Skip to content
2000
Volume 28, Issue 15
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Aim

The aim of this study was to elucidate the mechanism of action of Shenbao tablets using metabolomics approach.

Background

Kidney-yang deficiency is a common syndrome type in traditional Chinese Medicine (TCM) syndrome typology, closely related to disorders of multiple metabolic pathways and is the root cause and underlying syndrome type of many diseases. Shenbao tablets can significantly improve the main symptoms of kidney yang deficiency syndrome, but the mechanism of action of Shenbao tablets on kidney yang deficiency syndrome is still unknown.

Methods

The rats were intraperitoneally injected with hydrocortisone once a day for 40 days to simulate the syndrome. Traditional pharmacodynamic indicators (body mass, biochemical indicators and pathology) were used to evaluate the efficacy of the medicine. Serum, urine and feces were collected from rats. UPLC/MS metabolomics method was used to study the overall metabolic profile of serum, while GC/MS metabolomics method was used to study the metabolic spectrum of urine and feces.

Results

Results showed that the syndrome was significantly improved in the treatment group, and obvious metabolic disorders were observed in rats with the syndrome, with 47 potential biomarkers identified. Pathway analysis showed that nicotinate and nicotinamide metabolism, glycine, serine and trione metabolism, aminoacyl tRNA biosynthesis, glycoxylate and dicarboxylate metabolism were the major ways for Shenbao tablet to improve kidney-yang deficiency syndrome.

Conclusion

The mechanism of action of Shenbao tablet in improving the syndrome involves the regulation of energy metabolism, amino acid metabolism, bile acid metabolism, fatty acid metabolism and intestinal microorganisms. This work shows that metabolomics is a promising tool for studying the essence of syndrome theory in TCM and the mechanisms of TCM.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073316238240827110846
2024-09-16
2026-01-01
Loading full text...

Full text loading...

References

  1. QiM.R. ChenN. TanC.E. Correlation study between Kidney-yang deficiency syndrome and dysfunction of mitochondrial energy metabolism.Liaon. J. Trad. Chin. Med.2018451225312533
    [Google Scholar]
  2. ZhaoL. WuH. QiuM. SunW. WeiR. ZhengX. YangY. XinX. ZouH. ChenT. LiuJ. LuL. SuJ. MaC. ZhaoA. JiaW. Metabolic signatures of kidney yang deficiency syndrome and protective effects of two herbal extracts in rats using GC/TOF MS.Evid. Based Complement. Alternat. Med.20132013540957540957 24159348
    [Google Scholar]
  3. XiaoJ. WangY.X. GaoJ.D. Progress in study of kidney-yang deficiency syndrome.Acad. J. Shangh. Univ. Tradit. Chin. Med.2008427377
    [Google Scholar]
  4. ZhengY.L. GuoC.R. SunZ.M. Advances in the biological basis of kidney yang deficiency syndrome.Chin. J. Trad. Med. Sci. Technol.2019262318319
    [Google Scholar]
  5. ShenZ.Y. Study on positioning of kidney yang deficiency syndrome.Chin. J.Integ. Tradit. West. Med.19971715052 9812654
    [Google Scholar]
  6. ShenZ.Y. ‘Kidney research’ keeps forging ahead through ‘keeping pace with the times’.Chin. J. Integ. Tradit. West. Med.2015358946949
    [Google Scholar]
  7. HuangD. YangJ. LuX. DengY. XiongZ. LiF. An integrated plasma and urinary metabonomic study using UHPLC–MS: Intervention effects of Epimedium koreanum on ‘Kidney-yang Deficiency syndrome’ rats.J. Pharm. Biomed. Anal.20137620020610.1016/j.jpba.2012.12.022 23333940
    [Google Scholar]
  8. LuX. XiongZ. LiJ. ZhengS. HuoT. LiF. Metabonomic study on ‘Kidney-yang Deficiency syndrome’ and intervention effects of Rhizoma Drynariae extracts in rats using ultra performance liquid chromatography coupled with mass spectrometry.Talanta201183370070810.1016/j.talanta.2010.09.026 21147309
    [Google Scholar]
  9. ZhouQ.G. HuangL.Q. LiS.H. Effect evaluation of Shenbao Pian on 216 cases of benign prostatic hyperplasia of kidney yang deficiency type.Drugs Clini.202017142830
    [Google Scholar]
  10. GaoY. HuH.W. LiS.H. Effect of HuirenShenbao Pians on spleen deficiency model rats.Chiang-Hsi Chung I Yao202152107172
    [Google Scholar]
  11. SunJ.H. ZhouQ.G. ShenL.Q. Study on the kidney-tonifying effect and mechanism of ShenbaoPians.China Medical Herald2020171849
    [Google Scholar]
  12. Puchades-CarrascoL. Pineda-LucenaA. Metabolomics in pharmaceutical research and development.Curr. Opin. Biotechnol.201535737710.1016/j.copbio.2015.04.004 25900094
    [Google Scholar]
  13. ZhangA. SunH. QiuS. WangX. Recent highlights of metabolomics in chinese medicine syndrome research.Evid. Based Complement. Alternat. Med.201320134021591410.1155/2013/402159 24302964
    [Google Scholar]
  14. GouX. CenF. FanZ. XuY. ShenH. ZhouM. Serum and brain metabolomic variations reveal perturbation of sleep deprivation on rats and ameliorate effect of total ginsenoside treatment.Int. J. Genomics20172017517927111410.1155/2017/5179271 28900617
    [Google Scholar]
  15. ZhaoH. ChenZ.X. ChenJ.Y. Effects of Qiangji Jianli Yin on the hypothalamus CRH contents and plasma ACTH, cortisol levels in rat models of kidney-yang deficiency syndrome.J. Radioinmunol.2007204324326
    [Google Scholar]
  16. WangX. YangB. ZhangA. SunH. YanG. Potential drug targets on insomnia and intervention effects of Jujuboside A through metabolic pathway analysis as revealed by UPLC/ESI-SYNAPT-HDMS coupled with pattern recognition approach.J. Proteomics20127541411142710.1016/j.jprot.2011.11.011 22134358
    [Google Scholar]
  17. ChenS. WangX.F. Progress on metabolomics studies of the kidney-yang deficiency syndrome.Guangdong Yaoxueyuan Xuebao2015316829830
    [Google Scholar]
  18. LuX. XiongZ.L. LiJ.J. ZhengS.N. HuoT.G. LiF.M. Metabonomic study on ‘Kidney-yang Deficiency syndrome and intervention effects of Rhizoma Drynariae extracts in rats using ultra performance liquid chromatography coupled with mass spectrometry.Talanta201183370070810.1016/j.talanta.2010.09.026 21147309
    [Google Scholar]
  19. DuK. GaoX.X. FengY. Effects of Guilingji on Kidney-Yang deficiency syndrome in rats based on serum metabolomics.Yao Xue Xue Bao201954814761483
    [Google Scholar]
  20. ZhengY.L. GuoC.R. SunZ.M. WangH.W. LiX. LiF.F. Advances in the biological basis of kidney yang deficiency syndrome.Chin. J. Trad. Med. Sci. Technol.2019262318319
    [Google Scholar]
  21. DaiB. ZhangJ.N. YangM.L. Establishment of a mouse model of kidney de ficiency induced by oral administration of hydrocortisone and evaluaation of related factors.Acta Laboratorium Animalis Scientia Sinica20172517073
    [Google Scholar]
  22. SunL. BartlamM. LiuY. PangH. RaoZ. Crystal structure of the pyridoxal‐5′‐phosphate‐dependent serine dehydratase from human liver.Protein Sci.200514379179810.1110/ps.041179105 15689518
    [Google Scholar]
  23. KimuraT. HesakaA. IsakaY. d-Amino acids and kidney diseases.Clin. Exp. Nephrol.202024540441010.1007/s10157‑020‑01862‑3 32112266
    [Google Scholar]
  24. ChenR. WangJ. LiaoC. ZhangL. GuoQ. WangX. Exploring the biomarkers and therapeutic mechanism of kidney-yang deficiency syndrome treated by You-gui pill using systems pharmacology and serum metabonomics.RSC Advances2018821098111510.1039/C7RA12451A 35539000
    [Google Scholar]
  25. ZhouX.H. ZhangA.H. WangL. TanY.L. GuanY. HanY. SunH. WangX.J. Novel chinmedomics strategy for discovering effective constituents from ShenQiWan acting on ShenYangXu syndrome.Chin. J. Nat. Med.201614856158110.1016/S1875‑5364(16)30067‑X 27608946
    [Google Scholar]
  26. EisenbergD. AlmassyR.J. JansonC.A. ChapmanM.S. SuhS.W. CascioD. SmithW.W. Some evolutionary relationships of the primary biological catalysts glutamine synthetase and RuBisCO.Cold Spring Harb. Symp. Quant. Biol.198752048349010.1101/SQB.1987.052.01.055 2900091
    [Google Scholar]
  27. GaoX.F. ChenW.J. LiR.X. Systematic variations associated with renal disease uncovered by parallel metabolomics of urine and serum.BMC Syst. Biol.20126Suppl. 1S1410.1186/1752‑0509‑6‑S1‑S14
    [Google Scholar]
  28. ChenR. WangJ. ZhanR. ZhangL. WangX. Integrated systems pharmacology, urinary metabonomics, and quantitative real-time pcr analysis to uncover targets and metabolic pathways of the you-gui pill in treating Kidney-Yang deficiency syndrome.Int. J. Mol. Sci.20192015365510.3390/ijms20153655 31357410
    [Google Scholar]
  29. PavlovaT. VidovaV. Bienertova-VaskuJ. JankuP. AlmasiM. KlanovaJ. SpacilZ. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism.Anal. Chim. Acta2017987728010.1016/j.aca.2017.08.022 28916042
    [Google Scholar]
  30. OstK.S. RoundJ.L. Communication between the microbiota and mammalian immunity.Annu. Rev. Microbiol.201872139942210.1146/annurev‑micro‑090817‑062307 29927706
    [Google Scholar]
  31. KaminskiT.W. PawlakK. KarbowskaM. ZnorkoB. MorA.L. MysliwiecM. PawlakD. The impact of antihypertensive pharmacotherapy on interplay between protein-bound uremic toxin (indoxyl sulfate) and markers of inflammation in patients with chronic kidney disease.Int. Urol. Nephrol.201951349150210.1007/s11255‑018‑02064‑3 30617956
    [Google Scholar]
  32. ZouZ.J. GongM.J. XieY.Y. Urinary metabonomic study of kidney-yang deficiency syndrome induced by hydrocortisone.Zhongguo Shiyan Fangjixue Zazhi2012188133136
    [Google Scholar]
  33. ChenX. HuC. DaiJ. ChenL. Metabolomics analysis of seminal plasma in infertile males with kidney-yang deficiency: A preliminary study.Evid. Based Complement. Alternat. Med.201520158929301810.1155/2015/892930 25945117
    [Google Scholar]
  34. CraigS.A.S. Betaine in human nutrition.Am. J. Clin. Nutr.200480353954910.1093/ajcn/80.3.539 15321791
    [Google Scholar]
  35. Qi,M.R.:;Chen, N.:;Tan,C.E. Study on the correlation between kidney yang deficiency syndrome and mitochondrial energy metabolism dysfunction.Liaoning J. Traditi. Chin. Med.201845122531253310.13192/j.issn.1000‑1719.2018.12.021
    [Google Scholar]
  36. TanY. KoJ. LiuX. LuC. LiJ. XiaoC. LiL. NiuX. JiangM. HeX. ZhaoH. ZhangZ. BianZ. YangZ. ZhangG. ZhangW. LuA. Serum metabolomics reveals betaine and phosphatidylcholine as potential biomarkers for the toxic responses of processed Aconitum carmichaelii Debx.Mol. Biosyst.20141092305231610.1039/C4MB00072B 24949573
    [Google Scholar]
  37. SalahiP. RockyA. DezfoulianO. AziziA. AlirezaeiM. Betaine alleviated hepatic and renal injury in diabetic pregnant rats: Biochemical and histopathological evidences.J. Diabetes Metab. Disord.202019285986710.1007/s40200‑020‑00572‑7 33553014
    [Google Scholar]
  38. ChoiY.J. NaJ.D. JunD.S. KimY.C. Protective effect of betaine against galactosamine-induced acute liver injury in rats.J. Funct. Foods201844657310.1016/j.jff.2018.02.028
    [Google Scholar]
  39. HeidariR. NiknahadH. SadeghiA. MohammadiH. GhanbarinejadV. OmmatiM.M. HosseiniA. AzarpiraN. KhodaeiF. FarshadO. RashidiE. SiavashpourA. NajibiA. AhmadiA. JamshidzadehA. Betaine treatment protects liver through regulating mitochondrial function and counteracting oxidative stress in acute and chronic animal models of hepatic injury.Biomed. Pharmacother.2018103758610.1016/j.biopha.2018.04.010 29635131
    [Google Scholar]
  40. FanC.Y. WangM.X. GeC.X. WangX. LiJ.M. KongL.D. Betaine supplementation protects against high-fructose-induced renal injury in rats.J. Nutr. Biochem.201425335336210.1016/j.jnutbio.2013.11.010 24456735
    [Google Scholar]
  41. Vander HeidenM.G. LuntS.Y. DaytonT.L. FiskeB.P. IsraelsenW.J. MattainiK.R. VokesN.I. StephanopoulosG. CantleyL.C. MetalloC.M. LocasaleJ.W. Metabolic pathway alterations that support cell proliferation.Cold Spring Harb. Symp. Quant. Biol.201176032533410.1101/sqb.2012.76.010900 22262476
    [Google Scholar]
  42. GaoD. WangX.T. XuC.Y. Research progress on the effect of keton supplementation on athletic performance and its mechanism.Zhongguo Yundong Yixue Zazhi2022415405412
    [Google Scholar]
  43. SzafarzM. KusK. WalczakM. ZakrzewskaA. NiemczakM. PernakJ. ChlopickiS. Pharmacokinetic profile of 1-methylnicotinamide nitrate in rats.J. Pharm. Sci.201710651412141810.1016/j.xphs.2017.01.022 28153597
    [Google Scholar]
  44. DeenC.P.J. VeenA. Gomes-NetoA.W. GeleijnseJ.M. BergK.J.B. Heiner-FokkemaM.R. KemaI.P. BakkerS.J.L. Urinary excretion of N(1)- methylnicotinamide and N(1)-methyl-2-pyridone-5-carboxamide and mortality in kidney transplant recipients.Nutrients2020127205910.3390/nu12072059 32664445
    [Google Scholar]
  45. BaggelaarM.P. MaccarroneM. van der SteltM. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain.Prog. Lipid Res.20187111710.1016/j.plipres.2018.05.002 29751000
    [Google Scholar]
  46. AntónR. VilaL. Stereoselective biosynthesis of hepoxilin B3 in human epidermis.J. Invest. Dermatol.2000114355455910.1046/j.1523‑1747.2000.00903.x 10692117
    [Google Scholar]
  47. HuJ.B. GuH.C. DingZ.S. Study on the intervention effect of jieduquyuziyin decoction on systemic lupus erythematosus by HPLC-Q-TOF/MS based metabonomics.Zhongguo Zhongyao Zazhi2013382137473752 24494566
    [Google Scholar]
  48. ZhangH.Y. XieH.H. LinL.D. Phenolic metabolites of an ampelomyces fungus.Redai Yaredai Zhiwu Xuebao20091717779
    [Google Scholar]
  49. NowakA. LibudziszZ. Influence of phenol, p-cresol and indole on growth and survival of intestinal lactic acid bacteria.Anaerobe2006122808410.1016/j.anaerobe.2005.10.003 16701619
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073316238240827110846
Loading
/content/journals/cchts/10.2174/0113862073316238240827110846
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test