM. BruixJ. Hepatocellular carcinoma.Lancet2018391101271301131410.1016/S0140‑6736(18)30010‑2 29307467
    [Google Scholar]
  7. JindalA. ThadiA. ShailubhaiK. Hepatocellular Carcinoma: Etiology and Current and Future Drugs.J. Clin. Exp. Hepatol.20199222123210.1016/j.jceh.2019.01.004 31024205
    [Google Scholar]
  8. CraigA.J. von FeldenJ. Garcia-LezanaT. SarcognatoS. VillanuevaA. Tumour evolution in hepatocellular carcinoma.Nat. Rev. Gastroenterol. Hepatol.202017313915210.1038/s41575‑019‑0229‑4 31792430
    [Google Scholar]
  9. TomitaT. IeguchiK. CoinF. KatoY. KikuchiH. OshimaY. KurataS. MaruY. ZFC3H1, a zinc finger protein, modulates IL-8 transcription by binding with celastramycin A, a potential immune suppressor.PLoS One201499e10895710.1371/journal.pone.0108957 25268596
    [Google Scholar]
  10. OgamiK. RichardP. ChenY. HoqueM. LiW. MorescoJ.J. YatesJ.R.III TianB. ManleyJ.L. An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression.Genes Dev.201731121257127110.1101/gad.302604.117 28733371
    [Google Scholar]
  11. SillaT. KaradoulamaE. MąkosaD. LubasM. JensenT.H. The RNA exosome adaptor zfc3h1 functionally competes with nuclear export activity to retain target transcripts.Cell Rep.20182372199221010.1016/j.celrep.2018.04.061 29768216
    [Google Scholar]
  12. SillaT. SchmidM. DouY. GarlandW. MilekM. ImamiK. JohnsenD. PolakP. AndersenJ.S. SelbachM. LandthalerM. JensenT.H. The human ZC3H3 and RBM26/27 proteins are critical for PAXT-mediated nuclear RNA decay.Nucleic Acids Res.20204852518253010.1093/nar/gkz1238 31950173
    [Google Scholar]
  13. HuangH. XuH. LiP. YeX. ChenW. ChenW. HuangX. Zinc finger C3H1 domain-containing protein (ZFC3H1) evaluates the prognosis and treatment of prostate adenocarcinoma (PRAD): A study based on TCGA data.Bioengineered20211215504551510.1080/21655979.2021.1965442 34514952
    [Google Scholar]
  14. LiangW. ChenW. WeiJ. YaoH. ShiJ. HouX. DengY. OuM. Zinc finger C3H1-type containing serves as a novel prognostic biomarker in human pan-cancer.Gene202282014625110.1016/j.gene.2022.146251 35131366
    [Google Scholar]
  15. JardimD.L. GoodmanA. de Melo GagliatoD. KurzrockR. The challenges of tumor mutational burden as an immunotherapy biomarker.Cancer Cell202139215417310.1016/j.ccell.2020.10.001 33125859
    [Google Scholar]
  16. LiX. RamadoriP. PfisterD. SeehawerM. ZenderL. HeikenwalderM. The immunological and metabolic landscape in primary and metastatic liver cancer.Nat. Rev. Cancer202121954155710.1038/s41568‑021‑00383‑9 34326518
    [Google Scholar]
  17. SunH.C. ZhuX.D. Downstaging conversion therapy in patients with initially unresectable advanced hepatocellular carcinoma: An overview.Front. Oncol.20211177219510.3389/fonc.2021.772195 34869008
    [Google Scholar]
  18. NaingC. NiH. AungH.H. HtetN.H. NikolovaD. Gene therapy for people with hepatocellular carcinoma.Cochrane Database Syst. Rev.202466CD013731 38837373
    [Google Scholar]
  19. ZhouF. ShangW. YuX. TianJ. Glypican‐3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment.Med. Res. Rev.201838274176710.1002/med.21455 28621802
    [Google Scholar]
  20. NaultJ.C. VillanuevaA. Biomarkers for hepatobiliary cancers.Hepatology202173S1Suppl. 111512710.1002/hep.31175 32045030
    [Google Scholar]
  21. GengD.Y. ChenQ.S. ChenW.X. ZhouL.S. HanX.S. XieQ.H. GuoG.H. ChenX.F. ChenJ.S. ZhongX.P. Molecular targets and mechanisms of different aberrant alternative splicing in metastatic liver cancer.World J. Clin. Oncol.202415453153910.5306/wjco.v15.i4.531 38689626
    [Google Scholar]
  22. PrasadA.S. Discovery of human zinc deficiency: Its impact on human health and disease.Adv. Nutr.20134217619010.3945/an.112.003210 23493534
    [Google Scholar]
  23. ZhangQ.J. LiD.Z. LinB.Y. GengL. YangZ. ZhengS.S. SNHG16 promotes hepatocellular carcinoma development via activating ECM receptor interaction pathway.Hepatobiliary Pancreat. Dis. Int.2022211414910.1016/j.hbpd.2021.09.006 34600815
    [Google Scholar]
  24. CrottiS. PiccoliM. RizzolioF. GiordanoA. NittiD. AgostiniM. Extracellular matrix and colorectal cancer: How surrounding microenvironment affects cancer cell behavior?J. Cell. Physiol.2017232596797510.1002/jcp.25658 27775168
    [Google Scholar]
  25. MaiZ. LinY. LinP. ZhaoX. CuiL. Modulating extracellular matrix stiffness: A strategic approach to boost cancer immunotherapy.Cell Death Dis.202415530710.1038/s41419‑024‑06697‑4 38693104
    [Google Scholar]
  26. GoodallG.J. WickramasingheV.O. RNA in cancer.Nat. Rev. Cancer2021211223610.1038/s41568‑020‑00306‑0 33082563
    [Google Scholar]
  27. MelndezB. Van CampenhoutC. RoriveS. RemmelinkM. SalmonI. DHaene, N. Methods of measurement for tumor mutational burden in tumor tissue.Transl. Lung Cancer Res.20187566166710.21037/tlcr.2018.08.02 30505710
    [Google Scholar]
  28. ChalmersZ.R. ConnellyC.F. FabrizioD. GayL. AliS.M. EnnisR. SchrockA. CampbellB. ShlienA. ChmieleckiJ. HuangF. HeY. SunJ. TaboriU. KennedyM. LieberD.S. RoelsS. WhiteJ. OttoG.A. RossJ.S. GarrawayL. MillerV.A. StephensP.J. FramptonG.M. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden.Genome Med.2017913410.1186/s13073‑017‑0424‑2 28420421
    [Google Scholar]
  29. InnocentiF. OuF.S. QuX. ZemlaT.J. NiedzwieckiD. TamR. MahajanS. GoldbergR.M. BertagnolliM.M. BlankeC.D. SanoffH. AtkinsJ. PoliteB. VenookA.P. LenzH.J. KabbarahO. Mutational analysis of patients with colorectal cancer in calgb/swog 80405 identifies new roles of microsatellite instability and tumor mutational burden for patient outcome.J. Clin. Oncol.201937141217122710.1200/JCO.18.01798 30865548
    [Google Scholar]
  30. TangB. ZhuJ. ZhaoZ. LuC. LiuS. FangS. ZhengL. ZhangN. ChenM. XuM. YuR. JiJ. Diagnosis and prognosis models for hepatocellular carcinoma patients management based on tumor mutation burden.J. Adv. Res.20213315316510.1016/j.jare.2021.01.018 34603786
    [Google Scholar]
  31. DonehowerL.A. SoussiT. KorkutA. LiuY. SchultzA. CardenasM. LiX. BaburO. HsuT.K. LichtargeO. WeinsteinJ.N. AkbaniR. WheelerD.A. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas.Cell Rep.201928513701384.e510.1016/j.celrep.2019.07.001 31365877
    [Google Scholar]
  32. RingelhanM. PfisterD. OConnor, T.; Pikarsky, E.; Heikenwalder, M. The immunology of hepatocellular carcinoma.Nat. Immunol.201819322223210.1038/s41590‑018‑0044‑z 29379119
    [Google Scholar]
  33. LazearH.M. SchogginsJ.W. DiamondM.S. Shared and distinct functions of type I and Type III interferons.Immunity201950490792310.1016/j.immuni.2019.03.025 30995506
    [Google Scholar]
  34. LiaoJ. ZengD.N. LiJ.Z. HuaQ.M. HuangC.X. XuJ. WuC. ZhengL. WenW.P. WuY. TypeI. IFNs repolarized a CD169+ macrophage population with anti-tumor potentials in hepatocellular carcinoma.Mol. Ther.202230263264310.1016/j.ymthe.2021.09.021 34563673
    [Google Scholar]
  35. WakiyamaH. MasudaT. MotomuraY. HuQ. ToboT. EguchiH. SakamotoK. HirakawaM. HondaH. MimoriK. Cytolytic Activity (CYT) score is a prognostic biomarker reflecting host immune status in Hepatocellular Carcinoma (HCC).Anticancer Res.201838126631663810.21873/anticanres.13030 30504371
    [Google Scholar]
  36. HoosA. Development of immuno-oncology drugs from CTLA4 to PD1 to the next generations.Nat. Rev. Drug Discov.201615423524710.1038/nrd.2015.35 26965203
    [Google Scholar]
  37. WooH.Y. HeoJ. Sorafenib in liver cancer.Expert Opin. Pharmacother.20121371059106710.1517/14656566.2012.679930 22519770
    [Google Scholar]
  38. ChenS. DuY. GuanX.Y. YanQ. The current status of tumor microenvironment and cancer stem cells in sorafenib resistance of hepatocellular carcinoma.Front. Oncol.202313120451310.3389/fonc.2023.1204513 37576900
    [Google Scholar]
  39. PengD. CaiY. ChenG. HouM. LuoX. DongzhiZ. XieH. LiuY. Efficacy and safety of apatinib versus sorafenib/placebo in first-line treatment for intermediate and advanced primary liver cancer: A systematic review and meta-analysis.Front. Pharmacol.202314110106310.3389/fphar.2023.1101063 37153777
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073317938240729055626
Loading
/content/journals/cchts/10.2174/0113862073317938240729055626
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): biomarker; hepatocellular carcinoma; prognosis; tumor immunity; ZFC3H1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test