Skip to content
2000
Volume 28, Issue 12
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Neurodegenerative disorders represent a set of advancing, severe, and incapacitating conditions impacting millions globally, with a rising prevalence. Despite concerted efforts and an enhanced understanding of the intricate pathophysiology of neurodegeneration, the quest for effective treatments remains unfulfilled. Consequently, there exists a pressing clinical necessity for the exploration of innovative therapeutic approaches. Alpha-mangostin has exhibited beneficial effects in alleviating the severity of neurodegenerative disorders, primarily attributed to its antioxidant properties. Alpha-mangostin showcases diverse pharmacological effects, encompassing anti-inflammatory, anti-tumour, and antioxidant effects. Consequently, it has surfaced as a promising remedy with both prophylactic and restorative impacts on various neurodegenerative ailments. Recent research has illuminated the therapeutic targets of alpha-mangostin, suggesting its potential utility in addressing neurodegeneration. This review showcases the neuroprotective effects of alpha-mangostin. Drawing from numerous preliminary studies and taking into account the compound's remedial effects, the primary focus is on its role as a health-giving compound for the therapy of diseases associated with the degeneration of the nervous system. Given the substantial evidence supporting its efficacy in various experimental models, this review advocates for further investigations, with a special highlight on elucidating neuroprotective mechanisms and conducting clinical trials to validate its effectiveness in managing Alzheimer's disease as well as Parkinson's disease.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073311357240626103752
2024-07-09
2025-10-10
Loading full text...

Full text loading...

References

  1. GormanA.M. Neuronal cell death in neurodegenerative diseases: Recurring themes around protein handling.J. Cell. Mol. Med.2008126a2263228010.1111/j.1582‑4934.2008.00402.x 18624755
    [Google Scholar]
  2. BansalK. SinghV. SinghS. MishraS. Neuroprotective potential of hesperidin as therapeutic agent in the treatment of brain disorders: Preclinical evidence-based review.Curr. Mol. Med.2023243316326 36959141
    [Google Scholar]
  3. GoyalA. VermaA. DubeyN. RaghavJ. AgrawalA. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease.J. Food Biochem.20224612e1441510.1111/jfbc.14415 36106706
    [Google Scholar]
  4. GoyalA. DubeyN. VermaA. AgrawalA. Erucic acid: A possible therapeutic agent for neurodegenerative diseases.Curr. Mol. Med.2023244419427 37165502
    [Google Scholar]
  5. KimS.W. LeeJ.H. KimB. YangG. KimJ.U. Natural products as the potential to improve Alzheimer’s and Parkinson’s disease.Int. J. Mol. Sci.20232410882710.3390/ijms24108827 37240173
    [Google Scholar]
  6. TysnesO.B. StorsteinA. Epidemiology of Parkinson’s disease.J. Neural Transm.2017124890190510.1007/s00702‑017‑1686‑y 28150045
    [Google Scholar]
  7. KnopmanD.S. AmievaH. PetersenR.C. ChételatG. HoltzmanD.M. HymanB.T. NixonR.A. JonesD.T. Alzheimer disease.Nat. Rev. Dis. Primers2021713310.1038/s41572‑021‑00269‑y 33986301
    [Google Scholar]
  8. BloemB.R. OkunM.S. KleinC. Parkinson’s disease.Lancet2021397102912284230310.1016/S0140‑6736(21)00218‑X 33848468
    [Google Scholar]
  9. LengF. EdisonP. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here?Nat. Rev. Neurol.202117315717210.1038/s41582‑020‑00435‑y 33318676
    [Google Scholar]
  10. KeshavBansal MishraS. SinghV. BajpaiM. Nutraceuticals: A complementary approach in the management of Alzheimer’s disease.Neurochem. J.202317342344210.1134/S1819712423030030
    [Google Scholar]
  11. AarslandD. BatzuL. HallidayG.M. GeurtsenG.J. BallardC. Ray ChaudhuriK. WeintraubD. Parkinson disease-associated cognitive impairment.Nat. Rev. Dis. Primers2021714710.1038/s41572‑021‑00280‑3 34210995
    [Google Scholar]
  12. BansalK. SinghS. SinghV. BajpaiM. Nutraceuticals a food for thought in the treatment of parkinson’s disease.Curr. Nutr. Food Sci.202319996197710.2174/1573401319666230515104325
    [Google Scholar]
  13. EspositoE. CuzzocreaS. New therapeutic strategy for Parkinson’s and Alzheimer’s disease.Curr. Med. Chem.201017252764277410.2174/092986710791859324 20586718
    [Google Scholar]
  14. Pedraza-ChaverriJ. Cárdenas-RodríguezN. Orozco-IbarraM. Pérez-RojasJ.M. Medicinal properties of mangosteen (Garcinia mangostana).Food Chem. Toxicol.200846103227323910.1016/j.fct.2008.07.024 18725264
    [Google Scholar]
  15. MohammadN.A. Abang ZaidelD.N. MuhamadI.I. Abdul HamidM. YaakobH. Mohd JusohY.M. Optimization of the antioxidant-rich xanthone extract from mangosteen (Garcinia mangostana L.) pericarp via microwave-assisted extraction.Heliyon2019510e0257110.1016/j.heliyon.2019.e02571 31667409
    [Google Scholar]
  16. DingY.Y. LuanJ.J. FanY. OlatunjiO.J. SongJ. ZuoJ. α-Mangostin reduced the viability of A594 cells in vitro by provoking ROS production through downregulation of NAMPT/NAD.Cell Stress Chaperones202025116317210.1007/s12192‑019‑01063‑2 31898286
    [Google Scholar]
  17. SivaranjaniM. LeskinenK. AravindrajaC. SaavalainenP. PandianS.K. SkurnikM. RaviA.V. Deciphering the antibacterial mode of action of alpha-mangostin on staphylococcus epidermidis RP62A through an integrated transcriptomic and proteomic approach.Front. Microbiol.20191015010.3389/fmicb.2019.00150 30787919
    [Google Scholar]
  18. LarsupromL. RungrojN. LekcharoensukC. PruksakornC. KongkiatpaiboonS. ChenC. SukattaU. In vitro antibacterial activity of mangosteen (Garcinia mangostana Linn.) crude extract against Staphylococcus pseudintermedius isolates from canine pyoderma.Vet. Dermatol.2019306487e14510.1111/vde.12783 31441182
    [Google Scholar]
  19. KarunakaranT. EeG.C.L. IsmailI.S. Mohd NorS.M. ZamakshshariN.H. Acetyl- and O -alkyl- derivatives of β-mangostin from Garcinia mangostana and their anti-inflammatory activities.Nat. Prod. Res.201832121390139410.1080/14786419.2017.1350666 28715912
    [Google Scholar]
  20. ZouW. YinP. ShiY. JinN. GaoQ. LiJ. LiuF. A novel biological role of α-mangostin via TAK1-NF-κB pathway against inflammatory.Inflammation201942110311210.1007/s10753‑018‑0876‑6 30132203
    [Google Scholar]
  21. Pedraza-ChaverríJ. Reyes-FermínL.M. Nolasco-AmayaE.G. Orozco-IbarraM. Medina-CamposO.N. González-CuahutencosO. Rivero-CruzI. MataR. ROS scavenging capacity and neuroprotective effect of α-mangostin against 3-nitropropionic acid in cerebellar granule neurons.Exp. Toxicol. Pathol.200961549150110.1016/j.etp.2008.11.002 19108999
    [Google Scholar]
  22. JanhomP. DharmasarojaP. Neuroprotective effects of alpha-mangostin on MPP(+)-induced apoptotic cell death in neuroblastoma SH-SY5Y cells.J. Toxicol.2015201511110.1155/2015/919058 26357513
    [Google Scholar]
  23. FangY. SuT. QiuX. MaoP. XuY. HuZ. ZhangY. ZhengX. XieP. LiuQ. Protective effect of alpha-mangostin against oxidative stress induced-retinal cell death.Sci. Rep.2016612101810.1038/srep21018 26888416
    [Google Scholar]
  24. WathoniN. RusdinA. MotoyamaK. JoniI.M. LesmanaR. MuchtaridiM. Nanoparticle drug delivery systems for α-mangostin.Nanotechnol. Sci. Appl.202013233610.2147/NSA.S243017 32280205
    [Google Scholar]
  25. YangA. LiuC. WuJ. KouX. ShenR. A review on α-mangostin as a potential multi-target-directed ligand for Alzheimer’s disease.Eur. J. Pharmacol.202189717395010.1016/j.ejphar.2021.173950 33607107
    [Google Scholar]
  26. ChoiY.H. HanS.Y. KimY.J. KimY.M. ChinY.W. Absorption, tissue distribution, tissue metabolism and safety of α-mangostin in mangosteen extract using mouse models.Food Chem. Toxicol.20146614014610.1016/j.fct.2014.01.028 24472368
    [Google Scholar]
  27. HanS.Y. YouB.H. KimY.C. ChinY.W. ChoiY.H. Dose-independent ADME properties and tentative identification of metabolites of α-mangostin from Garcinia mangostana in mice by automated microsampling and UPLC-MS/MS methods.PLoS One2015107e013158710.1371/journal.pone.0131587 26176540
    [Google Scholar]
  28. LiL. HanA.R. KinghornA. FryeR. DerendorfH. ButterweckV. Pharmacokinetic properties of pure xanthones in comparison to a mangosteen fruit extract in rats.Planta Med.201379864665310.1055/s‑0032‑1328543 23673465
    [Google Scholar]
  29. KondoM. ZhangL. JiH. KouY. OuB. Bioavailability and antioxidant effects of a xanthone-rich Mangosteen (Garcinia mangostana) product in humans.J. Agric. Food Chem.200957198788879210.1021/jf901012f 19807152
    [Google Scholar]
  30. XieZ. SintaraM. ChangT. OuB. Functional beverage of Garcinia mangostana (mangosteen) enhances plasma antioxidant capacity in healthy adults.Food Sci. Nutr.201531323810.1002/fsn3.187 25649891
    [Google Scholar]
  31. ChitchumroonchokchaiC. RiedlK.M. SuksumrarnS. ClintonS.K. KinghornA.D. FaillaM.L. Xanthones in mangosteen juice are absorbed and partially conjugated by healthy adults.J. Nutr.2012142467568010.3945/jn.111.156992 22399525
    [Google Scholar]
  32. LiL. BrunnerI. HanA.R. HamburgerM. KinghornA.D. FryeR. ButterweckV. Pharmacokinetics of α‐mangostin in rats after intravenous and oral application.Mol. Nutr. Food Res.201155S1Suppl. 1S67S7410.1002/mnfr.201000511 21254395
    [Google Scholar]
  33. PetiwalaS.M. LiG. RamaiyaA. KumarA. GillR.K. SaksenaS. JohnsonJ.J. Pharmacokinetic characterization of mangosteen (Garcinia mangostana) fruit extract standardized to α-mangostin in C57BL/6 mice.Nutr. Res.201434433634510.1016/j.nutres.2014.03.002 24774070
    [Google Scholar]
  34. ZhaoY. TangG. TangQ. ZhangJ. HouY. CaiE. LiuS. LeiD. ZhangL. WangS. A method of effectively improved α-mangostin bioavailability.Eur. J. Drug Metab. Pharmacokinet.201641560561310.1007/s13318‑015‑0283‑4 25990757
    [Google Scholar]
  35. AishaA.F.A. IsmailZ. Abu-SalahK.M. MajidA.M.S.A. Solid dispersions of α-mangostin improve its aqueous solubility through self-assembly of nanomicelles.J. Pharm. Sci.2012101281582510.1002/jps.22806 22081501
    [Google Scholar]
  36. UdaniJ.K. SinghB.B. BarrettM.L. SinghV.J. Evaluation of Mangosteen juice blend on biomarkers of inflammation in obese subjects: A pilot, dose finding study.Nutr. J.2009814810.1186/1475‑2891‑8‑48 19843321
    [Google Scholar]
  37. ChenZ.L. HuangM. WangX.R. FuJ. HanM. ShenY.Q. XiaZ. GaoJ.Q. Transferrin-modified liposome promotes α-mangostin to penetrate the blood–brain barrier.Nanomedicine201612242143010.1016/j.nano.2015.10.021 26711963
    [Google Scholar]
  38. JujunP. PootakhamK. PongpaibulY. DuangratC. TharavichitkulP. Acute and repeated dose 28-day oral toxicity study of Garcinia mangostana Linn. rind extract.Chiang Mai University Journal of Natural Sciences.20087199208
    [Google Scholar]
  39. BunyongR. ChaijaroenkulW. PlengsuriyakarnT. Na-BangchangK. Antimalarial activity and toxicity of Garcinia mangostana Linn.Asian Pac. J. Trop. Med.20147969369810.1016/S1995‑7645(14)60118‑8
    [Google Scholar]
  40. JohnO.D. du PreezR. PanchalS.K. BrownL. Tropical foods as functional foods for metabolic syndrome.Food Funct.20201186946696010.1039/D0FO01133A 32692322
    [Google Scholar]
  41. YanX. SunY. RenS. ZhaoL. LiuW. ChenC. WangZ. LiW. Dietary α-mangostin provides protective effects against acetaminophen-induced hepatotoxicity in mice via Akt/mTOR-mediated inhibition of autophagy and apoptosis.Int. J. Mol. Sci.2018195133510.3390/ijms19051335 29723988
    [Google Scholar]
  42. IbrahimM.Y. HashimN.M. MohanS. AbdullaM.A. AbdelwahabS.I. ArbabI.A. YahayuM. AliL.Z. IshagO.E. α-Mangostin from Cratoxylum arborescens: An in vitro and in vivo toxicological evaluation.Arab. J. Chem.20158112913710.1016/j.arabjc.2013.11.017
    [Google Scholar]
  43. GoyalA. SolankiK. VermaA. Luteolin: Nature’s promising warrior against Alzheimer’s and Parkinson’s disease.J. Biochem. Mol. Toxicol.2023381e23619 38091364
    [Google Scholar]
  44. VermaA. ChaudharyS. SolankiK. GoyalA. YadavH.N. Exendin‐4: A potential therapeutic strategy for Alzheimer’s disease and Parkinson’s disease.Chem. Biol. Drug Des.20241031e1442610.1111/cbdd.14426 38230775
    [Google Scholar]
  45. WangM.H. ZhangK.J. GuQ.L. BiX.L. WangJ.X. Pharmacology of mangostins and their derivatives: A comprehensive review.Chin. J. Nat. Med.2017152819310.1016/S1875‑5364(17)30024‑9 28284429
    [Google Scholar]
  46. WangY. XiaZ. XuJ.R. WangY.X. HouL.N. QiuY. ChenH.Z. α-Mangostin, a polyphenolic xanthone derivative from mangosteen, attenuates β-amyloid oligomers-induced neurotoxicity by inhibiting amyloid aggregation.Neuropharmacology201262287188110.1016/j.neuropharm.2011.09.016 21958557
    [Google Scholar]
  47. ZhaoL.X. WangY. LiuT. WangY.X. ChenH.Z. XuJ.R. QiuY. α‐Mangostin decreases β‐amyloid peptides production via modulation of amyloidogenic pathway.CNS Neurosci. Ther.201723652653410.1111/cns.12699 28429536
    [Google Scholar]
  48. ChenY. BianY. WangJ.W. GongT.T. YingY.M. MaL.F. ShanW.G. XieX.Q. ZhanZ.J. Effects of α-mangostin derivatives on the Alzheimer’s disease model of rats and their mechanism: A combination of experimental study and computational systems pharmacology analysis.ACS Omega20205179846986310.1021/acsomega.0c00057 32391472
    [Google Scholar]
  49. KimJ. CastellanoJ.M. JiangH. BasakJ.M. ParsadanianM. PhamV. MasonS.M. PaulS.M. HoltzmanD.M. Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular A beta clearance.Neuron200964563264410.1016/j.neuron.2009.11.013 20005821
    [Google Scholar]
  50. YaoL. GuX. SongQ. WangX. HuangM. HuM. HouL. KangT. ChenJ. ChenH. GaoX. Nanoformulated alpha-mangostin ameliorates Alzheimer’s disease neuropathology by elevating LDLR expression and accelerating amyloid-beta clearance.J. Control. Release201622611410.1016/j.jconrel.2016.01.055 26836197
    [Google Scholar]
  51. JęśkoH. WencelP. StrosznajderR.P. StrosznajderJ.B. Sirtuins and their roles in brain aging and neurodegenerative disorders.Neurochem. Res.201742387689010.1007/s11064‑016‑2110‑y 27882448
    [Google Scholar]
  52. RuankhamW. SuwanjangW. PhopinK. SongtaweeN. PrachayasittikulV. PrachayasittikulS. Modulatory effects of alpha-mangostin mediated by SIRT1/3-FOXO3a pathway in oxidative stress-induced neuronal cells.Front. Nutr.2022871446310.3389/fnut.2021.714463 35155508
    [Google Scholar]
  53. VermaA. GoyalA. Reformative effect of daidzein on motor dysfunction following rotenone injection in ovariectomized rats.Rev. Bras. Farmacogn.202232456357410.1007/s43450‑022‑00277‑3
    [Google Scholar]
  54. GoyalA. VermaA. AgrawalA. DubeyN. KumarA. BehlT. Therapeutic implications of crocin in Parkinson’s disease: A review of preclinical research.Chem. Biol. Drug Des.202310161229124010.1111/cbdd.14210 36752710
    [Google Scholar]
  55. ZhangW. PhillipsK. WielgusA.R. LiuJ. AlbertiniA. ZuccaF.A. FaustR. QianS.Y. MillerD.S. ChignellC.F. WilsonB. Jackson-LewisV. PrzedborskiS. JosetD. LoikeJ. HongJ.S. SulzerD. ZeccaL. Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: Implications for progression of Parkinson’s disease.Neurotox. Res.2011191637210.1007/s12640‑009‑9140‑z 19957214
    [Google Scholar]
  56. SmithJ.A. DasA. RayS.K. BanikN.L. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases.Brain Res. Bull.2012871102010.1016/j.brainresbull.2011.10.004 22024597
    [Google Scholar]
  57. CristóvãoA.C. GuhathakurtaS. BokE. JeG. YooS.D. ChoiD.H. KimY.S. NADPH oxidase 1 mediates α-synucleinopathy in Parkinson’s disease.J. Neurosci.20123242144651447710.1523/JNEUROSCI.2246‑12.2012 23077033
    [Google Scholar]
  58. HuZ. WangW. LingJ. JiangC. α-Mangostin inhibits α-synuclein-induced microglial neuroinflammation and neurotoxicity.Cell. Mol. Neurobiol.201636581182010.1007/s10571‑015‑0264‑9 27002719
    [Google Scholar]
  59. ZhangW. WangT. PeiZ. MillerD.S. WuX. BlockM.L. WilsonB. ZhangW. ZhouY. HongJ.S. ZhangJ. Aggregated α‐synuclein activates microglia: A process leading to disease progression in Parkinson’s disease.FASEB J.200519653354210.1096/fj.04‑2751com 15791003
    [Google Scholar]
  60. ChenJ.Y. ZhuQ. CaiC.Z. LuoH.B. LuJ.H. α-mangostin derivative 4e as a PDE4 inhibitor promote proteasomal degradation of alpha-synuclein in Parkinson’s disease models through PKA activation.Phytomedicine202210115412510.1016/j.phymed.2022.154125 35525236
    [Google Scholar]
  61. HaoX.M. LiL.D. DuanC.L. LiY.J. Neuroprotective effect of α-mangostin on mitochondrial dysfunction and α-synuclein aggregation in rotenone-induced model of Parkinson’s disease in differentiated SH-SY5Y cells.J. Asian Nat. Prod. Res.201719883384510.1080/10286020.2017.1339349 28696167
    [Google Scholar]
  62. ParkheA. ParekhP. NallaL.V. SharmaN. SharmaM. GadepalliA. KateA. KhairnarA. Protective effect of alpha mangostin on rotenone induced toxicity in rat model of Parkinson’s disease.Neurosci. Lett.202071613465210.1016/j.neulet.2019.134652 31778768
    [Google Scholar]
  63. ParekhP. SharmaN. SharmaM. GadepalliA. SayyedA.A. ChatterjeeS. KateA. KhairnarA. AMPK-dependent autophagy activation and alpha-Synuclein clearance: A putative mechanism behind alpha-mangostin’s neuroprotection in a rotenone-induced mouse model of Parkinson’s disease.Metab. Brain Dis.20223782853287010.1007/s11011‑022‑01087‑1 36178640
    [Google Scholar]
  64. WangS. LiQ. JingM. AlbaE. YangX. SabatéR. HanY. PiR. LanW. YangX. ChenJ. Natural Xanthones from Garcinia mangostana with multifunctional activities for the therapy of Alzheimer’s Disease.Neurochem. Res.20164171806181710.1007/s11064‑016‑1896‑y 27038926
    [Google Scholar]
  65. GuanH. LiJ. TanX. LuoS. LiuY. MengY. WuB. ZhouY. YangY. ChenH. HouL. QiuY. LiJ. Natural xanthone α-mangostin inhibits lps-induced microglial inflammatory responses and memory impairment by blocking the TAK1/NF-κB signaling pathway.Mol. Nutr. Food Res.20206414200009610.1002/mnfr.202000096 32506806
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073311357240626103752
Loading
/content/journals/cchts/10.2174/0113862073311357240626103752
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test