Skip to content
2000
Volume 28, Issue 14
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

In the ongoing fight against bacterial resistance to antibiotics, this study focuses on synthesizing and evaluating 1,2,4-triazole derivatives to explore their potential as new antibacterial agents. 1,2,4-Triazole compounds are promising drug candidates with a wide range of therapeutic effects, including pain relief, antiseptic, antimicrobial, antioxidant, antiurease, anti-inflammatory, diuretic, anticancer, anticonvulsant, antidiabetic, and antimigraine properties.

Methods

The structures of all the synthesized compounds were identified using their physicochemical properties and spectral techniques, such as IR and NMR. These compounds were then evaluated in molecular docking studies against antimicrobial activity in and further supported by molecular dynamics studies.

Result

Compound , featuring a 6-chloro group on the phenyl ring, emerged as the most effective against Gram-positive compared to the standard antibiotic ciprofloxacin. Docking studies revealed high and comparable affinities for all ten ligands, with compounds 4 and 6 showing the best-docked activity against Penicillin Acylase mutants. Further, compounds 6 and 10 displayed significant affinity against D-alanine-D-alanine ligase (DDL) from during 100 ns MD simulation.

Conclusion

Notably, compound demonstrated the highest binding score to the 5C1P protein, suggesting its potential as a lead molecule for the development of potent and safer antimicrobial agents. This research contributes valuable insights into addressing the escalating challenge of bacterial resistance.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073314430240730095615
2024-08-28
2025-11-03
Loading full text...

Full text loading...

References

  1. MishraV.R. GhanavatkarC.W. MaliS.N. QureshiS.I. ChaudhariH.K. SekarN. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives.Comput. Biol. Chem.20197833033710.1016/j.compbiolchem.2019.01.003 30639681
    [Google Scholar]
  2. NathanC. Fresh approaches to anti-infective therapies.Sci. Translat. Med.20124140140sr210.1126/scitranslmed.3003081
    [Google Scholar]
  3. ScullyI.L. SwansonK. GreenL. JansenK.U. AndersonA.S. Anti-infective vaccination in the 21st century—new horizons for personal and public health.Curr. Opin. Microbiol.2015279610210.1016/j.mib.2015.07.006 26344360
    [Google Scholar]
  4. GuoY. WangJ. NiuG. ShuiW. SunY. ZhouH. ZhangY. YangC. LouZ. RaoZ. A structural view of the antibiotic degradation enzyme NDM-1 from a superbug.Protein Cell20112538439410.1007/s13238‑011‑1055‑9 21637961
    [Google Scholar]
  5. KhanS. AliA. KhanA.U. Structural and functional insight of New Delhi Metallo β-lactamase-1 variants.Future Med. Chem.201810222122910.4155/fmc‑2017‑0143 29202600
    [Google Scholar]
  6. SutharS.K. JosephA. LohanS. AlexA.T. Superbug NDM-1: A global health problem.Pharm. Lett.20124411831187
    [Google Scholar]
  7. DesikanP. BoseP. RangnekarA. NDM-beta-lactamase-1: Where do we stand?Indian J. Med. Res.2022155224325210.4103/ijmr.IJMR_685_19 35946201
    [Google Scholar]
  8. GaoF. WangT. XiaoJ. HuangG. Antibacterial activity study of 1,2,4-triazole derivatives.Eur. J. Med. Chem.201917327428110.1016/j.ejmech.2019.04.043 31009913
    [Google Scholar]
  9. BektaşH. KaraaliN. ŞahinD. DemirbaşA. KaraogluŞ.A. DemirbaşN. Synthesis and antimicrobial activities of some new 1, 2, 4-triazole derivatives.Molecules20101542427243810.3390/molecules15042427 20428053
    [Google Scholar]
  10. BarbuceanuS.F. SarametG. AlmajanG.L. DraghiciC. BarbuceanuF. BancescuG. New heterocyclic compounds from 1,2,4-triazole and 1,3,4-thiadiazole class bearing diphenylsulfone moieties. Synthesis, characterization and antimicrobial activity evaluation.Eur. J. Med. Chem.20124941742310.1016/j.ejmech.2012.01.031 22309915
    [Google Scholar]
  11. MaliS.N. PandeyA. 1, 2, 5-Thiadiazole Scaffold: A review on recent progress in biological activities.Comb. Chem. High Throughput Screen.202225577178710.2174/1386207324666210622162001 34161208
    [Google Scholar]
  12. KshatriyaR. KambaleD. MaliS. JejurkarV.P. LokhandeP. ChaudhariH.K. SahaS. Brønsted acid catalyzed domino synthesis of functionalized 4H‐chromens and their ADMET, molecular docking and antibacterial studies.ChemistrySelect20194277943794810.1002/slct.201901775
    [Google Scholar]
  13. JejurkarV.P. MaliS.N. KshatriyaR. ChaudhariH.K. SahaS. Synthesis, antimicrobial screening and in silico appraisal of iminocarbazole derivatives.ChemistrySelect20194329470947510.1002/slct.201901890
    [Google Scholar]
  14. JadhavB.S. YamgarR.S. KennyR.S. MaliS.N. ChaudhariH.K. MandewaleM.C. Synthesis, in silico and biological studies of thiazolyl-2h-chromen-2-one derivatives as potent antitubercular agents.Curr. Computeraided Drug Des.202016551152210.2174/1386207322666190722162100 31438831
    [Google Scholar]
  15. AnuseD.G. MaliS.N. ThoratB.R. YamgarR.S. ChaudhariH.K. Synthesis, SAR, in silico appraisal and anti-microbial study of substituted 2-aminobenzothiazoles derivatives.Curr. Computeraided Drug Des.202116680281310.2174/1573409915666191210125647 31820704
    [Google Scholar]
  16. MaliS.N. PandeyA. Synthesis of new hydrazones using a biodegradable catalyst, their biological evaluations and molecular modeling studies (Part-II).J. Computat. Biophy. Chem.202221785788210.1142/S2737416522500387
    [Google Scholar]
  17. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx.Methods Mol. Biol.2015126324325010.1007/978‑1‑4939‑2269‑7_19
    [Google Scholar]
  18. KondapuramS.K. SarvagallaS. CoumarM.S. Docking-based virtual screening using PyRx Tool: autophagy target Vps34 as a case study.Molecular Docking for Computer-Aided Drug Design.Academic Press202110.1016/B978‑0‑12‑822312‑3.00019‑9
    [Google Scholar]
  19. ShawD.E. Desmond molecular dynamics system. MaestroDesmond interoperability tools.2021Available from: https://www.schrodinger.com/platform/products/desmond/ (accessed on 28-6-2024)
    [Google Scholar]
  20. ManoharanA. OhJ.M. BennyF. KumarS. AbdelgawadM.A. GhoneimM.M. ShakerM.E. El-SherbinyM. AlmohaimeedH.M. GahtoriP. KimH. MathewB. Assembling a Cinnamyl Pharmacophore in the C3-Position of Substituted Isatins via Microwave-Assisted Synthesis: Development of a New Class of Monoamine Oxidase-B Inhibitors for the Treatment of Parkinson’s Disease.Molecules20232816616710.3390/molecules28166167 37630420
    [Google Scholar]
  21. KumarS. OhJ.M. PrabhakaranP. AwastiA. KimH. MathewB. Isatin-tethered halogen-containing acylhydrazone derivatives as monoamine oxidase inhibitor with neuroprotective effect.Sci. Rep.2024141126410.1038/s41598‑024‑51728‑x 38218887
    [Google Scholar]
  22. SharmaS. MittalN. BanikB.K. Chemistry and Therapeutic Aspect of Triazole: Insight into the Structure-activity Relationship.Curr. Pharm. Des.202329342702272010.2174/0113816128271288231023045049 37916492
    [Google Scholar]
  23. SaraswatP. JeyabalanG. HassanM.Z. AhsanM.J. Design, synthesis and biological evaluation of benzothiazole-thiophene hybrids: A new class of potent antimicrobial agents.Antiinfect. Agents2018161576310.2174/2211352515666171124155327
    [Google Scholar]
  24. Al-SoudY.A. Al-DweriM.N. Al-MasoudiN.A. Synthesis, antitumor and antiviral properties of some 1,2,4-triazole derivatives.Farmaco2004591077578310.1016/j.farmac.2004.05.006 15474054
    [Google Scholar]
  25. OmerR. Rashi̇dR.F. OthmanK. Exploring The Synthesis of 1,2,4-Triazole Derivatives: A Comprehensive Review.J. Phys. Chem. Funct. Mater.202361435610.54565/jphcfum.1263834
    [Google Scholar]
  26. UlusoyN. GürsoyA. ÖtükG. Synthesis and antimicrobial activity of some 1,2,4-triazole-3-mercaptoacetic acid derivatives.Farmaco2001561294795210.1016/S0014‑827X(01)01128‑4 11829115
    [Google Scholar]
  27. BrogiS. QuimqueM.T. NotarteK.I. AfricaJ.G. HernandezJ.B. TanS.M. CalderoneV. MacabeoA.P. Virtual Combinatorial Library Screening of Quinadoline B Derivatives against SARS-CoV-2 RNA-Dependent RNA Polymerase.Computation (Basel)2022101710.3390/computation10010007
    [Google Scholar]
  28. MacabeoA.P. QuimqueM.T. NotarteK.I. AdvientoX.A. CabunocM.H. de LeonV.N. delos Reyes, F.S.L.; Lugtu, E.J.; Manzano, J.A.; Monton, S.N.; Muñoz, J.E.; Ong, K.D.; Pilapil, D.Y.; Roque, V.; Tan, S.M.; Lim, J.A. Polyphenolic natural products active in silico against SARS-CoV-2 spike receptor binding domains and non-structural proteins-a review.Comb. Chem. High Throughput Screen.202326345948810.2174/1386207325666210917113207 34533442
    [Google Scholar]
  29. NotarteK.I.R. QuimqueM.T.J. MacaranasI.T. KhanA. PastranaA.M. VillafloresO.B. ArturoH.C.P. PilapilD.Y.H.IV TanS.M.M. WeiD.Q. Wenzel-StorjohannA. TasdemirD. YenC.H. JiS.Y. KimG.Y. ChoiY.H. MacabeoA.P.G. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-κB pathway and the increased Nrf2 level by a flavonol-enriched n-butanol fraction from Uvaria alba.ACS Omega2023865377539210.1021/acsomega.2c06451 36816691
    [Google Scholar]
  30. QuimqueM.T. NotarteK.I. LetadaA. FernandezR.A. PilapilD.Y.IV PueblosK.R. AgbayJ.C. DahseH.M. Wenzel-StorjohannA. TasdemirD. KhanA. WeiD.Q. Gose MacabeoA.P. Potential cancer-and Alzheimer’s Disease-targeting phosphodiesterase inhibitors from Uvaria alba: Insights from in vitro and consensus virtual screening.ACS Omega20216128403841710.1021/acsomega.1c00137 33817501
    [Google Scholar]
  31. YamariI. AbchirO. MaliS.N. ErrouguiA. TalbiM. KoualiM.E. ChtitaS. The anti-SARS-CoV-2 activity of novel 9, 10-dihydrophenanthrene derivatives: An insight into molecular docking, ADMET analysis, and molecular dynamics simulation.Sci. Am.202321e0175410.1016/j.sciaf.2023.e01754 37332393
    [Google Scholar]
  32. MaliS.N. TambeS. PratapA.P. CruzJ.N. Molecular modeling approaches to investigate essential oils (volatile compounds) interacting with molecular targets. Essential Oils: Applications and Trends in Food Science and Technology.ChamSpringer International Publishing202241744210.1007/978‑3‑030‑99476‑1_18
    [Google Scholar]
  33. KshatriyaR. ShelkeP. MaliS. YashwantraoG. PratapA. SahaS. Synthesis and evaluation of anticancer activity of pyrazolone appended triarylmethanes (TRAMs).ChemistrySelect20216246230623910.1002/slct.202101083
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073314430240730095615
Loading
/content/journals/cchts/10.2174/0113862073314430240730095615
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): ADMET; Antimicrobial activity; molecular docking; molecular dynamics; synthesis; triazoles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test