Skip to content
2000
Volume 28, Issue 12
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introdution

Overexpression of SLC16A3 can contribute to the development of various tumors by regulating metabolism, but a systematic analysis of SLC16A3 in bladder cancer (BC) has been rarely reported.

Methods

We used the BC datasets from public databases to investigate SLC16A3 expression in BC. We first analysed the relationship between SLC16A3 expression and clinical characteristics of 412 bladder cancer patients. After that, gene function analyses and immunocorrelation analyses of SLC16A3 were conducted with the R package. For immunotherapy effect and drug sensitivity analysis, we also used the R package. We also analysed the relation between SLC16A3 expression and 20 m6A modification key genes. Finally, we determined the expression localization of SLC16A3 in bladder cancer by single-cell sequencing analysis using 3,115 BC cells. We further detected the expression of SLC16A3/MCT4 on BC samples by reversed transcription-quantitative polymerase chain reaction and immunohistochemistry.

Results

The SLC16A3 was overexpressed in BC cells, including epithelial cells (p<0.001). The high SLC16A3 expression level of patients with BC was significantly related to poor prognosis (p=0.044), and we established a reliable prognosis model for BC patients. Statistically significant associations between SLC16A3 and m6A modification (ALKBH5) gene (p<0.001), key genes in aerobic glycolysis, M2 macrophage infiltration (p=0.0058), and immune checkpoint regulation were observed.

Conclusion

Overexpression of SLC16A3 is an independent prognostic factor in patients with BC. SLC16A3 may influence the immune infiltration of BC by regulating BC metabolism and m6A methylation, which ultimately can lead to the progress of BC. For the detection and therapy of BC, SLC16A3 may be a potent therapeutic target for BC.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073278304240614064748
2024-07-02
2025-10-10
Loading full text...

Full text loading...

/deliver/fulltext/cchts/28/12/CCHTS-28-12-05.html?itemId=/content/journals/cchts/10.2174/0113862073278304240614064748&mimeType=html&fmt=ahah

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  2. De JongFC LaajalaTD HoedemaekerRF Non-muscle-invasive bladder cancer molecular subtypes predict differential response to intravesical Bacillus Calmette-Guérin.Sci. Transl. Med.202315697eabn411810.1126/scitranslmed.abn4118
    [Google Scholar]
  3. LaiS. LiuJ. LaiC.H. SeeryS. HuH. WangM. HuH. XuT. Prognostic variations between ‘primary’ and ‘progressive’ muscle-invasive bladder cancer following radical cystectomy: A novel propensity score-based multicenter cohort study.Int. J. Surg.2024110127027910.1097/JS9.0000000000000790 37738002
    [Google Scholar]
  4. FelmleeM.A. JonesR.S. Rodriguez-CruzV. FollmanK.E. MorrisM.E. Monocarboxylate transporters (SLC16): Function, regulation, and role in health and disease.Pharmacol. Rev.202072246648510.1124/pr.119.018762 32144120
    [Google Scholar]
  5. HalestrapA.P. MeredithD. The SLC16 gene family?from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond.Pflugers Arch.2004447561962810.1007/s00424‑003‑1067‑2 12739169
    [Google Scholar]
  6. LiX. YangY. ZhangB. LinX. FuX. AnY. ZouY. WangJ.X. WangZ. YuT. Lactate metabolism in human health and disease.Signal Transduct. Target. Ther.20227130510.1038/s41392‑022‑01151‑3 36050306
    [Google Scholar]
  7. FiselP. KruckS. WinterS. BedkeJ. HennenlotterJ. NiesA.T. ScharpfM. FendF. StenzlA. SchwabM. SchaeffelerE. DNA methylation of the SLC16A3 promoter regulates expression of the human lactate transporter MCT4 in renal cancer with consequences for clinical outcome.Clin. Cancer Res.201319185170518110.1158/1078‑0432.CCR‑13‑1180 23881922
    [Google Scholar]
  8. ZhangL. ZhangZ. YuZ. Identification of a novel glycolysis-related gene signature for predicting metastasis and survival in patients with lung adenocarcinoma.J. Transl. Med.201917142310.1186/s12967‑019‑02173‑2 31847905
    [Google Scholar]
  9. YuanC. ZhangJ. LouJ. WangS. JiangY. WuF. WangS. Comprehensive analysis of monocarboxylate transporter 4 (MCT4) expression in breast cancer prognosis and immune infiltration via integrated bioinformatics analysis.Bioengineered20211213850386310.1080/21655979.2021.1951928 34269158
    [Google Scholar]
  10. Pereira-NunesA. Simões-SousaS. PinheiroC. Miranda-GonçalvesV. GranjaS. BaltazarF. Targeting lactate production and efflux in prostate cancer.Biochim. Biophys. Acta Mol. Basis Dis.202018661116589410.1016/j.bbadis.2020.165894 32650130
    [Google Scholar]
  11. TodenhöferT. SeilerR. StewartC. MoskalevI. GaoJ. LadharS. KamjabiA. Al NakouziN. HayashiT. ChoiS. WangY. FreesS. DaugaardM. OoH.Z. FiselP. SchwabM. SchaeffelerE. DouglasJ. HennenlotterJ. BedkeJ. GibbE.A. FazliL. StenzlA. BlackP.C. Selective inhibition of the lactate transporter MCT4 reduces growth of invasive bladder cancer.Mol. Cancer Ther.201817122746275510.1158/1535‑7163.MCT‑18‑0107 30262589
    [Google Scholar]
  12. ZhongJ. XuA. XuP. SuM. WangP. LiuZ. LiB. LiuC. JiangN. Circ_0000235 targets MCT4 to promote glycolysis and progression of bladder cancer by sponging miR-330-5p.Cell Death Discov.20239128310.1038/s41420‑023‑01582‑z 37532687
    [Google Scholar]
  13. LibertiM.V. LocasaleJ.W. The Warburg effect: How does it benefit cancer cells?Trends Biochem. Sci.201641321121810.1016/j.tibs.2015.12.001 26778478
    [Google Scholar]
  14. VaupelP. SchmidbergerH. MayerA. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression.Int. J. Radiat. Biol.201995791291910.1080/09553002.2019.1589653 30822194
    [Google Scholar]
  15. LinJ. LiuG. ChenL. KwokH.F. LinY. Targeting lactate-related cell cycle activities for cancer therapy.Semin. Cancer Biol.202286Pt 31231124310.1016/j.semcancer.2022.10.009 36328311
    [Google Scholar]
  16. PaulS. GhoshS. KumarS. Tumor glycolysis, an essential sweet tooth of tumor cells.Semin. Cancer Biol.202286Pt 31216123010.1016/j.semcancer.2022.09.007 36330953
    [Google Scholar]
  17. HalestrapA.P. WilsonM.C. The monocarboxylate transporter family—Role and regulation.IUBMB Life201264210911910.1002/iub.572 22162139
    [Google Scholar]
  18. BonaviaR. IndaM.M. VandenbergS. ChengS-Y. NaganeM. HadwigerP. TanP. SahD.W.Y. CaveneeW.K. FurnariF.B. EGFRvIII promotes glioma angiogenesis and growth through the NF-κB, interleukin-8 pathway.Oncogene201231364054406610.1038/onc.2011.563 22139077
    [Google Scholar]
  19. BrandA. SingerK. KoehlG.E. KolitzusM. SchoenhammerG. ThielA. MatosC. BrussC. KlobuchS. PeterK. KastenbergerM. BogdanC. SchleicherU. MackensenA. UllrichE. Fichtner-FeiglS. KesselringR. MackM. RitterU. SchmidM. BlankC. DettmerK. OefnerP.J. HoffmannP. WalentaS. GeisslerE.K. PouyssegurJ. VillungerA. StevenA. SeligerB. SchremlS. HaferkampS. KohlE. KarrerS. BerneburgM. HerrW. Mueller-KlieserW. RennerK. KreutzM. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells.Cell Metab.201624565767110.1016/j.cmet.2016.08.011 27641098
    [Google Scholar]
  20. ZhaoY. WangD. XuT. LiuP. CaoY. WangY. YangX. XuX. WangX. NiuH. Bladder cancer cells re-educate TAMs through lactate shuttling in the microfluidic cancer microenvironment.Oncotarget2015636391963921010.18632/oncotarget.5538 26474279
    [Google Scholar]
  21. JonesR.G. ThompsonC.B. Tumor suppressors and cell metabolism: A recipe for cancer growth.Genes Dev.200923553754810.1101/gad.1756509 19270154
    [Google Scholar]
  22. ChenZ. ZhouL. LiuL. HouY. XiongM. YangY. HuJ. ChenK. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma.Nat. Commun.2020111507710.1038/s41467‑020‑18916‑5 33033240
    [Google Scholar]
  23. LaiH. ChengX. LiuQ. LuoW. LiuM. ZhangM. MiaoJ. JiZ. LinG.N. SongW. ZhangL. BoJ. YangG. WangJ. GaoW.Q. Single‐cell RNA sequencing reveals the epithelial cell heterogeneity and invasive subpopulation in human bladder cancer.Int. J. Cancer2021149122099211510.1002/ijc.33794 34480339
    [Google Scholar]
  24. Ganapathy-KanniappanS. GeschwindJ.F.H. Tumor glycolysis as a target for cancer therapy: Progress and prospects.Mol. Cancer201312115210.1186/1476‑4598‑12‑152 24298908
    [Google Scholar]
  25. da CostaJ.B. GibbE.A. NykoppT.K. MannasM. WyattA.W. BlackP.C. Molecular tumor heterogeneity in muscle invasive bladder cancer: Biomarkers, subtypes, and implications for therapy.Urol. Oncol.202240728729410.1016/j.urolonc.2018.11.015 30528886
    [Google Scholar]
  26. WarrickJ.I. SjödahlG. KaagM. RamanJ.D. MerrillS. ShumanL. ChenG. WalterV. DeGraffD.J. Intratumoral heterogeneity of bladder cancer by molecular subtypes and histologic variants.Eur. Urol.2019751182210.1016/j.eururo.2018.09.003 30266310
    [Google Scholar]
  27. LiuZ.X. LiL.M. SunH.L. LiuS.M. Link between m6A modification and cancers.Front. Bioeng. Biotechnol.201868910.3389/fbioe.2018.00089 30062093
    [Google Scholar]
  28. TaoL. MuX. ChenH. JinD. ZhangR. ZhaoY. FanJ. CaoM. ZhouZ. FTO modifies the m6A level of MALAT and promotes bladder cancer progression.Clin. Transl. Med.2021112e31010.1002/ctm2.310 33634966
    [Google Scholar]
  29. HanJ. WangJ. YangX. YuH. ZhouR. LuH.C. YuanW.B. LuJ. ZhouZ. LuQ. WeiJ.F. YangH. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner.Mol. Cancer201918111010.1186/s12943‑019‑1036‑9 31228940
    [Google Scholar]
  30. ZhangL. LiY. ZhouL. ZhouH. YeL. OuT. HongH. ZhengS. ZhouZ. WuK. YanZ. ThieryJ.P. CuiJ. WuS. The m6A reader YTHDF2 promotes bladder cancer progression by suppressing RIG-I-mediated immune response.Cancer Res.2023831118341850Epub ahead of print10.1158/0008‑5472.CAN‑22‑2485 36939388
    [Google Scholar]
  31. PengY.L. WuZ.S. LuH.M. WeiW.S. XiongL.B. YuC.P. LiuZ.F. LiX.D. JiangL.J. LiY.H. LiuZ.W. ZhangZ.L. ZhouF.J. Prognostic significance of tumor-infiltrating immune cells in muscle-invasive bladder cancer.Am. J. Transl. Res.2020121065246536 33194049
    [Google Scholar]
  32. SunM. ZengH. JinK. LiuZ. HuB. LiuC. YanS. YuY. YouR. ZhangH. ChangY. LiuL. ZhuY. XuJ. XuL. WangZ. Infiltration and polarization of tumor-associated macrophages predict prognosis and therapeutic benefit in muscle-invasive bladder cancer.Cancer Immunol. Immunother.20227161497150610.1007/s00262‑021‑03098‑w 34716763
    [Google Scholar]
  33. MantovaniA. SchioppaT. PortaC. AllavenaP. SicaA. Role of tumor-associated macrophages in tumor progression and invasion.Cancer Metastasis Rev.200625331532210.1007/s10555‑006‑9001‑7 16967326
    [Google Scholar]
  34. MantovaniA. AllavenaP. SicaA. BalkwillF. Cancer-related inflammation.Nature2008454720343644410.1038/nature07205 18650914
    [Google Scholar]
  35. SharonovG.V. SerebrovskayaE.O. YuzhakovaD.V. BritanovaO.V. ChudakovD.M. B cells, plasma cells and antibody repertoires in the tumour microenvironment.Nat. Rev. Immunol.202020529430710.1038/s41577‑019‑0257‑x 31988391
    [Google Scholar]
  36. WoutersM.C.A. NelsonB.H. Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer.Clin. Cancer Res.201824246125613510.1158/1078‑0432.CCR‑18‑1481 30049748
    [Google Scholar]
  37. ZhuoC. XuY. YingM. LiQ. HuangL. LiD. CaiS. LiB. FOXP3+ Tregs: Heterogeneous phenotypes and conflicting impacts on survival outcomes in patients with colorectal cancer.Immunol. Res.201561333834710.1007/s12026‑014‑8616‑y 25608795
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073278304240614064748
Loading
/content/journals/cchts/10.2174/0113862073278304240614064748
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test