Skip to content
2000
Volume 28, Issue 6
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Objective

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder with limited options for reversing its middle-to-late stages. Early intervention is crucial to slow down disease progression. This study aimed to investigate the potential of the NeuroProtect (NP) formula, a combination of geniposide and saponins, in preventing AD. We evaluated the effects of the NP formula on amyloid plaque accumulation, neuronal degeneration, and molecular signaling pathways using and models.

Methods

To predict functional pathways and potential downstream targets of NP intervention, we employed network pharmacology. The preventative impact of the NP formula was assessed using APP/PS1 mice. We conducted HE staining, ELISA assay, Golgi staining, and immunohistochemistry to detect the protective effect of NP. Additionally, cell experiments were performed to assess cell activity and target protein expression.

Results

Network pharmacology analysis revealed 145 drug-disease interactions and identified 5 core active targets associated with AD. Molecular docking results demonstrated strong binding affinity between the components of the NP formula (GP, GN-Rb1, GN-Rg1, NS-R1) and target proteins (STAT3, HIF1A, TLR4, mTOR, VEGFA). Notably, the binding energy between NS-R1 and mTOR was -11.4kcal/mol. Among the top 10 enriched KEGG pathways, the HIF-1 and PI3K-AKT signaling pathways were highlighted. experiments demonstrated that the NP formula significantly ameliorated pathological changes, decreased the Aβ/Aβ ratio in the hippocampus and cortex, and increased dendritic spine density in the CA1 region during the early stage of AD. experiments further illustrated the NP formula’s ability to reverse the inhibitory effects of Aβ on cell viability and regulate the expression of Tlr4, Mtor, Hif1a, Stat3, and Vegfa.

Conclusion

Our findings suggest that NP exhibits neuroprotective effects during the early stages of AD, positioning it as a potential candidate for AD prevention. The NP formula may exert its preventive effects through the HIF-1/PI3K-AKT signaling pathway, with mTOR identified as a key target.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073311518240416070410
2024-04-26
2025-09-09
Loading full text...

Full text loading...

References

  1. SperlingR.A. AisenP.S. BeckettL.A. BennettD.A. CraftS. FaganA.M. IwatsuboT. JackC.R.Jr KayeJ. MontineT.J. ParkD.C. ReimanE.M. RoweC.C. SiemersE. SternY. YaffeK. CarrilloM.C. ThiesB. BogoradM.M. WagsterM.V. PhelpsC.H. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the national institute on aging‐alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease.Alzheimers Dement.20117328029210.1016/j.jalz.2011.03.003 21514248
    [Google Scholar]
  2. SperlingR.A. DonohueM.C. RamanR. SunC.K. YaariR. HoldridgeK. SiemersE. JohnsonK.A. AisenP.S. Association of factors with elevated amyloid burden in clinically normal older individuals.JAMA Neurol.202077673574510.1001/jamaneurol.2020.0387 32250387
    [Google Scholar]
  3. OlssonB. LautnerR. AndreassonU. ÖhrfeltA. PorteliusE. BjerkeM. HölttäM. RosénC. OlssonC. StrobelG. WuE. DakinK. PetzoldM. BlennowK. ZetterbergH. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis.Lancet Neurol.201615767368410.1016/S1474‑4422(16)00070‑3 27068280
    [Google Scholar]
  4. DengM. ZhangQ. WuZ. MaT. HeA. ZhangT. KeX. YuQ. HanY. LuY. Mossy cell synaptic dysfunction causes memory imprecision via miR‐128 inhibition of STIM2 in Alzheimer’s disease mouse model.Aging Cell2020195e1314410.1111/acel.13144 32222058
    [Google Scholar]
  5. HeY. WeiM. WuY. QinH. LiW. MaX. ChengJ. RenJ. ShenY. ChenZ. SunB. HuangF.D. ShenY. ZhouY.D. Amyloid β oligomers suppress excitatory transmitter release via presynaptic depletion of phosphatidylinositol-4,5-bisphosphate.Nat. Commun.2019101119310.1038/s41467‑019‑09114‑z 30867420
    [Google Scholar]
  6. JonesD.T. RadfordG.J. LoweV.J. WisteH.J. GunterJ.L. SenjemM.L. BothaH. KantarciK. BoeveB.F. KnopmanD.S. PetersenR.C. JackC.R. Jr Tau, amyloid, and cascading network failure across the Alzheimer’s disease spectrum.Cortex20179714315910.1016/j.cortex.2017.09.018 29102243
    [Google Scholar]
  7. SelkoeD.J. HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med.20168659560810.15252/emmm.201606210 27025652
    [Google Scholar]
  8. ArmstrongM.A. PorterT. QuekH. WhiteA. HaynesJ. JackamanC. VillemagneV. MunyardK. LawsS.M. VerdileG. GrothD. Chronic stress and A lzheimer’s disease: The interplay between the hypothalamic–pituitary–adrenal axis, genetics and microglia.Biol. Rev. Camb. Philos. Soc.20219652209222810.1111/brv.12750 34159699
    [Google Scholar]
  9. NeumannU. UferM. JacobsonL.H. DominguezR.M.L. HuledalG. KollyC. LüöndR.M. MachauerR. VeenstraS.J. HurthK. RueegerH. BlomleyT.M. StaufenbielM. ShimshekD.R. PerrotL. FrieauffW. DubostV. SchillerH. VoggB. BeltzK. AvrameasA. KretzS. PezousN. RondeauJ.M. BeckmannN. HartmannA. VormfeldeS. DavidO.J. GalliB. RamosR. GrafA. Lopez LopezC. The BACE ‐1 inhibitor CNP 520 for prevention trials in Alzheimer’s disease.EMBO Mol. Med.20181011e931610.15252/emmm.201809316 30224383
    [Google Scholar]
  10. TanY. WangX. ZhangJ. ZhangH. LiH. PengT. ChenW. WeiP. LiuZ. HeF. LiJ. DingH. LiN. WangZ. ZhangZ. HuaQ. NeuroProtect, a candidate formula from traditional chinese medicine, attenuates amyloid-β and restores synaptic structures in APP/PS1 transgenic mice.Front. Pharmacol.20221385017510.3389/fphar.2022.850175 35586051
    [Google Scholar]
  11. HeP. LiP. HuaQ. LiuY. StaufenbielM. LiR. ShenY. Chronic administration of anti-stroke herbal medicine TongLuoJiuNao reduces amyloidogenic processing of amyloid precursor protein in a mouse model of Alzheimer’s disease.PLoS One201383e5818110.1371/journal.pone.0058181 23472157
    [Google Scholar]
  12. YangK. TanY. WangF. ZhangQ. SunP. ZhangY. YaoN. ZhaoY. WangX. FanA. HuaQ. The improvement of spatial memory deficits in APP/V717I transgenic mice by chronic anti-stroke herb treatment.Exp. Biol. Med.201423981007101710.1177/1535370214532757 24872438
    [Google Scholar]
  13. ZangC.X. BaoX.Q. LiL. YangH.Y. WangL. YuY. WangX.L. YaoX.S. ZhangD. The protective effects of Gardenia jasminoides (Fructus Gardenia) on amyloid-β-induced mouse cognitive impairment and neurotoxicity.Am. J. Chin. Med.201846238940510.1142/S0192415X18500192 29433392
    [Google Scholar]
  14. YangF. MaQ. MatsabisaM.G. ChabalalaH. BragaF.C. TangM. Panax notoginseng for cerebral ischemia: A systematic review.Am. J. Chin. Med.20204861331135110.1142/S0192415X20500652 32907361
    [Google Scholar]
  15. FangS. DongL. LiuL. GuoJ. ZhaoL. ZhangJ. BuD. LiuX. HuoP. CaoW. DongQ. WuJ. ZengX. WuY. ZhaoY. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine.Nucleic Acids Res.202149D1D1197D120610.1093/nar/gkaa1063 33264402
    [Google Scholar]
  16. WuY. ZhangF. YangK. FangS. BuD. LiH. SunL. HuH. GaoK. WangW. ZhouX. ZhaoY. ChenJ. SymMap: An integrative database of traditional Chinese medicine enhanced by symptom mapping.Nucleic Acids Res.201947D1D1110D111710.1093/nar/gky1021 30380087
    [Google Scholar]
  17. ChenY. ShiY. LiangC. MinZ. DengQ. YuR. ZhangJ. ChangK. ChenL. YanK. WangC. TanY. WangX. ChenJ. HuaQ. MicrobeTCM: A comprehensive platform for the interactions of microbiota and traditional Chinese medicine.Pharmacol. Res.202420110708010.1016/j.phrs.2024.107080 38272335
    [Google Scholar]
  18. BardouP. MarietteJ. EscudiéF. DjemielC. KloppC. jvenn: An interactive Venn diagram viewer.BMC Bioinformatics201415129310.1186/1471‑2105‑15‑293
    [Google Scholar]
  19. WuT. HuE. XuS. ChenM. GuoP. DaiZ. FengT. ZhouL. TangW. ZhanL. FuX. LiuS. BoX. YuG. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.Innovation20212310014110.1016/j.xinn.2021.100141 34557778
    [Google Scholar]
  20. LiuY. YangX. GanJ. ChenS. XiaoZ.X. CaoY. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting.Nucleic Acids Res.202250W1W159W16410.1093/nar/gkac394 35609983
    [Google Scholar]
  21. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  22. JiaJ. WeiC. ChenS. LiF. TangY. QinW. ZhaoL. JinH. XuH. WangF. ZhouA. ZuoX. WuL. HanY. HanY. HuangL. WangQ. LiD. ChuC. ShiL. GongM. DuY. ZhangJ. ZhangJ. ZhouC. LvJ. LvY. XieH. JiY. LiF. YuE. LuoB. WangY. YangS. QuQ. GuoQ. LiangF. ZhangJ. TanL. ShenL. ZhangK. ZhangJ. PengD. TangM. LvP. FangB. ChuL. JiaL. GauthierS. The cost of Alzheimer’s disease in China and re‐estimation of costs worldwide.Alzheimers Dement.201814448349110.1016/j.jalz.2017.12.006 29433981
    [Google Scholar]
  23. VermuntL. SikkesS.A.M. van den HoutA. HandelsR. BosI. van der FlierW.M. KernS. OussetP.J. MaruffP. SkoogI. VerheyF.R.J. Freund-LeviY. TsolakiM. WallinÅ.K. Olde RikkertM. SoininenH. SpiruL. ZetterbergH. BlennowK. ScheltensP. Muniz-TerreraG. VisserP.J. Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype.Alzheimers Dement.201915788889810.1016/j.jalz.2019.04.001 31164314
    [Google Scholar]
  24. PetrieE.C. CrossD.J. GalaskoD. SchellenbergG.D. RaskindM.A. PeskindE.R. MinoshimaS. Preclinical evidence of Alzheimer changes: Convergent cerebrospinal fluid biomarker and fluorodeoxyglucose positron emission tomography findings.Arch. Neurol.200966563263710.1001/archneurol.2009.59 19433663
    [Google Scholar]
  25. TanC.C. YuJ.T. TanL. Biomarkers for preclinical Alzheimer’s disease.J. Alzheimers Dis.20144241051106910.3233/JAD‑140843 25024325
    [Google Scholar]
  26. JiaL. ZhuM. KongC. PangY. ZhangH. QiuQ. WeiC. TangY. WangQ. LiY. LiT. LiF. WangQ. LiY. WeiY. JiaJ. Blood neuro‐exosomal synaptic proteins predict Alzheimer’s disease at the asymptomatic stage.Alzheimers Dement.2021171496010.1002/alz.12166 32776690
    [Google Scholar]
  27. HayturalH. MermelekasG. EmreC. NigamS.M. CarrollS.L. WinbladB. BogdanovicN. BarthetG. GranholmA.C. OrreL.M. TjernbergL.O. FrykmanS. The proteome of the dentate terminal zone of the perforant path indicates presynaptic impairment in alzheimer disease.Mol. Cell. Proteomics202019112814110.1074/mcp.RA119.001737 31699905
    [Google Scholar]
  28. CaiL. LiC. TangW. LiuM. ChenW. QiuY. LiR. Therapeutic effect of penta-acetyl geniposide on adjuvant-induced arthritis in rats: Involvement of inducing synovial apoptosis and inhibiting NF-κB signal pathway.Inflammation20184162184219510.1007/s10753‑018‑0861‑0 30069664
    [Google Scholar]
  29. CheX. WangM. WangT. FanH. YangM. WangW. XuH. Evaluation of the antidepressant activity, hepatotoxicity and blood brain barrier permeability of methyl genipin.Molecules201621792310.3390/molecules21070923 27438811
    [Google Scholar]
  30. LiW. WuY. WanM. ChuY. WangX. LiS. LiuZ. ChenX. PolachiN. ZhouS. SunH. Simultaneous determination of three saponins in human plasma after oral administration of compound danshen dripping pills by LC-MS/MS and its application in a pharmacokinetic study.J. Pharm. Biomed. Anal.201916925425910.1016/j.jpba.2019.03.008 30878903
    [Google Scholar]
  31. ZhengM. ZhaoM. TangL. ZhangC. SongL. WangW. Ginsenoside Rg1 attenuates hypoxia and hypercapnia-induced vasoconstriction in isolated rat pulmonary arterial rings by reducing the expression of p38.J. Thorac. Dis.2016871513152310.21037/jtd.2016.05.71 27499938
    [Google Scholar]
  32. PanA. LiZ. HeX. DengF. GeJ. YanX. Effects of total saponins of Panax notoginseng on immature neuroblasts in the adult olfactory bulb following global cerebral ischemia/reperfusion.Neural Regen. Res.20151091450145610.4103/1673‑5374.165514 26604906
    [Google Scholar]
  33. LiuY. HuaQ. LeiH. LiP. Effect of Tong Luo Jiu Nao on Aβ-degrading enzymes in AD rat brains.J. Ethnopharmacol.201113721035104610.1016/j.jep.2011.07.031 21798326
    [Google Scholar]
  34. SunP. ChenJ.Y. LiJ. SunM.R. MoW.C. LiuK.L. MengY.Y. LiuY. WangF. HeR. HuaQ. The protective effect of geniposide on human neuroblastoma cells in the presence of formaldehyde.BMC Complement. Altern. Med.20130113152
    [Google Scholar]
  35. ChenJ. SunM. WangX. LuJ. WeiY. TanY. LiuY. GötzJ. HeR. HuaQ. The herbal compound geniposide rescues formaldehyde-induced apoptosis in N2a neuroblastoma cells.Sci. China Life Sci.201457441242110.1007/s11427‑014‑4643‑0 24658849
    [Google Scholar]
  36. LiX.J. HouJ.C. SunP. LiP.T. HeR.Q. LiuY. ZhaoL.Y. HuaQ. Neuroprotective effects of TongLuoJiuNao in neurons exposed to oxygen and glucose deprivation.J. Ethnopharmacol.2012141392793310.1016/j.jep.2012.03.042 22472112
    [Google Scholar]
  37. HuaQ. QingX. LiP. LiW. HouJ. HuJ. HongQ. SunP. ZhuX. Brain microvascular endothelial cells mediate neuroprotective effects on ischemia/reperfusion neurons.J. Ethnopharmacol.2010129330631310.1016/j.jep.2010.03.024 20394814
    [Google Scholar]
  38. TanY. ZhangJ. YangK. XuZ. ZhangH. ChenW. PengT. WangX. LiuZ. WeiP. LiN. ZhangZ. LiuT. HuaQ. Anti-stroke chinese herbal medicines inhibit abnormal amyloid-β protein precursor processing in alzheimer’s disease.J. Alzheimers Dis.202285126127210.3233/JAD‑210652 34776438
    [Google Scholar]
  39. CulmoneV. MiglioreM. Progressive effect of beta amyloid peptides accumulation on CA1 pyramidal neurons: A model study suggesting possible treatments.Front. Comput. Neurosci.201265210.3389/fncom.2012.00052 22837746
    [Google Scholar]
  40. SmithD.L. PozuetaJ. GongB. ArancioO. ShelanskiM. Reversal of long-term dendritic spine alterations in Alzheimer disease models.Proc. Natl. Acad. Sci.200910639168771688210.1073/pnas.0908706106 19805389
    [Google Scholar]
  41. ZottB. SimonM.M. HongW. UngerF. Chen-EngererH.J. FroschM.P. SakmannB. WalshD.M. KonnerthA. A vicious cycle of β amyloid–dependent neuronal hyperactivation.Science2019365645355956510.1126/science.aay0198 31395777
    [Google Scholar]
  42. WebsterS.J. BachstetterA.D. NelsonP.T. SchmittF.A. Van EldikL.J. Using mice to model Alzheimer’s dementia: An overview of the clinical disease and the preclinical behavioral changes in 10 mouse models.Front. Genet.201458810.3389/fgene.2014.00088 24795750
    [Google Scholar]
  43. HardyC.J.D. HwangY.T. BondR.L. MarshallC.R. RidhaB.H. CrutchS.J. RossorM.N. WarrenJ.D. Donepezil enhances understanding of degraded speech in Alzheimer’s disease.Ann. Clin. Transl. Neurol.201741183584010.1002/acn3.471 29159197
    [Google Scholar]
  44. SchneiderL.S. Idalopirdine for Alzheimer’s disease: Written in the stars.Lancet Neurol.201413111063106510.1016/S1474‑4422(14)70232‑7 25297011
    [Google Scholar]
  45. GodyńJ. JończykJ. PanekD. MalawskaB. Therapeutic strategies for Alzheimer’s disease in clinical trials.Pharmacol. Rep.201668112713810.1016/j.pharep.2015.07.006 26721364
    [Google Scholar]
  46. CaiZ. ZhaoB. LiK. ZhangL. LiC. QuaziS.H. TanY. Mammalian target of rapamycin: A valid therapeutic target through the autophagy pathway for alzheimer’s disease?J. Neurosci. Res.20129061105111810.1002/jnr.23011 22344941
    [Google Scholar]
  47. ChenT.J. WangD.C. ChenS.S. Amyloid‐β interrupts the PI3K‐Akt‐mTOR signaling pathway that could be involved in brain‐derived neurotrophic factor‐induced Arc expression in rat cortical neurons.J. Neurosci. Res.200987102297230710.1002/jnr.22057 19301428
    [Google Scholar]
  48. MaieseK. ChongZ.Z. ShangY.C. WangS. mTOR: on target for novel therapeutic strategies in the nervous system.Trends Mol. Med.2013191516010.1016/j.molmed.2012.11.001 23265840
    [Google Scholar]
  49. D’AbramoC. RicciarelliR. PronzatoM.A. DaviesP. Troglitazone, a peroxisome proliferator‐activated receptor‐γ agonist, decreases tau phosphorylation in CHOtau4R cells.J. Neurochem.20069841068107710.1111/j.1471‑4159.2006.03931.x 16787414
    [Google Scholar]
  50. SossinW.S. MattioliC.M. Translational control in the brain in health and disease.Cold Spring Harb. Perspect. Biol.2019118a03291210.1101/cshperspect.a032912 30082469
    [Google Scholar]
  51. Costa-MattioliM. MonteggiaL.M. mTOR complexes in neurodevelopmental and neuropsychiatric disorders.Nat. Neurosci.201316111537154310.1038/nn.3546 24165680
    [Google Scholar]
  52. AltasB. RomanowskiA.J. BunceG.W. PoulopoulosA. Neuronal mTOR outposts: Implications for translation, signaling, and plasticity.Front. Cell. Neurosci.20221685363410.3389/fncel.2022.853634 35465614
    [Google Scholar]
  53. LiuB. LiaoJ. RaoX. KushnerS.A. ChungC.D. ChangD.D. ShuaiK. Inhibition of Stat1-mediated gene activation by PIAS1.Proc. Natl. Acad. Sci.19989518106261063110.1073/pnas.95.18.10626 9724754
    [Google Scholar]
  54. NicolasC.S. AmiciM. BortolottoZ.A. DohertyA. CsabaZ. FafouriA. DournaudP. GressensP. CollingridgeG.L. PeineauS. The role of JAK-STAT signaling within the CNS.JAK-STAT201321e2292510.4161/jkst.22925 24058789
    [Google Scholar]
  55. MehlaJ. SinghI. DiwanD. NelsonJ.W. LawrenceM. LeeE. BauerA.Q. HoltzmanD.M. ZipfelG.J. STAT3 inhibitor mitigates cerebral amyloid angiopathy and parenchymal amyloid plaques while improving cognitive functions and brain networks.Acta Neuropathol. Commun.20219119310.1186/s40478‑021‑01293‑5 34911575
    [Google Scholar]
  56. BaeS.H. JeongJ.W. ParkJ.A. KimS.H. BaeM.K. ChoiS.J. KimK.W. Sumoylation increases HIF-1α stability and its transcriptional activity.Biochem. Biophys. Res. Commun.2004324139440010.1016/j.bbrc.2004.09.068 15465032
    [Google Scholar]
  57. MattsonM.P. PedersenW.A. DuanW. CulmseeC. CamandolaS. Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer’s and Parkinson’s diseases.Ann. N. Y. Acad. Sci.1999893115417510.1111/j.1749‑6632.1999.tb07824.x 10672236
    [Google Scholar]
  58. ReligaP. CaoR. ReligaD. XueY. BogdanovicN. WestawayD. MartiH.H. WinbladB. CaoY. VEGF significantly restores impaired memory behavior in Alzheimer’s mice by improvement of vascular survival.Sci. Rep.201331205310.1038/srep02053 23792494
    [Google Scholar]
  59. WangP. XieZ.H. GuoY.J. ZhaoC.P. JiangH. SongY. ZhuZ.Y. LaiC. XuS.L. BiJ.Z. VEGF-induced angiogenesis ameliorates the memory impairment in APP transgenic mouse model of Alzheimer’s disease.Biochem. Biophys. Res. Commun.2011411362062610.1016/j.bbrc.2011.07.003 21771586
    [Google Scholar]
  60. WinderZ. SudduthT.L. AndersonS. PatelE. NeltnerJ. MartinB.J. Examining the association between blood-based biomarkers and human post mortem neuropathology in the University of Kentucky Alzheimer’s disease research center autopsy cohort.Alzheimers Dement.20221916778 35266629
    [Google Scholar]
  61. MaZ.X. ZhangR.Y. RuiW.J. WangZ.Q. FengX. Quercetin alleviates chronic unpredictable mild stress-induced depressive-like behaviors by promoting adult hippocampal neurogenesis via FoxG1/CREB/BDNF signaling pathway.Behav. Brain Res.202140611324510.1016/j.bbr.2021.113245 33745981
    [Google Scholar]
  62. SoucekT. CummingR. DarguschR. MaherP. SchubertD. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide.Neuron2003391435610.1016/S0896‑6273(03)00367‑2 12848931
    [Google Scholar]
  63. Reed-GeaghanE.G. SavageJ.C. HiseA.G. LandrethG.E. CD14 and toll-like receptors 2 and 4 are required for fibrillar Abeta-stimulated microglial activation.J. Neurosci.20092938119821199210.1523/JNEUROSCI.3158‑09.2009 19776284
    [Google Scholar]
  64. TrickerE. ChengG. With a little help from my friends: Modulation of phagocytosis through TLR activation.Cell Res.200818771171210.1038/cr.2008.78 18596701
    [Google Scholar]
  65. SemenzaG.L. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1.Annu. Rev. Cell Dev. Biol.199915155157810.1146/annurev.cellbio.15.1.551 10611972
    [Google Scholar]
  66. SchubertD. SoucekT. BlouwB. The induction of HIF‐1 reduces astrocyte activation by amyloid beta peptide.Eur. J. Neurosci.20092971323133410.1111/j.1460‑9568.2009.06712.x 19519624
    [Google Scholar]
  67. DiazR.M. NL-U Hypoxia compromises the mitochondrial metabolism of Alzheimer's disease microglia via HIF1.Nature aging202114385399
    [Google Scholar]
  68. ChiuS.L. ChenC.M. ClineH.T. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo.Neuron200858570871910.1016/j.neuron.2008.04.014 18549783
    [Google Scholar]
  69. GrilloC.A. PiroliG.G. LawrenceR.C. WrightenS.A. GreenA.J. WilsonS.P. SakaiR.R. KellyS.J. WilsonM.A. MottD.D. ReaganL.P. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity.Diabetes201564113927393610.2337/db15‑0596 26216852
    [Google Scholar]
  70. RaiS.N. DilnashinH. BirlaH. SinghS.S. ZahraW. RathoreA.S. SinghB.K. SinghS.P. The role of PI3K/Akt and ERK in neurodegenerative disorders.Neurotox. Res.201935377579510.1007/s12640‑019‑0003‑y 30707354
    [Google Scholar]
  71. WangY. LinY. WangL. ZhanH. LuoX. ZengY. WuW. ZhangX. WangF. TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/FoxO3a signaling pathway in Alzheimer’s disease mice.Aging20201220208622087910.18632/aging.104104 33065553
    [Google Scholar]
  72. MorelliA.P. TortelliT.C.Jr ManciniM.C.S. PavanI.C.B. SilvaL.G.S. SeverinoM.B. GranatoD.C. PestanaN.F. PonteL.G.S. PerucaG.F. PaulettiB.A. dos SantosD.F.G.Jr de MouraL.P. BezerraR.M.N. LemeA.F.P. ChammasR. SimabucoF.M. STAT3 contributes to cisplatin resistance, modulating EMT markers, and the mTOR signaling in lung adenocarcinoma.Neoplasia202123101048105810.1016/j.neo.2021.08.003 34543857
    [Google Scholar]
  73. EstradaC.C. MaldonadoA. MallipattuS.K. Therapeutic inhibition of VEGF signaling and associated nephrotoxicities.J. Am. Soc. Nephrol.201930218720010.1681/ASN.2018080853 30642877
    [Google Scholar]
  74. KararJ. MaityA. PI3K/AKT/mTOR pathway in angiogenesis.Front. Mol. Neurosci.201145110.3389/fnmol.2011.00051 22144946
    [Google Scholar]
  75. ZhouM. XuW. WangJ. YanJ. ShiY. ZhangC. GeW. WuJ. DuP. ChenY. Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury.EBioMedicine20183534536010.1016/j.ebiom.2018.08.035 30170968
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073311518240416070410
Loading
/content/journals/cchts/10.2174/0113862073311518240416070410
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test