Skip to content
2000
Volume 28, Issue 14
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Systemic Lupus Erythematosus (SLE) is a multifactorial and complex immune disease; however, the relevance of COVID-19 infection in SLE patients remains uncertain.

Aim

This study aims to explore the key candidate genes and pathways in patients with SLE. It also seeks to employ bioinformatics analysis to unravel the molecular signatures inherent in both SLE and COVID-19 patients. The ultimate aim is to identify potential targets and markers specifically relevant to SLE patients who contract SARS-CoV-2.

Methods

Datasets (GSE12374, GSE20864, GSE61635, GSE81622, and GSE144390) from the Gene Expression Omnibus (GEO) database were analyzed using Robust Rank Aggregation (RRA) method to identify differential expression genes (DEGs) in SLE patients compared to healthy individuals. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, tissue-specific gene analysis, and Protein-protein interaction (PPI) network were performed. Finally, the Venn diagram was employed to identify the intersections of COVID-19 genes, serving as potential targets for SLE patients with COVID-19 infection.

Results

A total of 154 DEGs were discovered, with GO enrichment indicating a predominant involvement in the defense response against the virus (<0.001). KEGG pathway analysis showed enrichment in the NOD-like receptor signaling pathway and coronavirus disease, specifically COVID-19 (<0.001). Tissue-specific genes related to the hematological and immune systems were emphasized (74%). The PPI network highlighted 22 genes, and 5 key genes, namely, IFIT1, IFIT3, MX1, MX2, and OAS3, which were identified after intersecting with COVID-19 patients’ data.

Conclusion

IFIT1, IFIT3, MX1, MX2, and OAS3 exhibiting differential expression, as well as the pathways associated with COVID-19, could potentially function as biomarkers and therapeutic targets for individuals with SLE infected with COVID-19.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073311196240625114150
2024-08-09
2025-11-06
Loading full text...

Full text loading...

References

  1. NarváezJ. Systemic lupus erythematosus 2020.Med. Clin.20201551149450110.1016/j.medcli.2020.05.009 32586673
    [Google Scholar]
  2. ScherlingerM. MertzP. SagezF. MeyerA. FeltenR. ChatelusE. JavierR.M. SordetC. MartinT. KorganowA.S. GuffroyA. PoindronV. RichezC. TruchetetM.E. BlancoP. SchaeverbekeT. SibiliaJ. DevillersH. ArnaudL. Worldwide trends in all-cause mortality of auto-immune systemic diseases between 2001 and 2014.Autoimmun. Rev.202019610253110.1016/j.autrev.2020.102531 32234406
    [Google Scholar]
  3. SaricaogluE.M. HasanogluI. GunerR. The first reactive arthritis case associated with COVID‐19.J. Med. Virol.202193119219310.1002/jmv.26296 32652541
    [Google Scholar]
  4. QuagliaM. MerlottiG. De AndreaM. BorgognaC. CantaluppiV. Viral infections and systemic lupus erythematosus: New players in an old story.Viruses202113227710.3390/v13020277 33670195
    [Google Scholar]
  5. LarsenM. SauceD. DebackC. ArnaudL. MathianA. MiyaraM. BoutolleauD. ParizotC. DorghamK. PapagnoL. AppayV. AmouraZ. GorochovG. Exhausted cytotoxic control of Epstein-Barr virus in human lupus.PLoS Pathog.2011710e100232810.1371/journal.ppat.1002328 22028659
    [Google Scholar]
  6. TsokosG.C. Systemic lupus erythematosus.N. Engl. J. Med.2011365222110212110.1056/NEJMra1100359 22129255
    [Google Scholar]
  7. LisnevskaiaL. MurphyG. IsenbergD. Systemic lupus erythematosus.Lancet201438499571878188810.1016/S0140‑6736(14)60128‑8 24881804
    [Google Scholar]
  8. MuskardinT.L.W. NiewoldT.B. Type I interferon in rheumatic diseases.Nat. Rev. Rheumatol.201814421422810.1038/nrrheum.2018.31 29559718
    [Google Scholar]
  9. ChilamakuriR. AgarwalS. COVID-19: Characteristics and therapeutics.Cells2021102206
    [Google Scholar]
  10. CrookH. RazaS. NowellJ. YoungM. EdisonP. Long covid—mechanisms, risk factors, and management.BMJ20213741648n164810.1136/bmj.n1648 34312178
    [Google Scholar]
  11. ZizzoG. TamburelloA. CastelnovoL. LariaA. MumoliN. FaggioliP.M. StefaniI. MazzoneA. Immunotherapy of COVID-19: Inside and beyond IL-6 signalling.Front. Immunol.20221379531510.3389/fimmu.2022.795315 35340805
    [Google Scholar]
  12. LoweryS.A. SariolA. PerlmanS. Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19.Cell Host Microbe20212971052106210.1016/j.chom.2021.05.004 34022154
    [Google Scholar]
  13. CloughE. BarrettT. The gene expression omnibus database.Methods Mol. Biol.201614189311010.1007/978‑1‑4939‑3578‑9_5 27008011
    [Google Scholar]
  14. KoldeR. LaurS. AdlerP. ViloJ. Robust rank aggregation for gene list integration and meta-analysis.Bioinformatics201228457358010.1093/bioinformatics/btr709 22247279
    [Google Scholar]
  15. Gene ontology consortium: Going forward.Nucleic Acids Res.201543Database issueD1049D1056 25428369
    [Google Scholar]
  16. DuJ. YuanZ. MaZ. SongJ. XieX. ChenY. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model.Mol. Biosyst.20141092441244710.1039/C4MB00287C 24994036
    [Google Scholar]
  17. WuC. JinX. TsuengG. AfrasiabiC. SuA.I. BioGPS: Bbuilding your own mash-up of gene annotations and expression profiles.Nucleic Acids Res.201644D1D313D31610.1093/nar/gkv1104 26578587
    [Google Scholar]
  18. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  19. JungJ.Y. SuhC.H. Infection in systemic lupus erythematosus, similarities, and differences with lupus flare.Korean J. Intern. Med.201732342943810.3904/kjim.2016.234 28490724
    [Google Scholar]
  20. Ocampo-PiraquiveV. Nieto-AristizábalI. CañasC.A. TobónG.J. Mortality in systemic lupus erythematosus: Causes, predictors and interventions.Expert Rev. Clin. Immunol.201814121043105310.1080/1744666X.2018.1538789 30338717
    [Google Scholar]
  21. ZhaoX. ZhangL. WangJ. ZhangM. SongZ. NiB. YouY. Identification of key biomarkers and immune infiltration in systemic lupus erythematosus by integrated bioinformatics analysis.J. Transl. Med.20211913510.1186/s12967‑020‑02698‑x 33468161
    [Google Scholar]
  22. KongJ. LiL. ZhiminL. YanJ. JiD. ChenY. YuanyuanW. ChenX. ShaoH. WangJ. DaZ. Potential protein biomarkers for systemic lupus erythematosus determined by bioinformatics analysis.Comput. Biol. Chem.20198310713510.1016/j.compbiolchem.2019.107135 31751880
    [Google Scholar]
  23. MasonA. AnverH. LwinM. HolroydC. FaustS.N. EdwardsC.J. Lupus, vaccinations and COVID-19: What we know now.Lupus202130101541155210.1177/09612033211024355 34134555
    [Google Scholar]
  24. DanzaA. Ruiz-IrastorzaG. Infection risk in systemic lupus erythematosus patients: Susceptibility factors and preventive strategies.Lupus201322121286129410.1177/0961203313493032 24098001
    [Google Scholar]
  25. StradnerM.H. DejacoC. ZwerinaJ. Fritsch-StorkR.D. Rheumatic musculoskeletal diseases and covid-19 a review of the first 6 months of the pandemic.Front. Med.2020756214210.3389/fmed.2020.562142 33154972
    [Google Scholar]
  26. GianfrancescoM. HyrichK.L. Al-AdelyS. CarmonaL. DanilaM.I. GossecL. IzadiZ. JacobsohnL. KatzP. Lawson-ToveyS. MateusE.F. RushS. SchmajukG. SimardJ. StrangfeldA. TrupinL. WyshamK.D. BhanaS. CostelloW. GraingerR. HausmannJ.S. LiewJ.W. SirotichE. SufkaP. WallaceZ.S. YazdanyJ. MachadoP.M. RobinsonP.C. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: Data from the COVID-19 global rheumatology alliance physician-reported registry.Ann. Rheum. Dis.202079785986610.1136/annrheumdis‑2020‑217871 32471903
    [Google Scholar]
  27. ZulfiqarA.A. Lorenzo-VillalbaN. HasslerP. AndrèsE. Immune thrombocytopenic purpura in a patient with covid-19.N. Engl. J. Med.202038218e4310.1056/NEJMc2010472 32294340
    [Google Scholar]
  28. KondoY. KanekoY. OshigeT. FukuiH. SaitoS. OkayamaM. KamataH. IshiiM. HasegawaN. FukunagaK. TakeuchiT. Exacerbation of immune thrombocytopenia triggered by COVID-19 in patients with systemic lupus erythematosus.Ann. Rheum. Dis.2021805e7710.1136/annrheumdis‑2020‑218157 32759254
    [Google Scholar]
  29. SłomkaA. MartucciG. RaffaG.M. MalvindiP.G. ŻekanowskaE. LorussoR. SuwalskiP. KowalewskiM. Immunological and hematological response in COVID-19.Adv. Exp. Med. Biol.20211352738610.1007/978‑3‑030‑85109‑5_5 35132595
    [Google Scholar]
  30. SpihlmanA.P. GadiN. WuS.C. MoultonV.R. COVID-19 and systemic lupus erythematosus: focus on immune response and therapeutics.Front. Immunol.20201158947410.3389/fimmu.2020.589474 33193418
    [Google Scholar]
  31. ThanouA. SawalhaA.H. SARS-CoV-2 and systemic lupus erythematosus.Curr. Rheumatol. Rep.2021232810.1007/s11926‑020‑00973‑w 33511495
    [Google Scholar]
  32. MerrillJ.T. ErkanD. WinakurJ. JamesJ.A. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications.Nat. Rev. Rheumatol.2020161058158910.1038/s41584‑020‑0474‑5 32733003
    [Google Scholar]
  33. McNabF. Mayer-BarberK. SherA. WackA. O’GarraA. Type I interferons in infectious disease.Nat. Rev. Immunol.20151528710310.1038/nri3787 25614319
    [Google Scholar]
  34. HadjadjJ. YatimN. BarnabeiL. CorneauA. BoussierJ. SmithN. PéréH. CharbitB. BondetV. Chenevier-GobeauxC. BreillatP. CarlierN. GauzitR. MorbieuC. PèneF. MarinN. RocheN. SzwebelT.A. MerklingS.H. TreluyerJ.M. VeyerD. MouthonL. BlancC. TharauxP.L. RozenbergF. FischerA. DuffyD. Rieux-LaucatF. KernéisS. TerrierB. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients.Science2020369650471872410.1126/science.abc6027 32661059
    [Google Scholar]
  35. ArunachalamP.S. WimmersF. MokC.K.P. PereraR.A.P.M. ScottM. HaganT. SigalN. FengY. BristowL. Tak-Yin TsangO. WaghD. CollerJ. PellegriniK.L. KazminD. AlaaeddineG. LeungW.S. ChanJ.M.C. ChikT.S.H. ChoiC.Y.C. HuertaC. Paine McCulloughM. LvH. AndersonE. EdupugantiS. UpadhyayA.A. BosingerS.E. MaeckerH.T. KhatriP. RouphaelN. PeirisM. PulendranB. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans.Science202036965081210122010.1126/science.abc6261 32788292
    [Google Scholar]
  36. PostalM. VivaldoJ.F. Fernandez-RuizR. ParedesJ.L. AppenzellerS. NiewoldT.B. Type I interferon in the pathogenesis of systemic lupus erythematosus.Curr. Opin. Immunol.202067879410.1016/j.coi.2020.10.014 33246136
    [Google Scholar]
  37. WeckerleC.E. FranekB.S. KellyJ.A. KumabeM. MikolaitisR.A. GreenS.L. UtsetT.O. JollyM. JamesJ.A. HarleyJ.B. NiewoldT.B. Network analysis of associations between serum interferon-α activity, autoantibodies, and clinical features in systemic lupus erythematosus.Arthritis Rheum.20116341044105310.1002/art.30187 21162028
    [Google Scholar]
  38. NiewoldT.B. Interferon alpha as a primary pathogenic factor in human lupus.J. Interferon Cytokine Res.2011311288789210.1089/jir.2011.0071 21923413
    [Google Scholar]
  39. HuX. li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic.Signal Transduct. Target. Ther.20216140210.1038/s41392‑021‑00791‑1 34824210
    [Google Scholar]
  40. MarkhamA. Baricitinib: First global approval.Drugs201777669770410.1007/s40265‑017‑0723‑3 28290136
    [Google Scholar]
  41. AssadiaslS. FatahiY. MosharmovahedB. MohebbiB. NicknamM.H. Baricitinib: From rheumatoid arthritis to covid‐19.J. Clin. Pharmacol.202161101274128510.1002/jcph.1874 33870531
    [Google Scholar]
  42. TabakhiS. SuvonM.N.I. AhadianP. LuH. Multimodal learning for multi-omics.Survey2023012250004
    [Google Scholar]
  43. MaghsoudiS. Taghavi ShahrakiB. RamehF. NazarabiM. FatahiY. AkhavanO. A review on computer-aided chemogenomics and drug repositioning for rational COVID-19 drug discovery.Chem. Biol. Drug Des.20221005699721
    [Google Scholar]
  44. AlimirzaeiF. KieslichC.A. Machine learning models for predicting membranolytic anticancer peptides.Computer Aided Chemical EngineeringElsevier2023522691269610.1016/B978‑0‑443‑15274‑0.50428‑5
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073311196240625114150
Loading
/content/journals/cchts/10.2174/0113862073311196240625114150
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test