Skip to content
2000
Volume 28, Issue 6
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Bone metabolic diseases are serious health issues worldwide. (AS) is traditionally used in Chinese medicine for treating bone metabolism diseases clinically. However, the mechanism of AS in regulating bone metabolism remains uncertain.

Objective

The current investigation was structured to elucidate the potential mechanisms of AS for modulating bone metabolism.

Methods

Firstly, targets of AS regulating bone metabolism were collected by network pharmacology. Then, the transcriptional regulation of RUNX2 was enriched as one of the key pathways for AS to regulate bone metabolism, constructing its metabolic network. Secondly, combining molecular docking, network efficiency, and network flux analyses, we conducted a quantitative evaluation of the metabolic network to reveal the potential mechanisms and components of AS regulating bone metabolism. Finally, we explored the effect of AS on the differentiation of osteoclasts from M-CSF and RANKL-induced RAW264.7 cells, as well as its impact on the osteogenic induction of MC3T3-E1 cells. We verified the mechanism and key targets of AS on bone metabolism using qRT-PCR. Furthermore, the key component was preliminarily validated through molecular dynamics simulation.

Results

Quantitative metabolic network of the transcriptional regulation of RUNX2 was constructed to illustrate the potential mechanism of AS for regulating bone metabolism, indicating that ferulic acid may be a pharmacological component of AS that interferes with bone metabolism. AS suppressed osteoclast differentiation in M-CSF and RANKL-induced RAW264.7 cells and reversed the expressions of osteoclastic differentiation markers, including RUNX2 and SRC. Additionally, AS induced osteogenic generation in MC3T3-E1 cells and reversed the expressions of markers associated with osteoblastic generation, such as RUNX2 and HDAC4. Molecular dynamics simulation indicated that ferulic acid had a strong binding affinity with HDAC4 and SRC.

Conclusion

This study reveals a systematic perspective on the intervention bone mechanism of AS by transcriptive regulation by RUNX2, guiding the clinical use of AS in treating diseases of the skeletal system.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073313394240430072032
2024-05-03
2025-09-11
Loading full text...

Full text loading...

References

  1. StegenS. CarmelietG. Metabolic regulation of skeletal cell fate and function.Nat. Rev. Endocrinol.202410.1038/s41574‑024‑00969‑x 38499689
    [Google Scholar]
  2. KimT. KimH. Pathophysiology and Therapeutic Management of Bone Loss in Patients with Critical Illness.Pharmaceuticals20231612171810.3390/ph16121718 38139844
    [Google Scholar]
  3. ZhengY. WangJ. WangY. XuK. ChenX. The Hidden Dangers of Plant-Based Diets Affecting Bone Health: A Cross-Sectional Study with U.S. National Health and Nutrition Examination Survey (NHANES) Data from 2005–2018.Nutrients2023157179410.3390/nu15071794 37049634
    [Google Scholar]
  4. CarlettiA. GavaiaP.J. CancelaM.L. LaizéV. Metabolic bone disorders and the promise of marine osteoactive compounds.Cell. Mol. Life Sci.20248111110.1007/s00018‑023‑05033‑x 38117357
    [Google Scholar]
  5. KhoslaS. HofbauerL.C. Osteoporosis treatment: Recent developments and ongoing challenges.Lancet Diabetes Endocrinol.201751189890710.1016/S2213‑8587(17)30188‑2 28689769
    [Google Scholar]
  6. RenM. AhmedA.F. LiM. LiM. YanZ. WangJ. A review: The mechanism of plant-derived polysaccharides on osteoblasts and osteoclasts.J. Future Foods202443183192Available from:10.1016/j.jfutfo.2023.07.00110.1016/j.jfutfo.2023.07.001
    [Google Scholar]
  7. QinJ. LiuY. LiuJ. LiJ. TanY. LiX. MagdalouJ. MeiQ. WangH. ChenL. Effect of Angelica sinensis Polysaccharides on Osteoarthritis In Vivo and In Vitro: A Possible Mechanism to Promote Proteoglycans Synthesis.Evid. Based Complement. Alternat. Med.2013201311510.1155/2013/794761 23861713
    [Google Scholar]
  8. SarkerS. NaharL. Natural medicine: The genus Angelica.Curr. Med. Chem.200411111479150010.2174/0929867043365189 15180579
    [Google Scholar]
  9. ZhengZ.R. TangS.H. Comparative analysis on composition principles of traditional Chinese medicine prescriptions for osteoporosis and osteoarthritis.Zhongguo Zhongyao Zazhi2014391631723175 25509309
    [Google Scholar]
  10. JungS. SchumacherH.R. KimH. KimM. LeeS. PesslerF. Reduction of urate crystal-induced inflammation by root extracts from traditional oriental medicinal plants: Elevation of prostaglandin D2 levels.Arthritis Res. Ther.200794R6410.1186/ar2222 17612394
    [Google Scholar]
  11. HuQ WuC YuJ LuoJ PengX. Angelica sinensis polysaccharide improves rheumatoid arthritis by modifying the expression of intestinal Cldn5, Slit3 and Rgs18 through gut microbiota.Int. J. Biol. Macromol.2022209Pt A15316110.1016/j.ijbiomac.2022.03.090
    [Google Scholar]
  12. YangC. NiuS. YuL. ZhuS. ZhuJ. ZhuQ. The aqueous extract of Angelica sinensis, a popular Chinese herb, inhibits wear debris-induced inflammatory osteolysis in mice.J. Surg. Res.2012176247648310.1016/j.jss.2011.08.011 21962805
    [Google Scholar]
  13. LimD. KimY. Anti-osteoporotic effects of Angelica sinensis (Oliv.) Diels extract on ovariectomized rats and its oral toxicity in rats.Nutrients20146104362437210.3390/nu6104362 25325255
    [Google Scholar]
  14. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  15. XieF. XieM. YangY. AoW. ZhaoT. LiuN. ChenB. KangW. XiaoW. GuJ. Pathway network-based quantitative modeling of the time-dependent and dose-response anti-inflammatory effect of Reduning Injection.J. Ethnopharmacol.202330711621610.1016/j.jep.2023.116216 36736714
    [Google Scholar]
  16. CroftD. O’KellyG. WuG. HawR. GillespieM. MatthewsL. CaudyM. GarapatiP. GopinathG. JassalB. JupeS. KalatskayaI. MahajanS. MayB. NdegwaN. SchmidtE. ShamovskyV. YungC. BirneyE. HermjakobH. D’EustachioP. SteinL. Reactome: A database of reactions, pathways and biological processes.Nucleic Acids Res.201139DatabaseD691D69710.1093/nar/gkq1018 21067998
    [Google Scholar]
  17. JiangL. LiY. QiaoL. ChenX. HeY. ZhangY. LiG. Discovery of potential negative allosteric modulators of mGluR5 from natural products using pharmacophore modeling, molecular docking, and molecular dynamics simulation studies.Cancer J. Chem.201593111199120610.1139/cjc‑2015‑0197
    [Google Scholar]
  18. GuJ. LiQ. ChenL. LiY. HouT. YuanG. XuX. Platelet aggregation pathway network-based approach for evaluating compounds efficacy.Evid. Based Complement. Alternat. Med.201320131810.1155/2013/425707 23662134
    [Google Scholar]
  19. GuJ. ZhangX. MaY. LiN. LuoF. CaoL. WangZ. YuanG. ChenL. XiaoW. XuX. Quantitative modeling of dose–response and drug combination based on pathway network.J. Cheminform.2015711910.1186/s13321‑015‑0066‑6 26101547
    [Google Scholar]
  20. LiQ. LiX. LiC. ChenL. SongJ. TangY. XuX. A network-based multi-target computational estimation scheme for anticoagulant activities of compounds.PLoS One201163e1477410.1371/journal.pone.0014774 21445339
    [Google Scholar]
  21. LatoraV. MarchioriM. Efficient behavior of small-world networks.Phys. Rev. Lett.2001871919870110.1103/PhysRevLett.87.198701 11690461
    [Google Scholar]
  22. FranzmeierN. HartmannJ. TaylorA.N.W. CaballeroA.M.Á. VermotS.L. IlankovicK.L. BürgerK. CatakC. JanowitzD. MüllerC. WagnerE.B. StahlR. DichgansM. DueringM. EwersM. The left frontal cortex supports reserve in aging by enhancing functional network efficiency.Alzheimers Res. Ther.20181012810.1186/s13195‑018‑0358‑y 29510747
    [Google Scholar]
  23. KangY. YoumS. Multimedia application to an extended public transportation network in South Korea: Optimal path search in a multimodal transit network.Multimedia Tools Appl.20177619199451995710.1007/s11042‑016‑4015‑9
    [Google Scholar]
  24. KimH.J. KimW.J. RyooH.M. Post-Translational Regulations of Transcriptional Activity of RUNX2.Mol. Cells202043216016710.14348/molcells.2019.0247 31878768
    [Google Scholar]
  25. GaoG.C. YangD.W. LiuW. LncRNA TERC alleviates the progression of osteoporosis by absorbing miRNA-217 to upregulate RUNX2.Eur. Rev. Med. Pharmacol. Sci.202024252653410.26355/eurrev_202001_20029 32016954
    [Google Scholar]
  26. WonG.W. SungM. LeeY. LeeY.H. MST2 kinase regulates osteoblast differentiation by phosphorylating and inhibiting Runx2 in C2C12 cells.Biochem. Biophys. Res. Commun.2019512359159710.1016/j.bbrc.2019.03.097 30910359
    [Google Scholar]
  27. HojoH. Emerging RUNX2-Mediated Gene Regulatory Mechanisms Consisting of Multi-Layered Regulatory Networks in Skeletal Development.Int. J. Mol. Sci.2023243297910.3390/ijms24032979 36769300
    [Google Scholar]
  28. YaoW. KulyarM.F.A. DingY. DuH. HongJ. LoonK.S. NawazS. LiJ. The Effect of miR-140-5p with HDAC4 towards Growth and Differentiation Signaling of Chondrocytes in Thiram-Induced Tibial Dyschondroplasia.Int. J. Mol. Sci.202324131097510.3390/ijms241310975 37446153
    [Google Scholar]
  29. KimY.I. TsengY.C. AyazG. WangS. YanH. du BoisW. YangH. ZhenT. LeeM.P. LiuP. KaplanR.N. HuangJ. SOX9 is a key component of RUNX2-regulated transcriptional circuitry in osteosarcoma.Cell Biosci.202313113610.1186/s13578‑023‑01088‑2 37491298
    [Google Scholar]
  30. LiY. NieJ. DengC. LiH. P-15 promotes chondrocyte proliferation in osteoarthritis by regulating SFPQ to target the Akt-RUNX2 axis.J. Orthop. Surg. Res.202318119910.1186/s13018‑023‑03658‑z 36915153
    [Google Scholar]
  31. WangK. KongX. DuM. YuW. WangZ. XuB. YangJ. XuJ. LiuZ. ChengY. GanJ. Novel Soy Peptide CBP: Stimulation of Osteoblast Differentiation via TβRI-p38-MAPK-Depending RUNX2 Activation.Nutrients2022149194010.3390/nu14091940 35565907
    [Google Scholar]
  32. MerrickD. MistryK. WuJ. GreskoN. BaggsJ.E. HogeneschJ.B. SunZ. CaplanM.J. Polycystin-1 regulates bone development through an interaction with the transcriptional coactivator TAZ.Hum. Mol. Genet.2019281163010.1093/hmg/ddy322 30215740
    [Google Scholar]
  33. ZhangQ. YangJ. HuN. LiuJ. YuH. PanH. ChenD. RuanC. Small-molecule amines: A big role in the regulation of bone homeostasis.Bone Res.20231114010.1038/s41413‑023‑00262‑z 37482549
    [Google Scholar]
  34. MatsubaraT. YasudaK. MizutaK. KawaueH. KokabuS. Tyrosine Kinase Src Is a Regulatory Factor of Bone Homeostasis.Int. J. Mol. Sci.20222310550810.3390/ijms23105508 35628319
    [Google Scholar]
  35. HugB.A. HDAC4: A corepressor controlling bone development.Cell2004119444844910.1016/j.cell.2004.10.023 15537533
    [Google Scholar]
  36. MalavikaD. ShreyaS. PriyaR.V. RohiniM. HeZ. PartridgeN.C. SelvamuruganN. miR‐873‐3p targets HDAC4 to stimulate matrix metalloproteinase‐13 expression upon parathyroid hormone exposure in rat osteoblasts.J. Cell. Physiol.2020235117996800910.1002/jcp.29454 31960421
    [Google Scholar]
  37. DuL. NongM.N. ZhaoJ.M. PengX.M. ZongS.H. ZengG.F. Polygonatum sibiricum polysaccharide inhibits osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through Wnt/β-catenin signalling pathway.Sci. Rep.2016613226110.1038/srep32261 27554324
    [Google Scholar]
  38. KongL. ZhaoQ. WangX. ZhuJ. HaoD. YangC. Angelica sinensis extract inhibits RANKL-mediated osteoclastogenesis by down-regulated the expression of NFATc1 in mouse bone marrow cells.BMC Complement. Altern. Med.201414148110.1186/1472‑6882‑14‑481 25496242
    [Google Scholar]
  39. XieX. LiuM. MengQ. Angelica polysaccharide promotes proliferation and osteoblast differentiation of mesenchymal stem cells by regulation of long non-coding RNA H19.Bone Joint Res.20198732333210.1302/2046‑3758.87.BJR‑2018‑0223.R2 31463041
    [Google Scholar]
  40. LiP. LiuC. HuM. LongM. ZhangD. HuoB. Fluid flow-induced calcium response in osteoclasts: Signaling pathways.Ann. Biomed. Eng.20144261250126010.1007/s10439‑014‑0984‑x 24710796
    [Google Scholar]
  41. WeitzmannM.N. VikulinaT. PageR.S. YamaguchiM. OfotokunI. Homeostatic Expansion of CD4+ T Cells Promotes Cortical and Trabecular Bone Loss, Whereas CD8+ T Cells Induce Trabecular Bone Loss Only.J. Infect. Dis.201721691070107910.1093/infdis/jix444 28968828
    [Google Scholar]
  42. KongY. MaX. ZhangX. WuL. ChenD. SuB. LiuD. WangX. The potential mechanism of Fructus Ligustri Lucidi promoting osteogenetic differentiation of bone marrow mesenchymal stem cells based on network pharmacology, molecular docking and experimental identification.Bioengineered2022134106401065310.1080/21655979.2022.2065753 35473508
    [Google Scholar]
  43. YangK. CaoF. QiuS. JiangW. TaoL. ZhuY. Metformin Promotes Differentiation and Attenuates H2O2-Induced Oxidative Damage of Osteoblasts via the PI3K/AKT/Nrf2/HO-1 Pathway.Front. Pharmacol.20221382983010.3389/fphar.2022.829830 35387349
    [Google Scholar]
  44. YangC.L.H. OrT.C.T. HoM.H.K. LauA.S.Y. Scientific basis of botanical medicine as alternative remedies for rheumatoid arthritis.Clin. Rev. Allergy Immunol.201344328430010.1007/s12016‑012‑8329‑8 22700248
    [Google Scholar]
  45. DossH.M. SamarpitaS. GanesanR. RasoolM. Ferulic acid, a dietary polyphenol suppresses osteoclast differentiation and bone erosion via the inhibition of RANKL dependent NF-κB signalling pathway.Life Sci.201820728429510.1016/j.lfs.2018.06.013 29908722
    [Google Scholar]
  46. ZhuL. ZhangZ. XiaN. ZhangW. WeiY. HuangJ. RenZ. MengF. YangL. Anti-arthritic activity of ferulic acid in complete Freund’s adjuvant (CFA)-induced arthritis in rats: JAK2 inhibition.Inflammopharmacology202028246347310.1007/s10787‑019‑00642‑0 31562605
    [Google Scholar]
  47. ZhangJ. HuW. ZouZ. LiY. KangF. LiJ. DongS. The role of lipid metabolism in osteoporosis: Clinical implication and cellular mechanism.Genes Dis.202411410112210.1016/j.gendis.2023.101122 38523674
    [Google Scholar]
  48. DingM. LiB. ChenH. LiangD. RossR.P. StantonC. ZhaoJ. ChenW. YangB. Human breastmilk-derived Bifidobacterium longum subsp. infantis CCFM1269 regulates bone formation by the GH/IGF axis through PI3K/AKT pathway.Gut Microbes2024161229034410.1080/19490976.2023.2290344 38116652
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073313394240430072032
Loading
/content/journals/cchts/10.2174/0113862073313394240430072032
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test