Skip to content
2000
Volume 28, Issue 14
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

In this study, we used immune repertoire (IR) sequencing technology to profile the diversity of peripheral blood T cell receptors and used transcriptomics to profile the gene expression of peripheral blood neutrophil mRNA in patients with mild-moderate knee osteoarthritis (KOA) before and after electroacupuncture (EA) treatment.

Methods

An 8-week intervention with EA was performed on 3 subjects with KOA. IR sequencing of complementarity determining region 3 (CDR3) was performed using RNA extracted from peripheral blood T cells of KOA subjects prior to and at the end of the intervention, as well as healthy volunteers (controls) who matched the subjects in sex and age. Neutrophils were extracted from the plasma of healthy individuals, pretreatment patients, and posttreatment patients for further transcriptome sequencing.

Results

The D50, diversity index (DI), and Shannon entropy values of circulatory T-cells were significantly lower in pretreatment KOA patients compared to healthy controls. Posttreatment KOA samples displayed significant decreases in serum proinflammatory factors, IL-8 and IL-18 ( < 0.01), as well as a substantial reduction in serum matrix MMP-3 and MMP-13 ( < 0.01, < 0.05). Transcriptome analysis revealed that the expression of CXCL2, IRF8, and PEAR1 ( < 0.05) was significantly higher in patients before the treatment than in the healthy population and was significantly down-regulated after the treatment. In contrast, the expression of SMPD3 ( < 0.05) showed the opposite trend.

Conclusion

EA may alleviate KOA by rebalancing T-cell homeostasis and improving systemic inflammation. At the same time, EA treatment can significantly enhance TCR diversity, reduce levels of proinflammatory factors, and increase levels of anti-inflammatory factors, thereby achieving therapeutic effects.

Clinical Trial registration

NCT 03366363.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073303471240805061026
2024-08-12
2025-11-04
Loading full text...

Full text loading...

/deliver/fulltext/cchts/28/14/CCHTS-28-14-14.html?itemId=/content/journals/cchts/10.2174/0113862073303471240805061026&mimeType=html&fmt=ahah

References

  1. HochbergM.C. AltmanR.D. AprilK.T. BenkhaltiM. GuyattG. McGowanJ. TowheedT. WelchV. WellsG. TugwellP. American college of rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee.Arthritis Care Res.201264446547410.1002/acr.21596 22563589
    [Google Scholar]
  2. PereiraD. PeleteiroB. AraújoJ. BrancoJ. SantosR.A. RamosE. The effect of osteoarthritis definition on prevalence and incidence estimates: A systematic review.Osteoarthritis Cartilage201119111270128510.1016/j.joca.2011.08.009 21907813
    [Google Scholar]
  3. VincentH.K. PercivalS.S. ConradB.P. SeayA.N. MonteroC. VincentK.R. Hyaluronic acid (HA) viscosupplementation on synovial fluid inflammation in knee osteoarthritis: A pilot study.Open Orthop. J.20137137838410.2174/1874325001307010378 24093052
    [Google Scholar]
  4. LivshitsG. ZhaiG. HartD.J. KatoB.S. WangH. WilliamsF.M.K. SpectorT.D. Interleukin‐6 is a significant predictor of radiographic knee osteoarthritis: The Chingford study.Arthritis Rheum.20096072037204510.1002/art.24598 19565477
    [Google Scholar]
  5. OrlowskyE.W. KrausV.B. The role of innate immunity in osteoarthritis: When our first line of defense goes on the offensive.J. Rheumatol.201542336337110.3899/jrheum.140382 25593231
    [Google Scholar]
  6. Sae-jungT. SengprasertP. ApinunJ. NgarmukosS. YuktanandanaP. TanavaleeA. ReantragoonR. Functional and T cell receptor repertoire analyses of peripheral blood and infrapatellar fat pad T cells in knee osteoarthritis.J. Rheumatol.201946330931710.3899/jrheum.170775 30323007
    [Google Scholar]
  7. TonchevaA. RemichkovaM. IkonomovaK. DimitrovaP. IvanovskaN. Inflammatory response in patients with active and inactive osteoarthritis.Rheumatol. Int.200929101197120310.1007/s00296‑009‑0864‑0 19184030
    [Google Scholar]
  8. FilkováM. LiškováM. HulejováH. HaluzíkM. GatterováJ. PavelkováA. PavelkaK. GayS. Müller-LadnerU. ŠenoltL. Increased serum adiponectin levels in female patients with erosive compared with non-erosive osteoarthritis: Figure 1.Ann. Rheum. Dis.200968229529610.1136/ard.2008.095737 19139213
    [Google Scholar]
  9. PerruccioA.V. MahomedN.N. ChandranV. GandhiR. Plasma adipokine levels and their association with overall burden of painful joints among individuals with hip and knee osteoarthritis.J. Rheumatol.201441233433710.3899/jrheum.130709 24334649
    [Google Scholar]
  10. BeekhuizenM. GiermanL.M. van SpilW.E. Van OschG.J.V.M. HuizingaT.W.J. SarisD.B.F. CreemersL.B. ZuurmondA.M. An explorative study comparing levels of soluble mediators in control and osteoarthritic synovial fluid.Osteoarthritis Cartilage201321791892210.1016/j.joca.2013.04.002 23598178
    [Google Scholar]
  11. Retraction: MicroRNA-26a reduces synovial inflammation and cartilage injury in osteoarthritis of knee joints through impairing the NF-κB signaling pathway.Biosci. Rep.2024445BSR-2018-2025_RET10.1042/BSR‑2018‑2025_RET 38808368
    [Google Scholar]
  12. WilhelmsenK. FarrarK. HellmanJ. Quantitative in vitro assay to measure neutrophil adhesion to activated primary human microvascular endothelial cells under static conditions.J. Vis. Exp.2013•••78e5067710.3791/50677 23995778
    [Google Scholar]
  13. JaeschkeH. Mechanisms of liver injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions.Am. J. Physiol. Gastrointest. Liver Physiol.20062906G1083G108810.1152/ajpgi.00568.2005 16687579
    [Google Scholar]
  14. JordanK.M. ArdenN.K. DohertyM. BannwarthB. BijlsmaJ.W. DieppeP. GuntherK. HauselmannH. Herrero-BeaumontG. KaklamanisP. LohmanderS. LeebB. LequesneM. MazieresB. Martin-MolaE. PavelkaK. PendletonA. PunziL. SerniU. SwobodaB. VerbruggenG. Zimmerman-GorskaI. DougadosM. EULAR recommendations 2003: An evidence based approach to the management of knee osteoarthritis: Report of a task force of the standing committee for international clinical studies including therapeutic trials (ESCISIT).Ann. Rheum. Dis.200362121145115510.1136/ard.2003.011742 14644851
    [Google Scholar]
  15. National Clinical Guideline Centre (UK)Osteoarthritis: Care and Management in AdultsNational Institute for Health and Care Excellence (UK): London2014
    [Google Scholar]
  16. CorbettM.S. RiceS.J.C. MadurasingheV. SlackR. FayterD.A. HardenM. SuttonA.J. MacPhersonH. WoolacottN.F. Acupuncture and other physical treatments for the relief of pain due to osteoarthritis of the knee: Network meta-analysis.Osteoarthritis Cartilage20132191290129810.1016/j.joca.2013.05.007 23973143
    [Google Scholar]
  17. ShiG.X. TuJ.F. WangT.Q. YangJ.W. WangL.Q. LinL.L. WangY. LiY.T. LiuC.Z. Effect of electro-acupuncture (EA) and manual acupuncture (MA) on markers of inflammation in knee osteoarthritis.J. Pain Res.2020132171217910.2147/JPR.S256950 32904642
    [Google Scholar]
  18. Torres-RosasR. YehiaG. PeñaG. MishraP. del Rocio Thompson-BonillaM. Moreno-EutimioM.A. Arriaga-PizanoL.A. IsibasiA. UlloaL. Dopamine mediates vagal modulation of the immune system by electroacupuncture.Nat. Med.201420329129510.1038/nm.3479 24562381
    [Google Scholar]
  19. FriedensohnS. KhanT.A. ReddyS.T. Advanced methodologies in high-throughput sequencing of immune repertoires.Trends Biotechnol.201735320321410.1016/j.tibtech.2016.09.010 28341036
    [Google Scholar]
  20. LiuX. WuJ. History, applications, and challenges of immune repertoire research.Cell Biol. Toxicol.201834644145710.1007/s10565‑018‑9426‑0 29484527
    [Google Scholar]
  21. TuJ.F. YangJ.W. ShiG.X. YuZ.S. LiJ.L. LinL.L. DuY.Z. YuX.G. HuH. LiuZ.S. JiaC.S. WangL.Q. ZhaoJ.J. WangJ. WangT. WangY. WangT.Q. ZhangN. ZouX. WangY. ShaoJ.K. LiuC.Z. Efficacy of intensive acupuncture versus sham acupuncture in knee osteoarthritis: A randomized controlled trial.Arthritis Rheumatol.202173344845810.1002/art.41584 33174383
    [Google Scholar]
  22. PeatG. ThomasE. DuncanR. WoodL. HayE. CroftP. Clinical classification criteria for knee osteoarthritis: Performance in the general population and primary care.Ann. Rheum. Dis.200665101363136710.1136/ard.2006.051482 16627539
    [Google Scholar]
  23. WuC.W. MorrellM.R. HeinzeE. ConcoffA.L. WollastonS.J. ArnoldE.L. SinghR. CharlesC. SkovrunM.L. FitzGeraldJ.D. MorelandL.W. KalunianK.C. Validation of american college of rheumatology classification criteria for knee osteoarthritis using arthroscopically defined cartilage damage scores.Semin. Arthritis Rheum.200535319720110.1016/j.semarthrit.2005.06.002 16325660
    [Google Scholar]
  24. SalaffiF. LeardiniG. CanesiB. MannoniA. FioravantiA. CaporaliR. LapadulaG. PunziL. Reliability and validity of the western ontario and mcmaster universities (WOMAC) osteoarthritis index in italian patients with osteoarthritis of the knee.Osteoarthritis Cartilage200311855156010.1016/S1063‑4584(03)00089‑X 12880577
    [Google Scholar]
  25. EmersonR.O. SherwoodA.M. RiederM.J. GuenthoerJ. WilliamsonD.W. CarlsonC.S. DrescherC.W. TewariM. BielasJ.H. RobinsH.S. High‐throughput sequencing of T‐cell receptors reveals a homogeneous repertoire of tumour‐infiltrating lymphocytes in ovarian cancer.J. Pathol.2013231443344010.1002/path.4260 24027095
    [Google Scholar]
  26. LiuX. ZhangW. ZhaoM. FuL. LiuL. WuJ. LuoS. WangL. WangZ. LinL. LiuY. WangS. YangY. LuoL. JiangJ. WangX. TanY. LiT. ZhuB. ZhaoY. GaoX. WanZ. HuangC. FangM. LiQ. PengH. LiaoX. ChenJ. LiF. LingG. ZhaoH. LuoH. XiangZ. LiaoJ. LiuY. YinH. LongH. WuH. Yang; Wang, J.; Lu, Q. T cell receptor β repertoires as novel diagnostic markers for systemic lupus erythematosus and rheumatoid arthritis.Ann. Rheum. Dis.20197881070107810.1136/annrheumdis‑2019‑215442 31101603
    [Google Scholar]
  27. LiY. WangX. TengD. ChenH. WangM. WangJ. ZhangJ. HeW. Identification of the ligands of TCRγδ by screening the immune repertoire of γδT cells from patients with tuberculosis.Front. Immunol.201910228210.3389/fimmu.2019.02282 31608066
    [Google Scholar]
  28. LinZ. QianS. GongY. RenJ. ZhaoL. WangD. WangX. ZhangY. WangZ. ZhangQ. Deep sequencing of the T cell receptor β repertoire reveals signature patterns and clonal drift in atherosclerotic plaques and patients.Oncotarget2017859993129932210.18632/oncotarget.19892 29245903
    [Google Scholar]
  29. LiuH. PanW. TangC. TangY. WuH. YoshimuraA. DengY. HeN. LiS. The methods and advances of adaptive immune receptors repertoire sequencing.Theranostics202111188945896310.7150/thno.61390 34522220
    [Google Scholar]
  30. YaoX.S. DiaoY. SunW.B. LuoJ.M. QinM. TangX.Y. Analysis of the CDR3 length repertoire and the diversity of TCR alpha chain in human peripheral blood T lymphocytes.Cell. Mol. Immunol.200743215220 17601376
    [Google Scholar]
  31. LiD. HuL. LiangQ. ZhangC. ShiY. WangB. WangK. Peripheral T cell receptor beta immune repertoire is promptly reconstituted after acute myocardial infarction.J. Transl. Med.20191714010.1186/s12967‑019‑1788‑4 30728066
    [Google Scholar]
  32. ZhongZ. WuH. ZhangQ. ZhongW. ZhaoP. Characteristics of T cell receptor repertoires of patients with acute myocardial infarction through high-throughput sequencing.J. Transl. Med.20191712110.1186/s12967‑019‑1768‑8 30634977
    [Google Scholar]
  33. CuiJ.H. LinK.R. YuanS.H. JinY.B. ChenX.P. SuX.K. JiangJ. PanY.M. MaoS.L. MaoX.F. LuoW. TCR repertoire as a novel indicator for immune monitoring and prognosis assessment of patients with cervical cancer.Front. Immunol.20189272910.3389/fimmu.2018.02729 30524447
    [Google Scholar]
  34. BritanovaO.V. PutintsevaE.V. ShugayM. MerzlyakE.M. TurchaninovaM.A. StaroverovD.B. BolotinD.A. LukyanovS. BogdanovaE.A. MamedovI.Z. LebedevY.B. ChudakovD.M. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling.J. Immunol.201419262689269810.4049/jimmunol.1302064 24510963
    [Google Scholar]
  35. Sadighi AkhaA.A. Aging and the immune system: An overview.J. Immunol. Methods2018463212610.1016/j.jim.2018.08.005 30114401
    [Google Scholar]
  36. ManjunathN. ShankarP. WanJ. WeningerW. CrowleyM.A. HieshimaK. SpringerT.A. FanX. ShenH. LiebermanJ. von AndrianU.H. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes.J. Clin. Invest.2001108687187810.1172/JCI13296 11560956
    [Google Scholar]
  37. XiaoJ. ZhangP. CaiF.L. LuoC.G. PuT. PanX.L. TianM. IL-17 in osteoarthritis: A narrative review.Open Life Sci.20231812022074710.1515/biol‑2022‑0747 37854319
    [Google Scholar]
  38. SotiropoulosC. TheodorouG. RepaC. MarinakisT. VerigouE. SolomouE. KarakantzaM. SymeonidisA. Severe impairment of regulatory T-cells and Th1-lymphocyte polarization in patients with Gaucher disease.JIMD Rep.20141810711510.1007/8904_2014_357 25308560
    [Google Scholar]
  39. YamashinaS. HaradaK. TanakaR. InoueY. Abnormal gait pattern examination screening for physical activity level after one year in patients with knee osteoarthritis.J. Funct. Morphol. Kinesiol.2023812410.3390/jfmk8010024 36810508
    [Google Scholar]
  40. TubachF. RavaudP. BaronG. FalissardB. LogeartI. BellamyN. BombardierC. FelsonD. HochbergM. van der HeijdeD. DougadosM. Evaluation of clinically relevant changes in patient reported outcomes in knee and hip osteoarthritis: The minimal clinically important improvement.Ann. Rheum. Dis.2005641293310.1136/ard.2004.022905 15208174
    [Google Scholar]
  41. OrnettiP. DougadosM. PaternotteS. LogeartI. GossecL. Validation of a numerical rating scale to assess functional impairment in hip and knee osteoarthritis: Comparison with the WOMAC function scale.Ann. Rheum. Dis.201170574074610.1136/ard.2010.135483 21149497
    [Google Scholar]
  42. KapoorM. Martel-PelletierJ. LajeunesseD. PelletierJ.P. FahmiH. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis.Nat. Rev. Rheumatol.201171334210.1038/nrrheum.2010.196 21119608
    [Google Scholar]
  43. WangY. XuD. LongL. DengX. TaoR. HuangG. Correlation between plasma, synovial fluid and articular cartilage Interleukin-18 with radiographic severity in 33 patients with osteoarthritis of the knee.Clin. Exp. Med.201414329730410.1007/s10238‑013‑0251‑8 23958877
    [Google Scholar]
  44. KanekoS. SatohT. ChibaJ. JuC. InoueK. KagawaJ. Interleukin–6 and interleukin–8 levels in serum and synovial fluid of patients with osteoarthritis.Cytokines Cell. Mol. Ther.200062717910.1080/13684730050515796 11108572
    [Google Scholar]
  45. MonibiF. RollerB. StokerA. GarnerB. BalS. CookJ. Identification of synovial fluid biomarkers for knee osteoarthritis and correlation with radiographic assessment.J. Knee Surg.201529324224710.1055/s‑0035‑1549022 25927354
    [Google Scholar]
  46. RuanG. XuJ. WangK. WuJ. ZhuQ. RenJ. BianF. ChangB. BaiX. HanW. DingC. Associations between knee structural measures, circulating inflammatory factors and MMP13 in patients with knee osteoarthritis.Osteoarthritis Cartilage20182681063106910.1016/j.joca.2018.05.003 29753949
    [Google Scholar]
  47. WangK. XuJ. CaiJ. ZhengS. YangX. DingC. Serum levels of resistin and interleukin-17 are associated with increased cartilage defects and bone marrow lesions in patients with knee osteoarthritis.Mod. Rheumatol.201727233934410.1080/14397595.2016.1205777 27400438
    [Google Scholar]
  48. DuF. LüL. TengJ. ShenN. YeP. BaoC. T-614 alters the production of matrix metalloproteinases (MMP-1 andMMP-3) and inhibits the migratory expansion of rheumatoid synovial fibroblasts, in vitro.Int. Immunopharmacol.2012131546010.1016/j.intimp.2012.03.003 22446297
    [Google Scholar]
  49. WojdasiewiczP. PoniatowskiŁ.A. SzukiewiczD. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis.Mediators Inflamm.2014201411910.1155/2014/561459 24876674
    [Google Scholar]
  50. HensleyM. DengJ. Acute on chronic liver failure and immune dysfunction: A mimic of sepsis.Semin. Respir. Crit. Care Med.201839558859710.1055/s‑0038‑1672201 30485889
    [Google Scholar]
  51. Shankar HariM. SummersC. Major surgery and the immune system: From pathophysiology to treatment.Curr. Opin. Crit. Care201824658859310.1097/MCC.0000000000000561 30299310
    [Google Scholar]
  52. RameshM. HammD. SimchoniN. Cunningham-RundlesC. Clonal and constricted T cell repertoire in common variable immune deficiency.Clin. Immunol.20171781910.1016/j.clim.2015.01.002 25596453
    [Google Scholar]
  53. ApinunJ. SengprasertP. YuktanandanaP. NgarmukosS. TanavaleeA. ReantragoonR. Immune mediators in osteoarthritis: Infrapatellar fat pad-infiltrating CD8+ T cells are increased in osteoarthritic patients with higher clinical radiographic grading.Int. J. Rheumatol.201620161810.1155/2016/9525724 28070192
    [Google Scholar]
  54. HopkinsA.C. YarchoanM. DurhamJ.N. YuskoE.C. RytlewskiJ.A. RobinsH.S. LaheruD.A. LeD.T. LutzE.R. JaffeeE.M. T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma.JCI Insight2018313e12209210.1172/jci.insight.122092 29997287
    [Google Scholar]
  55. WangT.Q. LiL.R. TanC.X. YangJ.W. ShiG.X. WangL.Q. HuH. LiuZ.S. WangJ. WangT. YuanY. JiaW.R. LiH. WangX.W. WuB. TuJ.F. LiuC.Z. Effect of electroacupuncture on gut microbiota in participants with knee osteoarthritis.Front. Cell. Infect. Microbiol.20211159743110.3389/fcimb.2021.597431 34671567
    [Google Scholar]
  56. GuY. ZhangX. LiH. WangR. JinC. WangJ. JinZ. LuJ. LingC. ShaoF. ZhangJ. ShiL. Novel subsets of peripheral immune cells associated with promoting stroke recovery in mice.CNS Neurosci. Ther.2024304e1451810.1111/cns.14518 37905680
    [Google Scholar]
  57. LaiX. DingH. YuR. BaiH. LiuY. CaoJ. CXCL14 protects against polymicrobial sepsis by enhancing antibacterial functions of macrophages.Am. J. Respir. Cell Mol. Biol.202267558960110.1165/rcmb.2022‑0249OC 35926119
    [Google Scholar]
  58. ChenX. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation.Theranostics20211173392341610.7150/thno.52435
    [Google Scholar]
  59. PanJ. ZhangL. WangX. LiL. YangC. WangZ. SuK. HuX. ZhangY. RenG. JiangJ. LiP. HuangJ. Chronic stress induces pulmonary epithelial cells to produce acetylcholine that remodels lung pre-metastatic niche of breast cancer by enhancing NETosis.J. Exp. Clin. Cancer Res.202342125510.1186/s13046‑023‑02836‑5 37773152
    [Google Scholar]
  60. LeeS. KimM.J. AhnS.I. ChoiS.K. MinK.Y. ChoiW.S. YouJ.S. Epigenetic landscape analysis reveals the significance of early reduced chromatin accessibility in osteoclastogenesis.Bone202317711691810.1016/j.bone.2023.116918 37739296
    [Google Scholar]
  61. GocJ. GermainC. Vo-BourgaisT.K.D. LupoA. KleinC. KnockaertS. de ChaisemartinL. OuakrimH. BechtE. AlifanoM. ValidireP. RemarkR. HammondS.A. CremerI. DamotteD. FridmanW.H. Sautès-FridmanC. Dieu-NosjeanM.C. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells.Cancer Res.201474370571510.1158/0008‑5472.CAN‑13‑1342 24366885
    [Google Scholar]
  62. TangH. PanseG. BraddockD. PerincheriS. XuM.L. McNiffJ.M. IRF8 may be a useful marker for blastic plasmacytoid dendritic cell neoplasm, especially with weak CD123 expression.J. Cutan. Pathol.202350759560010.1111/cup.14439 37082914
    [Google Scholar]
  63. MartinE.M. ClarkJ.C. MontagueS.J. MoránL.A. DiY. BullL.J. WhittleL. RakaF. BukaR.J. ZafarI. KardebyC. SlaterA. WatsonS.P. Trivalent nanobody-based ligands mediate powerful activation of GPVI, CLEC-2, and PEAR1 in human platelets whereas FcγRIIA requires a tetravalent ligand.J. Thromb. Haemost.202422127128510.1016/j.jtha.2023.09.026 37813196
    [Google Scholar]
  64. Rotter SopasakisV. SandstedtJ. JohanssonM. LundqvistA. BergströmG. JeppssonA. Mattsson HulténL. Toll-like receptor-mediated inflammation markers are strongly induced in heart tissue in patients with cardiac disease under both ischemic and non-ischemic conditions.Int. J. Cardiol.201929323824710.1016/j.ijcard.2019.06.033 31230935
    [Google Scholar]
  65. ElenbaasJ.S. PudupakkamU. AshworthK.J. KangC.J. PatelV. SantanaK. JungI.H. LeeP.C. BurksK.H. AmruteJ.M. MechamR.P. HalabiC.M. AlisioA. Di PaolaJ. StitzielN.O. Author Correction: SVEP1 is an endogenous ligand for the orphan receptor PEAR1.Nat. Commun.2023141151110.1038/s41467‑023‑37005‑x 36932061
    [Google Scholar]
  66. YangW.Y. IzziB. BressA.P. ThijsL. CitterioL. WeiF.F. SalviE. Delli CarpiniS. ManuntaP. CusiD. HoylaertsM.F. LuttunA. VerhammeP. HardikarS. NawrotT.S. StaessenJ.A. ZhangZ.Y. Association of colorectal cancer with genetic and epigenetic variation in PEAR1—A population-based cohort study.PLoS One2022174e026648110.1371/journal.pone.0266481 35390065
    [Google Scholar]
  67. YaoY. TangX.F. ZhangJ. H Association of PEAR1 genetic variants with platelet reactivity in response to dual antiplatelet therapy with aspirin and clopidogrel in the Chinese patient population after percutaneous coronary intervention.Thromb. Res.2016141283410.1016/j.thromres.2016.02.031
    [Google Scholar]
  68. ZhongY. ZhangY. WeiS. ChenJ. ZhongC. CaiW. JinW. PengH. Dissecting the effect of sphingolipid metabolism gene in progression and microenvironment of osteosarcoma to develop a prognostic signature.Front. Endocrinol.202213103065510.3389/fendo.2022.1030655 36313783
    [Google Scholar]
  69. TheresiaK.J. WolfgangH. GundulaG. MichaelE. AlexanderW. CarolineG. LauraF. RabihC. Heinz-PeterG. Prenatal diagnosis of SMPD4 loss ‐ A neurodevelopmental disorder with microcephaly, arthrogryposis and structural brain anomalies.Prenat. Diagn.202343328428710.1002/pd.6324 36703249
    [Google Scholar]
  70. LuanH. ChenS. ZhaoL. LiuS. LuanT. Precise lipidomics decipher circulating ceramide and sphingomyelin cycle associated with the progression of rheumatoid arthritis.J. Proteome Res.202322123893390010.1021/acs.jproteome.3c00574 37883661
    [Google Scholar]
  71. LiJ. ManickamG. RayS. OhC. YasudaH. MoffattP. MurshedM. Smpd3 expression in both chondrocytes and osteoblasts is required for normal endochondral bone development.Mol. Cell. Biol.201636172282229910.1128/MCB.01077‑15 27325675
    [Google Scholar]
  72. StoffelW. HammelsI. JenkeB. Schmidt-SoltauI. NiehoffA. Neutral sphingomyelinase 2 (SMPD3) deficiency in mice causes chondrodysplasia with unimpaired skeletal mineralization.Am. J. Pathol.201918991831184510.1016/j.ajpath.2019.05.008 31199918
    [Google Scholar]
  73. LiuF. LiX. YueH. JiJ. YouM. DingL. FanH. HouY. TLR ‐induced SMPD 3 defects enhance inflammatory response of B cell and macrophage in the pathogenesis of SLE.Scand. J. Immunol.201786537738810.1111/sji.12611 28889482
    [Google Scholar]
  74. Liu-BryanR. Synovium and the innate inflammatory network in osteoarthritis progression.Curr. Rheumatol. Rep.201315532310.1007/s11926‑013‑0323‑5 23516014
    [Google Scholar]
  75. RobinsonW.H. LepusC.M. WangQ. RaghuH. MaoR. LindstromT.M. SokoloveJ. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis.Nat. Rev. Rheumatol.2016121058059210.1038/nrrheum.2016.136 27539668
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073303471240805061026
Loading
/content/journals/cchts/10.2174/0113862073303471240805061026
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher's website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test