Skip to content
2000
Volume 28, Issue 14
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Normal keratinocyte differentiation is important for epidermal wound healing. is a major gene regulating epidermal formation and differentiation. We identified miRNAs targeting and studied the association between the miRNAs and DNA methylation in keratinocyte differentiation.

Aims

This study aimed to explore the mechanisms regulating ΔNp63 expression during keratinocyte differentiation.

Methods

Bioinformatics analysis was performed to screen the miRNAs targeting and uncover potential pathway mechanisms. The differentiation model of keratinocytes was established by CaCl treatment. Furthermore, the effects of the miRNA transgenic technique on Δ Np63 and keratinocyte differentiation were studied. In addition, the RNA FISH experiment was conducted to detect the location of different miRNAs. A double luciferase reporter experiment was carried out to verify the potential bindings between the miRNAs and . A rescue experiment was also performed to assess the effects of different miRNAs targeting on keratinocyte differentiation. We analyzed the methylation patterns of the promoter regions of miRNAs using keratinocytes treated with 5-Aza-2’-deoxycytidine. Finally, we designed a methylation rescue experiment to verify the effects of miRNA promoter methylation on keratinocyte differentiation.

Results

Bioinformatics analysis showed that the miR-125b-5p and miR-199b-5p binding to the 3’UTR region decreased during skin development. Moreover, such binding may downregulate the PI3K/AKT/mTOR pathway. The expression levels of , , , , and // were all significantly increased during keratinocyte differentiation. Both miR-125b-5p and miR-199b-5p were localized in the cytoplasm. Luciferase assay results showed that both miR-125b-5p and miR-199b-5p can bind to the 3’UTR region of . Overexpression of can significantly counteract the inhibitory effect of miRNA mimics on keratinocyte differentiation. Moreover, the promoter regions of both miR-125b-5p and miR-199b-5p had methylation sites, and the methylation levels in those promoter regions were significantly increased during keratinocyte differentiation. 5-Aza-2’-Deoxycytidine treatment increased the expression of miR-125b-5p and miR-199b-5p and inhibited the differentiation of keratinocytes. Finally, miRNA inhibitors reversed the inhibitory effects of 5-Aza-2’-deoxycytidine on keratinocyte differentiation.

Conclusion

Promoter hypermethylation in miR-125b-5p and miR-199b-5p seem to promote keratinocyte differentiation upregulation of expression and the activation of the PI3K/AKT/mTOR pathway. The findings of this study are helpful for future research on skin development and clinical scar-free healing.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073314510240612101052
2025-07-22
2026-02-21
Loading full text...

Full text loading...

References

  1. WongR. GeyerS. WeningerW. GuimberteauJ.C. WongJ.K. The dynamic anatomy and patterning of skin.Exp. Dermatol.2016252929810.1111/exd.12832 26284579
    [Google Scholar]
  2. GalloR.L. Human skin is the largest epithelial surface for interaction with microbes.J. Invest. Dermatol.201713761213121410.1016/j.jid.2016.11.045 28395897
    [Google Scholar]
  3. GravitzL. Skin. Nature20185637732S8310.1038/d41586‑018‑07428‑4 30464282
    [Google Scholar]
  4. BanE. JeongS. ParkM. KwonH. ParkJ. SongE.J. KimA. Accelerated wound healing in diabetic mice by miRNA-497 and its anti-inflammatory activity.Biomed. Pharmacother.202012110961310.1016/j.biopha.2019.109613 31707336
    [Google Scholar]
  5. KöhlerF. Rodríguez-ParedesM. DNA methylation in epidermal differentiation, aging, and cancer.J. Invest. Dermatol.20201401384710.1016/j.jid.2019.05.011 31427190
    [Google Scholar]
  6. MooreL.D. LeT. FanG. DNA methylation and its basic function.Neuropsychopharmacology2013381233810.1038/npp.2012.112 22781841
    [Google Scholar]
  7. MervisJ.S. McGeeJ.S. DNA methylation and inflammatory skin diseases.Arch. Dermatol. Res.2020312746146610.1007/s00403‑019‑02005‑9 31696298
    [Google Scholar]
  8. CarneyB.C. DoughertyR.D. MoffattL.T. Simbulan-RosenthalC.M. ShuppJ.W. RosenthalD.S. Promoter methylation status in pro-opiomelanocortin does not contribute to dyspigmentation in hypertrophic scar.J. Burn Care Res.2019412irz16810.1093/jbcr/irz168 31541238
    [Google Scholar]
  9. WhyteJ.M. EllisJ.J. BrownM.A. KennaT.J. Best practices in DNA methylation: Lessons from inflammatory bowel disease, psoriasis and ankylosing spondylitis.Arthritis Res. Ther.201921113310.1186/s13075‑019‑1922‑y 31159831
    [Google Scholar]
  10. LuoG. JingX. YangS. PengD. DongJ. LiL. ReinachP.S. YanD. DNA methylation regulates corneal epithelial wound healing by targeting miR-200a and CDKN2B.Invest. Ophthalmol. Vis. Sci.201960265066010.1167/iovs.18‑25443 30785991
    [Google Scholar]
  11. LingL. RenM. YangC. LaoG. ChenL. LuoH. FengZ. YanL. Role of site-specific DNA demethylation in TNFα-induced MMP9 expression in keratinocytes.J. Mol. Endocrinol.201350327929010.1530/JME‑12‑0172 23417766
    [Google Scholar]
  12. HillM. TranN. miRNA interplay: Mechanisms and consequences in cancer.Dis. Model. Mech.2021144dmm04766210.1242/dmm.047662 33973623
    [Google Scholar]
  13. BlackstoneB.N. WilgusT.A. RoyS. WulffB.C. PowellH.M. Skin biomechanics and miRNA expression following chronic UVB irradiation.Adv. Wound Care202093798910.1089/wound.2019.1034 31993250
    [Google Scholar]
  14. GerasymchukM. CherkasovaV. KovalchukO. KovalchukI. The role of micrornas in organismal and skin aging.Int. J. Mol. Sci.20202115528110.3390/ijms21155281 32722415
    [Google Scholar]
  15. BeerL. KalininaP. KöcherM. LaggnerM. JeitlerM. Abbas ZadehS. CopicD. TschachlerE. MildnerM. miR-155 contributes to normal keratinocyte differentiation and is upregulated in the epidermis of psoriatic skin lesions.Int. J. Mol. Sci.20202123928810.3390/ijms21239288 33291448
    [Google Scholar]
  16. ViticchièG. LenaA.M. CianfaraniF. OdorisioT. Annicchiarico-PetruzzelliM. MelinoG. CandiE. MicroRNA-203 contributes to skin re-epithelialization.Cell Death Dis.2012311e43510.1038/cddis.2012.174 23190607
    [Google Scholar]
  17. BotchkarevV.A. FloresE.R. p53/p63/p73 in the epidermis in health and disease.Cold Spring Harb. Perspect. Med.201448a01524810.1101/cshperspect.a015248 25085956
    [Google Scholar]
  18. KosterM.I. RoopD.R. The role of p63 in development and differentiation of the epidermis.J. Dermatol. Sci.20043413910.1016/j.jdermsci.2003.10.003 14757276
    [Google Scholar]
  19. KosterM.I. DaiD. MarinariB. SanoY. CostanzoA. KarinM. RoopD.R. p63 induces key target genes required for epidermal morphogenesis.Proc. Natl. Acad. Sci.200710493255326010.1073/pnas.0611376104 17360634
    [Google Scholar]
  20. TestoniB. MantovaniR. Mechanisms of transcriptional repression of cell-cycle G2/M promoters by p63.Nucleic Acids Res.200634392893810.1093/nar/gkj477 16473849
    [Google Scholar]
  21. NguyenB.C. LefortK. MandinovaA. AntoniniD. DevganV. Della GattaG. KosterM.I. ZhangZ. WangJ. di VignanoA.T. KitajewskiJ. ChiorinoG. RoopD.R. MisseroC. DottoG.P. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation.Genes Dev.20062081028104210.1101/gad.1406006 16618808
    [Google Scholar]
  22. GriceE.A. SegreJ.A. The skin microbiome.Nat. Rev. Microbiol.20119424425310.1038/nrmicro2537 21407241
    [Google Scholar]
  23. BoehnckeW.H. SchönM.P. Psoriasis.Lancet2015386999798399410.1016/S0140‑6736(14)61909‑7 26025581
    [Google Scholar]
  24. QueS.K.T. ZwaldF.O. SchmultsC.D. Cutaneous squamous cell carcinoma.J. Am. Acad. Dermatol.201878223724710.1016/j.jaad.2017.08.059 29332704
    [Google Scholar]
  25. Sroka-TomaszewskaJ. TrzeciakM. Molecular mechanisms of atopic dermatitis pathogenesis.Int. J. Mol. Sci.2021228413010.3390/ijms22084130 33923629
    [Google Scholar]
  26. PiipponenM. LiD. LandénN.X. The immune functions of keratinocytes in skin wound healing.Int. J. Mol. Sci.20202122879010.3390/ijms21228790 33233704
    [Google Scholar]
  27. SonkolyE. WeiT. JansonP.C.J. SääfA. LundebergL. Tengvall-LinderM. NorstedtG. AleniusH. HomeyB. ScheyniusA. StåhleM. PivarcsiA. MicroRNAs: Novel regulators involved in the pathogenesis of psoriasis?PLoS One200727e61010.1371/journal.pone.0000610 17622355
    [Google Scholar]
  28. ZhaoZ. ZhaoS. LuoL. XiangQ. ZhuZ. WangJ. LiuY. LuoJ. miR-199b-5p-DDR1-ERK signalling axis suppresses prostate cancer metastasis via inhibiting epithelial-mesenchymal transition.Br. J. Cancer2021124598299410.1038/s41416‑020‑01187‑8 33239676
    [Google Scholar]
  29. ZhangM. YuanS.Z. SunH. SunL. ZhouD. YanJ. miR‐199b‐5p promoted chondrogenic differentiation of C3H10T1/2 cells by regulating JAG1.J. Tissue Eng. Regen. Med.202014111618162910.1002/term.3122 32870569
    [Google Scholar]
  30. DaiF. DuP. ChangY. JiE. XuY. WeiC. LiJ. Downregulation of MiR-199b-5p inducing differentiation of bone-marrow mesenchymal stem cells (BMSCs) toward cardiomyocyte-like cells via HSF1/HSP70 pathway.Med. Sci. Monit.2018242700271010.12659/MSM.907441 29715263
    [Google Scholar]
  31. QiuC.C. SuQ.S. ZhuS.Y. LiuR.C. Identification of potential biomarkers and biological pathways in juvenile dermatomyositis based on miRNA-mRNA network.BioMed Res. Int.201920191910.1155/2019/7814287 31886250
    [Google Scholar]
  32. CaoJ.Y. WangB. TangT.T. WenY. LiZ.L. FengS.T. WuM. LiuD. YinD. MaK.L. TangR.N. WuQ.L. LanH.Y. LvL.L. LiuB.C. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury.Theranostics202111115248526610.7150/thno.54550 33859745
    [Google Scholar]
  33. PengB. ThengP.Y. LeM.T.N. Essential functions of miR‐125b in cancer.Cell Prolif.2021542e1291310.1111/cpr.12913 33332677
    [Google Scholar]
  34. LuX. GanQ. GanC. ZhengY. CaiB. LiX. LiD. YinG. Long non-coding RNA PICSAR knockdown inhibits the progression of cutaneous squamous cell carcinoma by regulating miR-125b/YAP1 axis.Life Sci.202127411830310.1016/j.lfs.2020.118303 32841663
    [Google Scholar]
  35. GaoW. ShenH. LiuL. XuJ. XuJ. ShuY. MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis.J. Cancer Res. Clin. Oncol.2011137455756610.1007/s00432‑010‑0918‑4 20508945
    [Google Scholar]
  36. TianK. LiuW. ZhangJ. FanX. LiuJ. ZhaoN. YaoC. MiaoG. MicroRNA-125b exerts antitumor functions in cutaneous squamous cell carcinoma by targeting the STAT3 pathway.Cell. Mol. Biol. Lett.20202511210.1186/s11658‑020‑00207‑y 32161621
    [Google Scholar]
  37. ZhengY. CaiB. LiX. LiD. YinG. MiR-125b-5p and miR-181b-5p inhibit keratinocyte proliferation in skin by targeting Akt3.Eur. J. Pharmacol.201986217265910.1016/j.ejphar.2019.172659 31518563
    [Google Scholar]
  38. OuyangD. YeY. GuoD. YuX. ChenJ. QiJ. TanX. ZhangY. MaY. LiY. MicroRNA-125b-5p inhibits proliferation and promotes adipogenic differentiation in 3T3-L1 preadipocytes.Acta Biochim. Biophys. Sin.201547535536110.1093/abbs/gmv024 25918183
    [Google Scholar]
  39. StarbirdC. Transforming myself and academia for good.Cell2021184485185310.1016/j.cell.2021.01.032 33606982
    [Google Scholar]
  40. DottoG.P. Crosstalk of Notch with p53 and p63 in cancer growth control.Nat. Rev. Cancer20099858759510.1038/nrc2675 19609265
    [Google Scholar]
  41. RoemerK. Notch and the p53 clan of transcription factors.Adv. Exp. Med. Biol.201272722324010.1007/978‑1‑4614‑0899‑4_17 22399351
    [Google Scholar]
  42. NylanderK. VojtesekB. NenutilR. LindgrenB. RoosG. ZhanxiangW. SjöströmB. DahlqvistÅ. CoatesP.J. Differential expression of p63 isoforms in normal tissues and neoplastic cells.J. Pathol.2002198441742710.1002/path.1231 12434410
    [Google Scholar]
  43. MartinezL.A. ChenY. FischerS.M. ContiC.J. Coordinated changes in cell cycle machinery occur during keratinocyte terminal differentiation.Oncogene199918239740610.1038/sj.onc.1202300 9927196
    [Google Scholar]
  44. BerettaC. ChiarelliA. TestoniB. MantovaniR. GuerriniL. Regulation of the cyclin-dependent kinase inhibitor p57Kip2 expression by p63.Cell Cycle20054111625163110.4161/cc.4.11.2135 16258268
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073314510240612101052
Loading
/content/journals/cchts/10.2174/0113862073314510240612101052
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article. Supplementary Figure 1: The workflow of the specific analysis.


  • Article Type:
    Research Article
Keyword(s): Methylation; miR-125b-5p; miR-199b-5p; miRNAs; skin differentiation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test