Skip to content
2000
Volume 28, Issue 13
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Objective

Bushen Zhuyun Decoction (BSZY), a traditional Chinese herbal prescription has shown promising effects on gynecological infertility, but the mechanism for endometrial receptivity is still unclear. This study aimed to investigate the regulatory effects of BSZY on endometrial receptivity, which plays a key role in colonization of embryo, and its regulatory mechanisms associated with NF- κB/NLRP3 pathway.

Methods

SD rats at reproductive age with affected endometrial receptivity was established using mifepristone (RU486), and the regulatory effects of BSZY on endometrial receptivity were evaluated by H&E staining, and changes in sex hormones by ELISA and Western blot. Moreover, human endometrial RL95-2 cells were treated with HO, and inflammatory cytokines in rats and RL95-2 cells were analyzed by ELISA. The activation of NF-κB/NLRP3 signaling pathway in RL95-2 cells were characterized using immunofluorescence and Western blot. Mitochondrial morphology and function in RL95-2 cells were observed by transmission electron microscope and cell mitochondrial stress test.

Results

BSZY increased uterine endometrial thickness and attenuate histopathological changes induced by RU486. BSZY can regulate endometrial estrogen receptor and progesterone receptor, and the levels of sex hormones and inflammatory cytokines in pregnant rats. BSZY-containing serum also showed strong anti-inflammatory and cytoprotective effects . In addition, BSZY-containing serum inhibited the activation of NF-κB/NLRP3 signaling pathway, and improve mitochondrial morphology and function in RL95-2 cells.

Conclusion

BSZY can improve endometrial receptivity, potentially by improving mitochondrial morphology and function to inhibit the activation of NF-κB/NLRP3 signaling pathway in endometrial cells, thus regulate inflammation to improve endometrial receptivity.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073309790240711110744
2024-07-15
2025-10-29
Loading full text...

Full text loading...

References

  1. DyerS. ChambersG.M. de MouzonJ. NygrenK.G. Zegers-HochschildF. MansourR. IshiharaO. BankerM. AdamsonG.D. International committee for monitoring assisted reproductive technologies world report: Assisted reproductive technology 2008, 2009 and 2010.Hum. Reprod.20163171588160910.1093/humrep/dew082 27207175
    [Google Scholar]
  2. MengQ. RenA. ZhangL. LiuJ. LiZ. YangY. LiR. MaL. Incidence of infertility and risk factors of impaired fecundity among newly married couples in a Chinese population.Reprod. Biomed. Online20153019210010.1016/j.rbmo.2014.10.002 25456165
    [Google Scholar]
  3. LesseyB.A. YoungS.L. What exactly is endometrial receptivity?Fertil. Steril.2019111461161710.1016/j.fertnstert.2019.02.009 30929718
    [Google Scholar]
  4. CraciunasL. GallosI. ChuJ. BourneT. QuenbyS. BrosensJ.J. CoomarasamyA. Conventional and modern markers of endometrial receptivity: A systematic review and meta-analysis.Hum. Reprod. Update201925220222310.1093/humupd/dmy044 30624659
    [Google Scholar]
  5. YuX. GaoC. DaiC. YangF. DengX. Endometrial injury increases expression of hypoxia-inducible factor and angiogenesis in the endometrium of women with recurrent implantation failure.Reprod. Biomed. Online201938576176710.1016/j.rbmo.2018.12.027 30885666
    [Google Scholar]
  6. BersingerG.W. Cytokines in follicular fluid of patients with endometriosis in IVF of natural cycle.J. Reprod. Med.20192810661070
    [Google Scholar]
  7. BoomsmaC.M. KavelaarsA. EijkemansM.J.C. LentjesE.G. FauserB.C.J.M. HeijnenC.J. MacklonN.S. Endometrial secretion analysis identifies a cytokine profile predictive of pregnancy in IVF.Hum. Reprod.20092461427143510.1093/humrep/dep011 19228761
    [Google Scholar]
  8. DekelN. GnainskyY. GranotI. MorG. Review article: Inflammation and implantation.Am. J. Reprod. Immunol.2010631172110.1111/j.1600‑0897.2009.00792.x 20059465
    [Google Scholar]
  9. BoaruS.G. Borkham-KamphorstE. Van de LeurE. LehnenE. LiedtkeC. WeiskirchenR. NLRP3 inflammasome expression is driven by NF-κB in cultured hepatocytes.Biochem. Biophys. Res. Commun.2015458370070610.1016/j.bbrc.2015.02.029 25686493
    [Google Scholar]
  10. TaoX. LiJ. HeJ. JiangY. LiuC. CaoW. WuH. Pinellia ternata (Thunb.) Breit. attenuates the allergic airway inflammation of cold asthma via inhibiting the activation of TLR4-medicated NF-kB and NLRP3 signaling pathway.J. Ethnopharmacol.202331511672010.1016/j.jep.2023.116720 37268256
    [Google Scholar]
  11. SutterwalaF.S. HaaskenS. CasselS.L. Mechanism of NLRP3 inflammasome activation.Ann. N. Y. Acad. Sci.201413191829510.1111/nyas.12458 24840700
    [Google Scholar]
  12. JiangX. YuanY. ShiM. ZhangS. SuiM. ZhouH. Bu-shen-zhu-yun decoction inhibits granulosa cell apoptosis in rat polycystic ovary syndrome through estrogen receptor α-mediated PI3K/AKT/mTOR pathway.J. Ethnopharmacol.202228811486210.1016/j.jep.2021.114862 34861362
    [Google Scholar]
  13. ZhouH.F. JiangF.R. DunW.L. TanY. Effects of kidney supplementation and fertility on endometrial and ovarian morphology in rat embryo implantation.Shanxi Zhongyi200930117118
    [Google Scholar]
  14. ZhouH.F. LiA.P. TanY. Effects of bushen zhuyun recipe on protein expressions of estrogen receptor, progesterone receptor and integrin α5 and β3 in endometrium of rats at the implantation stage.Chung Kuo Chung Hsi I Chieh Ho Tsa Chih2009297628631 19852297
    [Google Scholar]
  15. WangC.C. FangK.M. YangC.S. TzengS.F. Reactive oxygen species‐induced cell death of rat primary astrocytes through mitochondria‐mediated mechanism.J. Cell. Biochem.2009107593394310.1002/jcb.22196 19459161
    [Google Scholar]
  16. LiuY. LiH. FanY. ManS. LiuZ. GaoW. WangT. Antioxidant and antitumor activities of the extracts from Chinese Yam (Dioscorea opposite Thunb.) flesh and peel and the effective compounds.J. Food Sci.2016816H1553H156410.1111/1750‑3841.13322 27122252
    [Google Scholar]
  17. ZhangN. LiangT. JinQ. ShenC. ZhangY. JingP. Chinese yam (Dioscorea opposita Thunb.) alleviates antibiotic-associated diarrhea, modifies intestinal microbiota, and increases the level of short-chain fatty acids in mice.Food Res. Int.201912219119810.1016/j.foodres.2019.04.016 31229072
    [Google Scholar]
  18. YoshinoM. YoshinoJ. KayserB.D. PattiG.J. FranczykM.P. MillsK.F. SindelarM. PietkaT. PattersonB.W. ImaiS.I. KleinS. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women.Science202137265471224122910.1126/science.abe9985 33888596
    [Google Scholar]
  19. HaskóG. SitkovskyM.V. SzabóC. Immunomodulatory and neuroprotective effects of inosine.Trends Pharmacol. Sci.200425315215710.1016/j.tips.2004.01.006 15019271
    [Google Scholar]
  20. LiaudetL. MableyJ.G. PacherP. VirágL. SorianoF.G. MartonA. HaskóG. DeitchE.A. SzabóC. Inosine exerts a broad range of antiinflammatory effects in a murine model of acute lung injury.Ann. Surg.2002235456857810.1097/00000658‑200204000‑00016 11923614
    [Google Scholar]
  21. DengB. YangB. ChenJ. WangS. ZhangW. GuoY. HanY. LiH. DangY. YuanY. DaiX. ZangY. LiY. LiB. Gallic acid induces T-helper-1-like T reg cells and strengthens immune checkpoint blockade efficacy.J. Immunother. Cancer2022107e00403710.1136/jitc‑2021‑004037 35817479
    [Google Scholar]
  22. WangX.J. WangZ.B. XuJ.X. Effect of salvianic acid A on lipid peroxidation and membrane permeability in mitochondria.J. Ethnopharmacol.200597344144510.1016/j.jep.2004.11.036 15740878
    [Google Scholar]
  23. YiX. TaoJ. QianY. FengF. HuX. XuT. JinH. RuanH. ZhengH.F. TongP. Morroniside ameliorates inflammatory skeletal muscle atrophy via inhibiting canonical and non-canonical NF-κB and regulating protein synthesis/degradation.Front. Pharmacol.202213105646010.3389/fphar.2022.1056460 36618945
    [Google Scholar]
  24. YuH. YaoS. ZhouC. FuF. LuoH. DuW. JinH. TongP. ChenD. WuC. RuanH. Morroniside attenuates apoptosis and pyroptosis of chondrocytes and ameliorates osteoarthritic development by inhibiting NF-κB signaling.J. Ethnopharmacol.202126611344710.1016/j.jep.2020.113447 33022338
    [Google Scholar]
  25. BernatonieneJ. KopustinskieneD.M. The role of catechins in cellular responses to oxidative stress.Molecules201823496510.3390/molecules23040965 29677167
    [Google Scholar]
  26. ZhengC. ZhongY. ZhangW. WangZ. XiaoH. ZhangW. XieJ. PengX. LuoJ. XuW. Chlorogenic acid ameliorates post-infectious irritable bowel syndrome by regulating extracellular vesicles of gut microbes.Adv. Sci.20231028230279810.1002/advs.202302798 37616338
    [Google Scholar]
  27. ZhangZ. ShiC. WangZ. Therapeutic effects and molecular mechanism of chlorogenic acid on polycystic ovarian syndrome: Role of HIF-1alpha.Nutrients20231513283310.3390/nu15132833 37447160
    [Google Scholar]
  28. LiX. ShangN. KangY. ShengN. LanJ. TangJ. WuL. ZhangJ. PengY. Caffeic acid alleviates cerebral ischemic injury in rats by resisting ferroptosis via Nrf2 signaling pathway.Acta Pharmacol. Sin.202445224826710.1038/s41401‑023‑01177‑5 37833536
    [Google Scholar]
  29. ChiangY.F. LinI.C. HuangK.C. ChenH.Y. AliM. HuangY.J. HsiaS.M. Caffeic acid’s role in mitigating polycystic ovary syndrome by countering apoptosis and ER stress triggered by oxidative stress.Biomed. Pharmacother.202316611532710.1016/j.biopha.2023.115327 37619480
    [Google Scholar]
  30. ChengK.I. ChenS.L. HsuJ.H. ChengY.C. ChangY.C. LeeC.H. YehJ.L. DaiZ.K. WuB.N. Loganin prevents CXCL12/CXCR4-regulated neuropathic pain via the NLRP3 inflammasome axis in nerve-injured rats.Phytomedicine20219215373410.1016/j.phymed.2021.153734 34536822
    [Google Scholar]
  31. ChengY.C. ChuL.W. ChenJ.Y. HsiehS.L. ChangY.C. DaiZ.K. WuB.N. Loganin attenuates high glucose-induced schwann cells pyroptosis by inhibiting ROS generation and NLRP3 inflammasome activation.Cells202099194810.3390/cells9091948 32842536
    [Google Scholar]
  32. ZhangH. WangJ. LangW. LiuH. ZhangZ. WuT. LiH. BaiL. ShiQ. Albiflorin ameliorates inflammation and oxidative stress by regulating the NF-κB/NLRP3 pathway in Methotrexate-induced enteritis.Int. Immunopharmacol.202210910882410.1016/j.intimp.2022.108824 35561481
    [Google Scholar]
  33. ZhangL. WeiW. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony.Pharmacol. Ther.202020710745210.1016/j.pharmthera.2019.107452 31836457
    [Google Scholar]
  34. ZhuF. GaoJ. ZengF. LaiY. RuanX. DengG. Hyperoside protects against cyclophosphamide induced ovarian damage and reduced fertility by suppressing HIF-1α/BNIP3-mediated autophagy.Biomed. Pharmacother.202215611374310.1016/j.biopha.2022.113743 36252358
    [Google Scholar]
  35. LiuY. LiT. BaiJ. LiuW. WangZ. FengC. PuL. WangX. LiuH. Isoquercitrin attenuates the osteoclast-mediated bone loss in rheumatoid arthritis via the Nrf2/ROS/NF-κB pathway.Biochim. Biophys. Acta Mol. Basis Dis.20241870216697710.1016/j.bbadis.2023.166977 38065271
    [Google Scholar]
  36. ChoiE.H. LeeD.Y. ParkH.S. ShimS.M. Changes in the profiling of bioactive components with the roasting process in LYCIUM CHINENSE leaves and the anti‐obesity effect of its bioaccessible fractions.J. Sci. Food Agric.20199994482449210.1002/jsfa.9687 30868582
    [Google Scholar]
  37. DahchourA. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects.Pharmacol. Res.202218410642110.1016/j.phrs.2022.106421 36096427
    [Google Scholar]
  38. ZhangJ. XieX. TangM. ZhangJ. ZhangB. ZhaoQ. HanY. YanW. PengC. YouZ. Salvianolic acid B promotes microglial M2-polarization and rescues neurogenesis in stress-exposed mice.Brain Behav. Immun.20176611112410.1016/j.bbi.2017.07.012 28736034
    [Google Scholar]
  39. AgrawalK. ChakrabortyP. DewanjeeS. ArfinS. DasS.S. DeyA. MoustafaM. MishraP.C. JafariS.M. JhaN.K. JhaS.K. KumarD. Neuropharmacological interventions of quercetin and its derivatives in neurological and psychological disorders.Neurosci. Biobehav. Rev.202314410495510.1016/j.neubiorev.2022.104955 36395983
    [Google Scholar]
  40. DongX. ZhouS. NaoJ. Kaempferol as a therapeutic agent in Alzheimer’s disease: Evidence from preclinical studies.Ageing Res. Rev.20238710191010.1016/j.arr.2023.101910 36924572
    [Google Scholar]
  41. FengJ. XiZ. JiangX. LiY. Nik NabilW.N. LiuM. SongZ. ChenX. ZhouH. DongQ. XuH. Saikosaponin A enhances Docetaxel efficacy by selectively inducing death of dormant prostate cancer cells through excessive autophagy.Cancer Lett.202355421601110.1016/j.canlet.2022.216011 36442771
    [Google Scholar]
  42. HuangM. YanY. DengZ. ZhouL. SheM. YangY. ZhangM. WangD. Saikosaponin A and D attenuate skeletal muscle atrophy in chronic kidney disease by reducing oxidative stress through activation of PI3K/AKT/Nrf2 pathway.Phytomedicine202311415476610.1016/j.phymed.2023.154766 37002971
    [Google Scholar]
  43. ChenS. WangK. WangH. GaoY. NieK. JiangX. SuH. TangY. LuF. DongH. WangZ. The therapeutic effects of saikosaponins on depression through the modulation of neuroplasticity: From molecular mechanisms to potential clinical applications.Pharmacol. Res.202420110709010.1016/j.phrs.2024.107090 38309381
    [Google Scholar]
  44. LiC. HuangL. SunW. ChenY. HeM.L. YueJ. BallardH. Saikosaponin D suppresses enterovirus A71 infection by inhibiting autophagy.Signal Transduct. Target. Ther.201941410.1038/s41392‑019‑0037‑x 30820356
    [Google Scholar]
  45. MinH.Y. JangH.J. ParkK.H. HyunS.Y. ParkS.J. KimJ.H. SonJ. KangS.S. LeeH.Y. The natural compound gracillin exerts potent antitumor activity by targeting mitochondrial complex II.Cell Death Dis.2019101181010.1038/s41419‑019‑2041‑z 31649278
    [Google Scholar]
  46. SongY. OuY. ZhouJ. Gracillin inhibits apoptosis and inflammation induced by lipopolysaccharide (LPS) to alleviate cardiac injury in mice via improving miR-29a.Biochem. Biophys. Res. Commun.2020523358058710.1016/j.bbrc.2019.11.129 31941605
    [Google Scholar]
  47. HiramaY. OchiaiK. Estrogen and progesterone receptors of the out-of-phase endometrium in female infertile patients.Fertil. Steril.199563598498810.1016/S0015‑0282(16)57534‑7 7720943
    [Google Scholar]
  48. LesseyB.A. YehI. CastelbaumA.J. FritzM.A. IlesanmiA.O. KorzeniowskiP. SunJ. ChwalisżK. Endometrial progesterone receptors and markers of uterine receptivity in the window of implantation.Fertil. Steril.199665347748310.1016/S0015‑0282(16)58140‑0 8774273
    [Google Scholar]
  49. Diagnosis and treatment of luteal phase deficiency: A committee opinion.Fertil. Steril.202111561416142310.1016/j.fertnstert.2021.02.010 33827766
    [Google Scholar]
  50. SehringJ. BeltsosA. JeelaniR. Human implantation: The complex interplay between endometrial receptivity, inflammation, and the microbiome.Placenta202211717918610.1016/j.placenta.2021.12.015 34929458
    [Google Scholar]
  51. López-ArmadaM.J. Riveiro-NaveiraR.R. Vaamonde-GarcíaC. Valcárcel-AresM.N. Mitochondrial dysfunction and the inflammatory response.Mitochondrion201313210611810.1016/j.mito.2013.01.003 23333405
    [Google Scholar]
  52. BuiA.H. TimmonsD.B. YoungS.L. Evaluation of endometrial receptivity and implantation failure.Curr. Opin. Obstet. Gynecol.202234310711310.1097/GCO.0000000000000783 35645008
    [Google Scholar]
  53. MurjiA. WhitakerL. ChowT.L. SobelM.L. Selective progesterone receptor modulators (SPRMs) for uterine fibroids.Cochrane Libr.201720174CD01077010.1002/14651858.CD010770.pub2 28444736
    [Google Scholar]
  54. SuY.T. ChenJ.S. LanK.C. LeeY.K. ChuT.H. HoY.C. WuC.C. HuangF.J. Direct effects of mifepristone on mice embryogenesis: An in vitro evaluation by single-embryo RNA sequencing analysis.Biomedicines202311390710.3390/biomedicines11030907 36979886
    [Google Scholar]
  55. GallagherP. YoungA.H. Mifepristone (RU-486) treatment for depression and psychosis: A review of the therapeutic implications.Neuropsychiatr. Dis. Treat.2006213342 19412444
    [Google Scholar]
  56. ParisiF. FeniziaC. IntroiniA. ZavattaA. ScaccabarozziC. BiasinM. SavasiV. The pathophysiological role of estrogens in the initial stages of pregnancy: molecular mechanisms and clinical implications for pregnancy outcome from the periconceptional period to end of the first trimester.Hum. Reprod. Update202329669972010.1093/humupd/dmad016 37353909
    [Google Scholar]
  57. GargA. ZielinskaA.P. YeungA.C. AbdelmalakR. ChenR. HossainA. IsraniA. NelsonS.M. BabwahA.V. DhilloW.S. AbbaraA. Luteal phase support in assisted reproductive technology.Nat. Rev. Endocrinol.202320314916710.1038/s41574‑023‑00921‑5 38110672
    [Google Scholar]
  58. LiY. ZhangD. XuL. DongL. ZhengJ. LinY. HuangJ. ZhangY. TaoY. ZangX. LiD. DuM. Cell–cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models.Cell. Mol. Immunol.2019161290892010.1038/s41423‑019‑0204‑6 30778166
    [Google Scholar]
  59. GallinoL. HaukV. FernándezL. SoczewskiE. GoriS. GrassoE. CaloG. SaracoN. BerenszteinE. WaschekJ.A. Pérez LeirósC. RamhorstR. VIP promotes recruitment of tregs to the uterine–placental interface during the peri-implantation period to sustain a tolerogenic microenvironment.Front. Immunol.202010290710.3389/fimmu.2019.02907 31969877
    [Google Scholar]
  60. LesseyB.A. KimJ.J. Endometrial receptivity in the eutopic endometrium of women with endometriosis: it is affected, and let me show you why.Fertil. Steril.20171081192710.1016/j.fertnstert.2017.05.031 28602477
    [Google Scholar]
  61. HevirN. Ribič-PuceljM. Lanišnik RižnerT. Disturbed balance between phase I and II metabolizing enzymes in ovarian endometriosis: A source of excessive hydroxy-estrogens and ROS?Mol. Cell. Endocrinol.20133671-2748410.1016/j.mce.2012.12.019 23277161
    [Google Scholar]
  62. JiangF. XuX.R. LiW.M. XiaK. WangL.F. YangX.C. Monotropein alleviates H2O2 induced inflammation, oxidative stress and apoptosis via NF κB/AP 1 signaling.Mol. Med. Rep.20202264828483610.3892/mmr.2020.11548 33173962
    [Google Scholar]
  63. YamamotoY. GaynorR. Role of the NF-kappaB pathway in the pathogenesis of human disease states.Curr. Mol. Med.20011328729610.2174/1566524013363816 11899077
    [Google Scholar]
  64. GarciaK.Y.M. QuimqueM.T.J. PrimahanaG. RatzenböckA. CanoM.J.B. LlagunoJ.F.A. DahseH.M. PhukhamsakdaC. SurupF. StadlerM. MacabeoA.P.G. COX inhibitory and cytotoxic naphthoketal-bearing polyketides from Sparticola junci.Int. J. Mol. Sci.202122221237910.3390/ijms222212379 34830260
    [Google Scholar]
  65. NotarteK.I.R. QuimqueM.T.J. MacaranasI.T. KhanA. PastranaA.M. VillafloresO.B. ArturoH.C.P. PilapilD.Y.H.IV TanS.M.M. WeiD.Q. Wenzel-StorjohannA. TasdemirD. YenC.H. JiS.Y. KimG.Y. ChoiY.H. MacabeoA.P.G. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-κB pathway and the increased NRF2 level by a flavonol-enriched n -butanol fraction from Uvaria alba.ACS Omega2023865377539210.1021/acsomega.2c06451 36816691
    [Google Scholar]
  66. El-ShitanyN.A. EidB.G. Icariin modulates carrageenan-induced acute inflammation through HO-1/Nrf2 and NF-kB signaling pathways.Biomed. Pharmacother.201912010956710.1016/j.biopha.2019.109567 31670031
    [Google Scholar]
  67. LahootiB. ChhibberT. BagchiS. VarahachalamS.P. JayantR.D. Therapeutic role of inflammasome inhibitors in neurodegenerative disorders.Brain Behav. Immun.20219177178310.1016/j.bbi.2020.11.004 33157255
    [Google Scholar]
  68. KarinM. YamamotoY. WangQ.M. The IKK NF-κB system: A treasure trove for drug development.Nat. Rev. Drug Discov.200431172610.1038/nrd1279 14708018
    [Google Scholar]
  69. SahaS. ButtariB. PanieriE. ProfumoE. SasoL. An overview of Nrf2 signaling pathway and its role in inflammation.Molecules20202522547410.3390/molecules25225474 33238435
    [Google Scholar]
  70. SoaresM.P. SeldonM.P. GregoireI.P. VassilevskaiaT. BerberatP.O. YuJ. TsuiT.Y. BachF.H. Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation.J. Immunol.200417263553356310.4049/jimmunol.172.6.3553 15004156
    [Google Scholar]
  71. SandbergM. PatilJ. D’AngeloB. WeberS.G. MallardC. NRF2-regulation in brain health and disease: Implication of cerebral inflammation.Neuropharmacology20147929830610.1016/j.neuropharm.2013.11.004 24262633
    [Google Scholar]
  72. GreenD.R. GalluzziL. KroemerG. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging.Science201133360461109111210.1126/science.1201940 21868666
    [Google Scholar]
  73. KeppO. GalluzziL. KroemerG. Mitochondrial control of the NLRP3 inflammasome.Nat. Immunol.201112319920010.1038/ni0311‑199 21321591
    [Google Scholar]
  74. AgarwalA. Aponte-MelladoA. PremkumarB.J. ShamanA. GuptaS. The effects of oxidative stress on female reproduction: A review.Reprod. Biol. Endocrinol.20121014910.1186/1477‑7827‑10‑49 22748101
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073309790240711110744
Loading
/content/journals/cchts/10.2174/0113862073309790240711110744
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test