Skip to content
2000
Volume 28, Issue 6
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

N6-adenosine methylation (m6A) is a prevalent RNA modification associated with heart failure, alongside aberrant miRNA expression. Despite indications of miRNAs regulating m6A modification, their specific influence on m6A in heart failure remains unclear.

Methods

The initial analysis utilized transcriptome and methylation sequencing data from GSE131296 in mice to identify key m6A methylation enzymes in heart failure and construct an associated network. Integration of miRNA sequencing data from GSE231700 revealed miRNAs influencing m6A methylation enzymes, contributing to the formation of a comprehensive network. Furthermore, differential miRNA levels in human serum were assessed qPCR, and the expression of m6A methyltransferases in the heart was confirmed using proteomic databases.

Results

In pressure overload-induced heart failure mice, 217 mRNAs showed differential expression, with FTO and IGF2BP2 identified as m6A methylation enzymes. Subsequent methylation sequencing revealed 884 highly-methylated and 178 lowly-methylated peaks, establishing a network linking Fto and Igf2bp2 with these peaks. Additionally, miRNA sequencing identified 156 differentially expressed miRNAs, including let-7b-5p and miR-23b-3p, predicted as m6A-regulating miRNAs, both elevated in heart failure patients.

Conclusion

miR-23b-3p and let-7b-5p are identified as potential regulators of RNA methylation in heart failure, acting FTO and IGF2BP2, offering new insights into the role of miRNA-mediated RNA methylation and its potential therapeutic avenues for heart failure.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073316437240426071022
2024-04-30
2025-09-12
Loading full text...

Full text loading...

References

  1. McKinseyT.A. FooR. Anene-NzeluC.G. TraversJ.G. VagnozziR.J. WeberN. ThumT. Emerging epigenetic therapies of cardiac fibrosis and remodelling in heart failure: From basic mechanisms to early clinical development.Cardiovasc. Res.2023118183482349810.1093/cvr/cvac142 36004821
    [Google Scholar]
  2. PonikowskiP. VoorsA.A. AnkerS.D. BuenoH. ClelandJ.G.F. CoatsA.J.S. FalkV. González-JuanateyJ.R. HarjolaV.P. JankowskaE.A. JessupM. LindeC. NihoyannopoulosP. ParissisJ.T. PieskeB. RileyJ.P. RosanoG.M.C. RuilopeL.M. RuschitzkaF. RuttenF.H. van der MeerP. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.Eur. Heart J.201637272129220010.1093/eurheartj/ehw128 27206819
    [Google Scholar]
  3. SavareseG. BecherP.M. LundL.H. SeferovicP. RosanoG.M.C. CoatsA.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology.Cardiovasc. Res.2023118173272328710.1093/cvr/cvac013 35150240
    [Google Scholar]
  4. BerulavaT. BuchholzE. ElerdashviliV. PenaT. IslamM.R. LbikD. MohamedB.A. RennerA. von LewinskiD. SachererM. BohnsackK.E. BohnsackM.T. JainG. CapeceV. CleveN. BurkhardtS. HasenfussG. FischerA. ToischerK. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation.Eur. J. Heart Fail.2020221546610.1002/ejhf.1672 31849158
    [Google Scholar]
  5. QinY. LiL. LuoE. HouJ. YanG. WangD. QiaoY. TangC. Role of m6A RNA methylation in cardiovascular disease (Review).Int. J. Mol. Med.20204661958197210.3892/ijmm.2020.4746 33125109
    [Google Scholar]
  6. OerumS. MeynierV. CatalaM. TisnéC. A comprehensive review of m6A/m6Am RNA methyltransferase structures.Nucleic Acids Res.202149137239725510.1093/nar/gkab378 34023900
    [Google Scholar]
  7. FanS. HuY. Role of m6A methylation in the occurrence and development of heart failure.Front. Cardiovasc. Med.2022989211310.3389/fcvm.2022.892113 35811741
    [Google Scholar]
  8. CarnevaliL. GraianiG. RossiS. Al BanchaabouchiM. MacchiE. QuainiF. RosenthalN. SgoifoA. Signs of cardiac autonomic imbalance and proarrhythmic remodeling in FTO deficient mice.PLoS One201494e9549910.1371/journal.pone.0095499 24743632
    [Google Scholar]
  9. MathiyalaganP. AdamiakM. MayourianJ. SassiY. LiangY. AgarwalN. JhaD. ZhangS. KohlbrennerE. ChepurkoE. ChenJ. TrivieriM.G. SinghR. BoucharebR. FishK. IshikawaK. LebecheD. HajjarR.J. SahooS. FTO-Dependent N 6 -Methyladenosine Regulates Cardiac Function During Remodeling and Repair.Circulation2019139451853210.1161/CIRCULATIONAHA.118.033794 29997116
    [Google Scholar]
  10. O’BrienJ. HayderH. ZayedY. PengC. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation.Front. Endocrinol. (Lausanne)2018940210.3389/fendo.2018.00402 30123182
    [Google Scholar]
  11. HanX. GuoJ. FanZ. Interactions between m6A modification and miRNAs in malignant tumors.Cell Death Dis.202112659810.1038/s41419‑021‑03868‑5 34108450
    [Google Scholar]
  12. QiuX. ChenD. HuangS. ChenN. WuJ. LiangS. PengP. QinM. HuangJ. LiuS. Identification and verification of m6A-related miRNAs correlated with prognosis and immune microenvironment in colorectal cancer.Medicine (Baltimore)202310246e3598410.1097/MD.0000000000035984 37986290
    [Google Scholar]
  13. ZhangY. XuY. BaoY. LuoY. QiuG. HeM. LuJ. XuJ. ChenB. WangY. N6-methyladenosine (m6A) modification in osteosarcoma: Expression, function and interaction with noncoding RNAs – an updated review.Epigenetics2023181226021310.1080/15592294.2023.2260213 37766615
    [Google Scholar]
  14. ZepeckiJ.P. KarambiziD. FajardoJ.E. SnyderK.M. Guetta-TerrierC. TangO.Y. ChenJ.S. SarkarA. FiserA. TomsS.A. TapinosN. miRNA-mediated loss of m6A increases nascent translation in glioblastoma.PLoS Genet.2021173e100908610.1371/journal.pgen.1009086 33684100
    [Google Scholar]
  15. KumariR. RanjanP. SuleimanZ.G. GoswamiS.K. LiJ. PrasadR. VermaS.K. mRNA modifications in cardiovascular biology and disease: With a focus on m6A modification.Cardiovasc. Res.202211871680169210.1093/cvr/cvab160 33956076
    [Google Scholar]
  16. GuoY.T. XiaoY.C. XuY. FanJ.F. NiuL.Y. TanX. WangY.K. The effects of MicroRNAs in the development of heart failure.Curr. Cardiol. Rep.202325774775910.1007/s11886‑023‑01895‑6 37233923
    [Google Scholar]
  17. KennelP.J. SchulzeP.C. A review on the evolving roles of MiRNA-Based technologies in diagnosing and treating heart failure.Cells20211011319110.3390/cells10113191 34831414
    [Google Scholar]
  18. AfganE. NekrutenkoA. GrüningB.A. BlankenbergD. GoecksJ. SchatzM.C. OstrovskyA.E. MahmoudA. LonieA.J. SymeA. FouillouxA. BretaudeauA. NekrutenkoA. KumarA. EschenlauerA.C. DeSantoA.D. GuerlerA. Serrano-SolanoB. BatutB. GrüningB.A. LanghorstB.W. CarrB. RaubenoltB.A. HydeC.J. BromheadC.J. BarnettC.B. RoyauxC. GallardoC. BlankenbergD. FornikaD.J. BakerD. BouvierD. ClementsD. de Lima MoraisD.A. TaberneroD.L. LariviereD. NasrE. AfganE. ZambelliF. HeylF. PsomopoulosF. CoppensF. PriceG.R. CuccuruG. CorguilléG.L. Von KusterG. AkbulutG.G. RascheH. HotzH-R. EguinoaI. MakuninI. RanawakaI.J. TaylorJ.P. JoshiJ. Hillman-JacksonJ. GoecksJ. ChiltonJ.M. KamaliK. SudermanK. PoterlowiczK. YvanL.B. Lopez-DelisleL. SargentL. BassettiM.E. TangaroM.A. van den BeekM. ČechM. BerntM. FahrnerM. TekmanM. FöllM.C. SchatzM.C. CrusoeM.R. RoncoroniM. KucherN. CoraorN. StolerN. RhodesN. SoranzoN. PinterN. GoonasekeraN.A. MorenoP.A. VidemP. MelanieP. MandreoliP. JagtapP.D. GuQ. WeberR.J.M. LazarusR. VordermanR.H.P. HiltemannS. GolitsynskiyS. GargS. BrayS.A. GladmanS.L. LeoS. MehtaS.P. GriffinT.J. JaliliV. YvesV. WenV. NagampalliV.K. BaconW.A. de KoningW. MaierW. BriggsP.J. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update.Nucleic Acids Res.202250W1W345W35110.1093/nar/gkac247 35446428
    [Google Scholar]
  19. ZaccaraS. RiesR.J. JaffreyS.R. Reading, writing and erasing mRNA methylation.Nat. Rev. Mol. Cell Biol.2019201060862410.1038/s41580‑019‑0168‑5 31520073
    [Google Scholar]
  20. YinS. LiW. WangJ. WuH. HuJ. FengY. Screening of key genes associated with m6A methylation in diabetic nephropathy patients by CIBERSORT and weighted gene coexpression network analysis.Am. J. Transl. Res.202214422802290 35559414
    [Google Scholar]
  21. ZhangB. JiangH. WuJ. CaiY. DongZ. ZhaoY. HuQ. HuK. SunA. GeJ. m6A demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure.Signal Transduct. Target. Ther.20216137710.1038/s41392‑021‑00699‑w 34728610
    [Google Scholar]
  22. HanY.C. XieH.Z. LuB. XiangR.L. ZhangH.P. LiJ.Y. ZhangS.Y. Lipopolysaccharide alters the m6a epitranscriptomic tagging of RNAs in cardiac tissue.Front. Mol. Biosci.2021867016010.3389/fmolb.2021.670160 34395520
    [Google Scholar]
  23. SongH. FengX. ZhangH. LuoY. HuangJ. LinM. JinJ. DingX. WuS. HuangH. YuT. ZhangM. HongH. YaoS. ZhaoY. ZhangZ. METTL3 and ALKBH5 oppositely regulate m 6 A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes.Autophagy20191581419143710.1080/15548627.2019.1586246 30870073
    [Google Scholar]
  24. JianD. WangY. JianL. TangH. RaoL. ChenK. JiaZ. ZhangW. LiuY. ChenX. ShenX. GaoC. WangS. LiM. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications.Theranostics202010208939895610.7150/thno.45178 32802173
    [Google Scholar]
  25. JinS. ZhangX. MiaoY. LiangP. ZhuK. SheY. WuY. LiuD.A. HuangJ. RenJ. CuiJ. m6A RNA modification controls autophagy through upregulating ULK1 protein abundance.Cell Res.201828995595710.1038/s41422‑018‑0069‑8 30046135
    [Google Scholar]
  26. DornL.E. LasmanL. ChenJ. XuX. HundT.J. MedvedovicM. HannaJ.H. van BerloJ.H. AccorneroF. The N 6 -methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy.Circulation2019139453354510.1161/CIRCULATIONAHA.118.036146 30586742
    [Google Scholar]
  27. KmietczykV. RiechertE. KalinskiL. BoileauE. MalovrhE. MaloneB. GorskaA. HofmannC. VarmaE. JürgensenL. Kamuf-SchenkV. AltmüllerJ. TappuR. BuschM. MostP. KatusH.A. DieterichC. VölkersM. m 6 A-mRNA methylation regulates cardiac gene expression and cellular growth.Life Sci. Alliance201922e20180023310.26508/lsa.201800233 30967445
    [Google Scholar]
  28. ZhangB. JiangH. DongZ. SunA. GeJ. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases.Genes Dis.20218674675810.1016/j.gendis.2020.07.011 34522705
    [Google Scholar]
  29. YuL. CaiS. GuoX. m6A RNA methylation modification is involved in the disease course of heart failure.Biotechnol. Genet. Eng. Rev.202440296197510.1080/02648725.2023.2191086 36943073
    [Google Scholar]
  30. FangZ. MeiW. QuC. LuJ. ShangL. CaoF. LiF. Role of m6A writers, erasers and readers in cancer.Exp. Hematol. Oncol.20221114510.1186/s40164‑022‑00298‑7 35945641
    [Google Scholar]
  31. PetriB.J. KlingeC.M. m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer.J. Mol. Endocrinol.2023702e22011010.1530/JME‑22‑0110 36367225
    [Google Scholar]
  32. ZhouH. YinK. ZhangY. TianJ. WangS. The RNA m6A writer METTL14 in cancers: Roles, structures, and applications.Biochim. Biophys. Acta Rev. Cancer20211876218860910.1016/j.bbcan.2021.188609
    [Google Scholar]
  33. SuS. LiS. DengT. GaoM. YinY. WuB. PengC. LiuJ. MaJ. ZhangK. Cryo-EM structures of human m6A writer complexes.Cell Res.2022321198299410.1038/s41422‑022‑00725‑8 36167981
    [Google Scholar]
  34. BayoumiM. MunirM. Structural insights into m6A-erasers: A step toward understanding molecule specificity and potential antiviral targeting.Front. Cell Dev. Biol.2021858710810.3389/fcell.2020.587108 33511112
    [Google Scholar]
  35. HuangW.M. LiZ.X. WuY.H. ShiZ.L. MiJ.L. HuK. WangR.S. m6A demethylase FTO renders radioresistance of nasopharyngeal carcinoma via promoting OTUB1-mediated anti-ferroptosis.Transl. Oncol.20232710157610.1016/j.tranon.2022.101576 36343416
    [Google Scholar]
  36. ShiH. WeiJ. HeC. Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers.Mol. Cell201974464065010.1016/j.molcel.2019.04.025 31100245
    [Google Scholar]
  37. LiuT. WeiQ. JinJ. LuoQ. LiuY. YangY. ChengC. LiL. PiJ. SiY. XiaoH. LiL. RaoS. WangF. YuJ. YuJ. ZouD. YiP. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation.Nucleic Acids Res.20204873816383110.1093/nar/gkaa048 31996915
    [Google Scholar]
  38. TanX. ZhengC. ZhuangY. JinP. WangF. The m6A reader PRRC2A is essential for meiosis I completion during spermatogenesis.Nat. Commun.2023141163610.1038/s41467‑023‑37252‑y 36964127
    [Google Scholar]
  39. CzarneckaA. Purzycka-BohdanD. ZabłotnaM. NowickiR.J. RębałaK. BohdanM. GruchałaM. WilkowskaA. Szczerkowska-DoboszA. Analysis of clinical and genetic factors of obesity and psoriasis concomitance-the influence of body mass composition, prevalence of mood disorders, environmental factors and FTO gene polymorphisms.Biomedicines202412351710.3390/biomedicines12030517 38540130
    [Google Scholar]
  40. LiY. SuR. DengX. ChenY. ChenJ. FTO in cancer: Functions, molecular mechanisms, and therapeutic implications.Trends Cancer20228759861410.1016/j.trecan.2022.02.010 35346615
    [Google Scholar]
  41. YeD. ZhangY. ZhangB. LiuJ. WeiT. LuS. The regulatory role of m6A methylation modification in metabolic syndrome pathogenesis and progression.Front. Physiol.202415127187410.3389/fphys.2024.1271874 38562618
    [Google Scholar]
  42. LiX. MuB. LiX. BieZ. circCELF1 inhibits myocardial fibrosis by regulating the expression of DKK2 through FTO/m6A and miR-636.J. Cardiovasc. Transl. Res.2022155998100910.1007/s12265‑022‑10209‑0 35132536
    [Google Scholar]
  43. ShenW. LiH. SuH. ChenK. YanJ. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt.Mol. Cell. Biochem.202147652171217910.1007/s11010‑021‑04069‑6 33548009
    [Google Scholar]
  44. MoC. YangM. HanX. LiJ. GaoG. TaiH. HuangN. XiaoH. Fat mass and obesity-associated protein attenuates lipid accumulation in macrophage foam cells and alleviates atherosclerosis in apolipoprotein E-deficient mice.J. Hypertens.201735481082110.1097/HJH.0000000000001255 28253220
    [Google Scholar]
  45. XuZ.Y. JingX. XiongX.D. Emerging role and mechanism of the FTO gene in cardiovascular diseases.Biomolecules202313585010.3390/biom13050850 37238719
    [Google Scholar]
  46. DengW. JinQ. LiL. Protective mechanism of demethylase fat mass and obesity‐associated protein in energy metabolism disorder of hypoxia–reoxygenation‐induced cardiomyocytes.Exp. Physiol.2021106122423243310.1113/EP089901 34713923
    [Google Scholar]
  47. AnnamalaiK. BuchholzE. CastroR. PanyamN. FischerA. ToischerK. Regulatory roles of the N6-methyladenosine demethylase FTO in cardiac remodeling.Eur. Heart J.202344Suppl.2ehad655.314310.1093/eurheartj/ehad655.3143
    [Google Scholar]
  48. GaoL. ZhangY. LiuJ. LiX. SangY. ZhouG. XueJ. JingL. ShiZ. WeiJ. LuX. ZhouX. Fat mass and obesity-associated gene (FTO) hypermethylation induced by decabromodiphenyl ethane causing cardiac dysfunction via glucolipid metabolism disorder.Ecotoxicol. Environ. Saf.202223711353410.1016/j.ecoenv.2022.113534 35462195
    [Google Scholar]
  49. WangJ. ChenL. QiangP. The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers.Cancer Cell Int.20212119910.1186/s12935‑021‑01799‑x 33568150
    [Google Scholar]
  50. CaoJ. YanW. MaX. HuangH. YanH. Insulin-like growth factor 2 mRNA-binding protein 2—a potential link between Type 2 Diabetes Mellitus and Cancer.J. Clin. Endocrinol. Metab.2021106102807281810.1210/clinem/dgab391 34061963
    [Google Scholar]
  51. DaiN. ZhaoL. WrightingD. KrämerD. MajithiaA. WangY. CracanV. Borges-RiveraD. MoothaV.K. NahrendorfM. ThorburnD.R. MinichielloL. AltshulerD. AvruchJ. IGF2BP2/IMP2-Deficient mice resist obesity through enhanced translation of Ucp1 mRNA and Other mRNAs encoding mitochondrial proteins.Cell Metab.201521460962110.1016/j.cmet.2015.03.006 25863250
    [Google Scholar]
  52. ReguéL. MinichielloL. AvruchJ. DaiN. Liver-specific deletion of IGF2 mRNA binding protein-2/IMP2 reduces hepatic fatty acid oxidation and increases hepatic triglyceride accumulation.J. Biol. Chem.201929431119441195110.1074/jbc.RA119.008778 31209109
    [Google Scholar]
  53. BarghashA. HelmsV. KesslerS.M. Overexpression ofIGF 2MRNA ‐binding protein 2 (IMP 2/p62) as a feature of basal‐like breast cancer correlates with short survival.Scand. J. Immunol.201582214214310.1111/sji.12307 25916626
    [Google Scholar]
  54. LiT. HuP.S. ZuoZ. LinJ.F. LiX. WuQ.N. ChenZ.H. ZengZ.L. WangF. ZhengJ. ChenD. LiB. KangT.B. XieD. LinD. JuH.Q. XuR.H. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma.Mol. Cancer201918111210.1186/s12943‑019‑1038‑7 31230592
    [Google Scholar]
  55. BarghashA. Golob-SchwarzlN. HelmsV. HaybaeckJ. KesslerS.M. Elevated expression of the IGF2 mRNA binding protein 2 (IGF2BP2/IMP2) is linked to short survival and metastasis in esophageal adenocarcinoma.Oncotarget2016731497434975010.18632/oncotarget.10439 27391348
    [Google Scholar]
  56. YangY. LiuX. ChengL. LiL. WeiZ. WangZ. HanG. WanX. WangZ. ZhangJ. ChenC. Tumor suppressor microRNA-138 Suppresses low-grade glioma development and metastasis via regulating IGF2BP2.OncoTargets Ther.2020132247226010.2147/OTT.S232795 32214825
    [Google Scholar]
  57. WalyA.A. El-EkiabyN. AssalR.A. AbdelrahmanM.M. HosnyK.A. El TayebiH.M. EsmatG. BreuhahnK. AbdelazizA.I. Methylation in MIRLET7A3 gene induces the expression of IGF-II and its mRNA binding proteins IGF2BP-2 and 3 in hepatocellular carcinoma.Front. Physiol.20199191810.3389/fphys.2018.01918 30733684
    [Google Scholar]
  58. ChenS. QiuH. LiuC. WangY. TangW. KangM. Relationship between IGF2BP2 and IGFBP3 polymorphisms and susceptibility to non-small-cell lung cancer: A case–control study in Eastern Chinese Han population.Cancer Manag. Res.2018102965297510.2147/CMAR.S169222 30214291
    [Google Scholar]
  59. XuX. YuY. ZongK. LvP. GuY. Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway.J. Exp. Clin. Cancer Res.201938149710.1186/s13046‑019‑1470‑y 31852504
    [Google Scholar]
  60. WangJ. LiS. YuH. GaoD. Oxidative stress regulates cardiomyocyte energy metabolism through the IGF2BP2-dynamin2 signaling pathway.Biochem. Biophys. Res. Commun.202262413414010.1016/j.bbrc.2022.07.089 35940126
    [Google Scholar]
  61. CaiR. ZhangQ. WangY. YongW. ZhaoR. PangW. Lnc-ORA interacts with microRNA-532-3p and IGF2BP2 to inhibit skeletal muscle myogenesis.J. Biol. Chem.202129610037610.1016/j.jbc.2021.100376 33548229
    [Google Scholar]
  62. ZhouX. LiM. HuangH. ChenK. YuanZ. ZhangY. NieY. ChenH. ZhangX. ChenL. ChenY. MoD. HMGB2 regulates satellite cell-mediated skeletal muscle regeneration via IGF2BP2.J. Cell Sci.201612922jcs.18994410.1242/jcs.189944 27672022
    [Google Scholar]
  63. HuangH. WengH. SunW. QinX. ShiH. WuH. ZhaoB.S. MesquitaA. LiuC. YuanC.L. HuY.C. HüttelmaierS. SkibbeJ.R. SuR. DengX. DongL. SunM. LiC. NachtergaeleS. WangY. HuC. FerchenK. GreisK.D. JiangX. WeiM. QuL. GuanJ.L. HeC. YangJ. ChenJ. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation.Nat. Cell Biol.201820328529510.1038/s41556‑018‑0045‑z 29476152
    [Google Scholar]
  64. QianB. WangP. ZhangD. WuL. m6A modification promotes miR-133a repression during cardiac development and hypertrophy via IGF2BP2.Cell Death Discov.20217115710.1038/s41420‑021‑00552‑7 34226535
    [Google Scholar]
  65. KrumbeinM. ObermanF. CinnamonY. GolombM. MayD. VainerG. BelzerV. MeirK. FridmanI. HaybaeckJ. PoelzlG. KehatI. BeeriR. KesslerS.M. YisraeliJ.K. RNA binding protein IGF2BP2 expression is induced by stress in the heart and mediates dilated cardiomyopathy.Commun. Biol.202361122910.1038/s42003‑023‑05547‑x 38052926
    [Google Scholar]
  66. van den HombergD.A.L. van der KwastR.V.C.T. QuaxP.H.A. NossentA.Y. N-6-methyladenosine in vasoactive microRNAs during hypoxia; A novel role for METTL4.Int. J. Mol. Sci.2022233105710.3390/ijms23031057 35162982
    [Google Scholar]
  67. TangJ. TangQ.X. LiuS. METTL3-modified lncRNA-SNHG8 binds to PTBP1 to regulate ALAS2 expression to increase oxidative stress and promote myocardial infarction.Mol. Cell. Biochem.202347861217122910.1007/s11010‑022‑04570‑6 36282350
    [Google Scholar]
  68. AlarcónC.R. LeeH. GoodarziH. HalbergN. TavazoieS.F. N6-methyladenosine marks primary microRNAs for processing.Nature2015519754448248510.1038/nature14281 25799998
    [Google Scholar]
  69. XueJ. XiaoP. YuX. ZhangX. A positive feedback loop between AlkB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma.Hum. Cell202134250251410.1007/s13577‑020‑00458‑z 33231844
    [Google Scholar]
  70. ZhangJ. BaiR. LiM. YeH. WuC. WangC. LiS. TanL. MaiD. LiG. PanL. ZhengY. SuJ. YeY. FuZ. ZhengS. ZuoZ. LiuZ. ZhaoQ. CheX. XieD. JiaW. ZengM.S. TanW. ChenR. XuR.H. ZhengJ. LinD. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression.Nat. Commun.2019101185810.1038/s41467‑019‑09712‑x 31015415
    [Google Scholar]
  71. DuM. ZhangY. MaoY. MouJ. ZhaoJ. XueQ. WangD. HuangJ. GaoS. GaoY. MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA.Biochem. Biophys. Res. Commun.2017482458258910.1016/j.bbrc.2016.11.077 27856248
    [Google Scholar]
  72. XuC. YuanB. HeT. DingB. LiS. Prognostic values of YTHDF1 regulated negatively by mir‐3436 in Glioma.J. Cell. Mol. Med.202024137538754910.1111/jcmm.15382 32449290
    [Google Scholar]
  73. YangZ. LiJ. FengG. GaoS. WangY. ZhangS. LiuY. YeL. LiY. ZhangX. MicroRNA-145 modulates N6-methyladenosine levels by targeting the 3′-untranslated mRNA region of the N6-methyladenosine binding YTH domain family 2 protein.J. Biol. Chem.201729293614362310.1074/jbc.M116.749689 28104805
    [Google Scholar]
  74. YeM. DongS. HouH. ZhangT. ShenM. Oncogenic role of long noncoding RNAMALAT1 in thyroid cancer progression through regulation of the miR-204/IGF2BP2/m6A-MYC signaling.Mol. Ther. Nucleic Acids20212311210.1016/j.omtn.2020.09.023 33312756
    [Google Scholar]
  75. YangZ. XiaoZ. GuoH. FangX. LiangJ. ZhuJ. YangJ. LiH. PanR. YuanS. DongW. ZhengX.L. WuS. ShanZ. Novel role of the clustered miR‐23b‐3p and miR‐27b‐3p in enhanced expression of fibrosis‐associated genes by targeting TGFBR3 in atrial fibroblasts.J. Cell. Mol. Med.20192353246325610.1111/jcmm.14211 30729664
    [Google Scholar]
  76. AdayS. Hazan-HalevyI. Chamorro-JorganesA. AnwarM. GoldsmithM. Beazley-LongN. SahooS. DograN. SweaadW. CatapanoF. Ozaki-TanS. AngeliniG.D. MadedduP. BenestA.V. PeerD. EmanueliC. Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis in vitro and in vivo.Mol. Ther.20212972239225210.1016/j.ymthe.2021.03.015 33744469
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073316437240426071022
Loading
/content/journals/cchts/10.2174/0113862073316437240426071022
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): cardiac remodeling; FTO; Heart failure; IGF2BP2; m6A; microRNA; RNA methylation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test