Skip to content
2000
Volume 28, Issue 6
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

In recent years, an increasing number of studies have indicated a bidirectional relationship between gut microbiota and the kidneys (the gut-kidney axis). Currently, the potential causal relationship between gut microbiota and diabetic nephropathy remains unclear. This study explores the causal effects of gut microbiota on diabetic nephropathy through Mendelian randomization.

Methods

We carried out a comprehensive Mendelian Randomization (MR) analysis, drawing on the Genome-wide Association Study (GWAS) data for 196 varieties of gut microbiota and diabetic nephropathy. The primary analytical approach employed was the inverse-variance weighted, supplemented by the MR-Egger, weighted median, simple mode, and weighted mode. We rigorously assessed heterogeneity with Cochran's Q test and examined pleiotropy MR-Egger intercept and MR-PRESSO tests. To ensure the reliability of our findings, we conducted funnel plots and leave-one-out analysis.

Results

Our study indicates a causal relationship between the increased risk of diabetic nephropathy and specific gut microbiota, including the (=0.01892; OR=1.593; 95%CI, 1.080-2.350), (=0.01892; OR=1.593; 95% CI, 1.080-2.350), and (=0.01350; OR=1.452; 95% CI, 1.080-1.953). Conversely, potential protective factors include the (=0.00397; OR=0.528; 95% CI, 0.342-0.815), (=0.00965; OR=0.474; 95% CI, 0.270-0.834), (=0.04417; OR=0.756; 95% CI, 0.576-0.993), (=0.04417; OR=0.756; 95% CI, 0.576-0.993), and (=0.00118; OR=0.513; 95%CI, 0.343-0.768).

Conclusion

This study confirms the causal effects of gut microbiota on diabetic nephropathy. Identifying the risk and protective factors within the gut microbiota for diabetic nephropathy offers fresh insights and novel approaches for preventing and treating this condition.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073311197240425073859
2024-04-26
2025-09-05
Loading full text...

Full text loading...

References

  1. JiangS. YuT. DiD. WangY. LiW. Worldwide burden and trends of diabetes among people aged 70 years and older, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019.Diabetes Metab. Res. Rev.2024403e374510.1002/dmrr.3745 37942674
    [Google Scholar]
  2. CousinE. SchmidtM.I. OngK.L. LozanoR. AfshinA. AbushoukA.I. AgarwalG. Agudelo-BoteroM. Al-AlyZ. Alcalde-RabanalJ.E. Alvis-GuzmanN. Alvis-ZakzukN.J. AntonyB. AsaadM. BärnighausenT.W. BasuS. BensenorI.M. ButtZ.A. Campos-NonatoI.R. ChattuV.K. CriquiM.H. DaneshpajouhnejadP. Dávila-CervantesC.A. Denova-GutiérrezE. DharmaratneS.D. DiazD. FilipI. GadM.M. Garcia-GordilloM.A. Ghasemi AsslS. GopalaniS.V. GuimarãesR.A. GuptaR.D. Hafezi-NejadN. HashemianM. HayS.I. KahlonT. KhubchandaniJ. KimokotiR.W. KisaA. Kuate DefoB. LandiresI. MillerT.R. MokdadA.H. MoralesL. MorrisonS.D. NigatuY.T. Nuñez-SamudioV. OlagunjuA.T. Pandi-PerumalS.R. PatelU.K. RadfarA. Rios-BlancasM. RoeverL. SaadatagahS. SanabriaJ. SantosI.S. SathishT. ShabaniM. ShafaatO. SheikhbahaeiS. SilvaD.A.S. SinghA. SinghJ.A. Tovani-PaloneM.R. VelazquezD.Z. ZadeyS. NaghaviM. VosT. DuncanB.B. Burden of diabetes and hyperglycaemia in adults in the Americas, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019.Lancet Diabetes Endocrinol.202210965566710.1016/S2213‑8587(22)00186‑3 35850129
    [Google Scholar]
  3. YangX. XueC. ChenK. GaoD. WangH. TangC. Characteristics of elderly diabetes patients: focus on clinical manifestation, pathogenic mechanism, and the role of traditional Chinese medicine.Front. Pharmacol.202414133974410.3389/fphar.2023.1339744 38273819
    [Google Scholar]
  4. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  5. KanasakiK. TaduriG. KoyaD. Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis.Front. Endocrinol.20134710.3389/fendo.2013.00007 23390421
    [Google Scholar]
  6. GuptaS. DominguezM. GolestanehL. Diabetic Kidney Disease.Med. Clin. North Am.2023107468970510.1016/j.mcna.2023.03.004 37258007
    [Google Scholar]
  7. TanS.H. CandasamyM. BhattamisraS.K. Diabetic nephropathy: An update on pathogenesis and drug development.Diabetes Metab. Syndr.201913175476210.1016/j.dsx.2018.11.054 30641802
    [Google Scholar]
  8. GrossJ.L. de AzevedoM.J. SilveiroS.P. CananiL.H. CaramoriM.L. ZelmanovitzT. Diabetic nephropathy: diagnosis, prevention, and treatment.Diabetes Care200528116417610.2337/diacare.28.1.164 15616252
    [Google Scholar]
  9. AzushimaK. GurleyS.B. CoffmanT.M. Modelling diabetic nephropathy in mice.Nat. Rev. Nephrol.2018141485610.1038/nrneph.2017.142 29062142
    [Google Scholar]
  10. ZimmetP.Z. MaglianoD.J. HermanW.H. ShawJ.E. Diabetes: a 21st century challenge.Lancet Diabetes Endocrinol.201421566410.1016/S2213‑8587(13)70112‑8 24622669
    [Google Scholar]
  11. LozanoR. NaghaviM. ForemanK. LimS. ShibuyaK. AboyansV. AbrahamJ. AdairT. AggarwalR. AhnS.Y. AlMazroaM.A. AlvaradoM. AndersonH.R. AndersonL.M. AndrewsK.G. AtkinsonC. BaddourL.M. Barker-ColloS. BartelsD.H. BellM.L. BenjaminE.J. BennettD. BhallaK. BikbovB. AbdulhakA.B. BirbeckG. BlythF. BolligerI. BoufousS. BucelloC. BurchM. BurneyP. CarapetisJ. ChenH. ChouD. ChughS.S. CoffengL.E. ColanS.D. ColquhounS. ColsonK.E. CondonJ. ConnorM.D. CooperL.T. CorriereM. CortinovisM. de VaccaroK.C. CouserW. CowieB.C. CriquiM.H. CrossM. DabhadkarK.C. DahodwalaN. De LeoD. DegenhardtL. DelossantosA. DenenbergJ. Des JarlaisD.C. DharmaratneS.D. DorseyE.R. DriscollT. DuberH. EbelB. ErwinP.J. EspindolaP. EzzatiM. FeiginV. FlaxmanA.D. ForouzanfarM.H. FowkesF.G.R. FranklinR. FransenM. FreemanM.K. GabrielS.E. GakidouE. GaspariF. GillumR.F. Gonzalez-MedinaD. HalasaY.A. HaringD. HarrisonJ.E. HavmoellerR. HayR.J. HoenB. HotezP.J. HoyD. JacobsenK.H. JamesS.L. JasrasariaR. JayaramanS. JohnsN. KarthikeyanG. KassebaumN. KerenA. KhooJ-P. KnowltonL.M. KobusingyeO. KorantengA. KrishnamurthiR. LipnickM. LipshultzS.E. OhnoS.L. MabweijanoJ. MacIntyreM.F. MallingerL. MarchL. MarksG.B. MarksR. MatsumoriA. MatzopoulosR. MayosiB.M. McAnultyJ.H. McDermottM.M. McGrathJ. MemishZ.A. MensahG.A. MerrimanT.R. MichaudC. MillerM. MillerT.R. MockC. MocumbiA.O. MokdadA.A. MoranA. MulhollandK. NairM.N. NaldiL. NarayanK.M.V. NasseriK. NormanP. O’DonnellM. OmerS.B. OrtbladK. OsborneR. OzgedizD. PahariB. PandianJ.D. RiveroA.P. PadillaR.P. Perez-RuizF. PericoN. PhillipsD. PierceK. PopeC.A.III PorriniE. PourmalekF. RajuM. RanganathanD. RehmJ.T. ReinD.B. RemuzziG. RivaraF.P. RobertsT. De LeónF.R. RosenfeldL.C. RushtonL. SaccoR.L. SalomonJ.A. SampsonU. SanmanE. SchwebelD.C. Segui-GomezM. ShepardD.S. SinghD. SingletonJ. SliwaK. SmithE. SteerA. TaylorJ.A. ThomasB. TleyjehI.M. TowbinJ.A. TruelsenT. UndurragaE.A. VenketasubramanianN. VijayakumarL. VosT. WagnerG.R. WangM. WangW. WattK. WeinstockM.A. WeintraubR. WilkinsonJ.D. WoolfA.D. WulfS. YehP-H. YipP. ZabetianA. ZhengZ-J. LopezA.D. MurrayC.J.L. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the global burden of disease study 2010.Lancet201238098592095212810.1016/S0140‑6736(12)61728‑0 23245604
    [Google Scholar]
  12. LimJ.H. KimH.W. KimM.Y. KimT.W. KimE.N. KimY. ChungS. KimY.S. ChoiB.S. KimY.S. ChangY.S. KimH.W. ParkC.W. Cinacalcet-mediated activation of the CaMKKβ-LKB1-AMPK pathway attenuates diabetic nephropathy in db/db mice by modulation of apoptosis and autophagy.Cell Death Dis.20189327010.1038/s41419‑018‑0324‑4 29449563
    [Google Scholar]
  13. LiJ. LiL. ZhangZ. ChenP. ShuH. YangC. ChuY. LiuJ. Ferroptosis: an important player in the inflammatory response in diabetic nephropathy.Front. Immunol.202314129431710.3389/fimmu.2023.1294317 38111578
    [Google Scholar]
  14. TuttleK.R. Back to the Future: Glomerular Hyperfiltration and the Diabetic Kidney.Diabetes2017661141610.2337/dbi16‑0056 27999101
    [Google Scholar]
  15. LimA.K.H. TeschG.H. Inflammation in diabetic nephropathy.Mediat. Inflamm.2012201211210.1155/2012/146154 22969168
    [Google Scholar]
  16. TangS.C.W. ChanG.C.W. LaiK.N. Recent advances in managing and understanding diabetic nephropathy.F1000 Res.20165104410.12688/f1000research.7693.1 27303648
    [Google Scholar]
  17. MudaliarH. PollockC. PanchapakesanU. Role of Toll-like receptors in diabetic nephropathy.Clin. Sci. (Lond.)20141261068569410.1042/CS20130267 24490813
    [Google Scholar]
  18. ShaoB.Y. ZhangS.F. LiH.D. MengX.M. ChenH.Y. Epigenetics and Inflammation in Diabetic Nephropathy.Front. Physiol.20211264958710.3389/fphys.2021.649587 34025445
    [Google Scholar]
  19. MorenoJ.A. Gomez-GuerreroC. MasS. SanzA.B. LorenzoO. Ruiz-OrtegaM. OpazoL. MezzanoS. EgidoJ. Targeting inflammation in diabetic nephropathy: A tale of hope.Expert Opin. Investig. Drugs2018271191793010.1080/13543784.2018.1538352 30334635
    [Google Scholar]
  20. CarusoR. LoB.C. NúñezG. Host–microbiota interactions in inflammatory bowel disease.Nat. Rev. Immunol.202020741142610.1038/s41577‑019‑0268‑7 32005980
    [Google Scholar]
  21. FlochM.H. Intestinal microecology in health and wellness.J. Clin. Gastroenterol.201145Suppl.S108S11010.1097/MCG.0b013e3182309276 21992947
    [Google Scholar]
  22. DavidL.A. MauriceC.F. CarmodyR.N. GootenbergD.B. ButtonJ.E. WolfeB.E. LingA.V. DevlinA.S. VarmaY. FischbachM.A. BiddingerS.B. DuttonR.J. TurnbaughP.J. Diet rapidly and reproducibly alters the human gut microbiome.Nature2014505748455956310.1038/nature12820 24336217
    [Google Scholar]
  23. BokulichN.A. ChungJ. BattagliaT. HendersonN. JayM. LiH.D. LieberA. WuF. Perez-PerezG.I. ChenY. SchweizerW. ZhengX. ContrerasM. Dominguez-BelloM.G. BlaserM.J. Antibiotics, birth mode, and diet shape microbiome maturation during early life.Sci. Transl. Med.20168343343ra8210.1126/scitranslmed.aad7121 27306664
    [Google Scholar]
  24. AveryE.G. BartolomaeusH. MaifeldA. MarkoL. WiigH. WilckN. RosshartS.P. ForslundS.K. MüllerD.N. The Gut Microbiome in Hypertension.Circ. Res.2021128793495010.1161/CIRCRESAHA.121.318065 33793332
    [Google Scholar]
  25. CanforaE.E. MeexR.C.R. VenemaK. BlaakE.E. Gut microbial metabolites in obesity, NAFLD and T2DM.Nat. Rev. Endocrinol.201915526127310.1038/s41574‑019‑0156‑z 30670819
    [Google Scholar]
  26. GhoshA. MuleyA. AinapureA.S. DeshmaneA.R. MahajanA. Exploring the Impact of Optimized Probiotic Supplementation Techniques on Diabetic Nephropathy: Mechanisms and Therapeutic Potential.Cureus2024162e5514910.7759/cureus.55149 38558739
    [Google Scholar]
  27. HanY.Z. ZhengH.J. DuB.X. ZhangY. ZhuX.Y. LiJ. WangY.X. LiuW.J. Role of Gut Microbiota, Immune Imbalance, and Allostatic Load in the Occurrence and Development of Diabetic Kidney Disease.J. Diabetes Res.2023202311710.1155/2023/8871677 38094870
    [Google Scholar]
  28. HuoL. LiH. ZhuM. LiuY. RenL. HuJ. WangX. Enhanced trimethylamine metabolism and gut dysbiosis in type 2 diabetes mellitus with microalbumin.Front. Endocrinol. (Lausanne)202314125745710.3389/fendo.2023.1257457 38075058
    [Google Scholar]
  29. MosterdC.M. KanbayM. van den BornB.J.H. van RaalteD.H. RampanelliE. Intestinal microbiota and diabetic kidney diseases: the Role of microbiota and derived metabolites inmodulation of renal inflammation and disease progression.Best Pract. Res. Clin. Endocrinol. Metab.202135310148410.1016/j.beem.2021.101484 33546983
    [Google Scholar]
  30. ZhaoH. YangC.E. LiuT. ZhangM.X. NiuY. WangM. YuJ. The roles of gut microbiota and its metabolites in diabetic nephropathy.Front. Microbiol.202314120713210.3389/fmicb.2023.1207132 37577423
    [Google Scholar]
  31. LvQ. LiZ. SuiA. YangX. HanY. YaoR. The role and mechanisms of gut microbiota in diabetic nephropathy, diabetic retinopathy and cardiovascular diseases.Front. Microbiol.20221397718710.3389/fmicb.2022.977187 36060752
    [Google Scholar]
  32. GreenlandS. An introduction to instrumental variables for epidemiologists.Int. J. Epidemiol.200029472272910.1093/ije/29.4.722 10922351
    [Google Scholar]
  33. WuK. LuoQ. LiuY. LiA. XiaD. SunX. Causal relationship between gut microbiota and gastrointestinal diseases: a mendelian randomization study.J. Transl. Med.20242219210.1186/s12967‑024‑04894‑5 38263233
    [Google Scholar]
  34. SuY. ZhangY. XuJ. Genetic association and bidirectional Mendelian randomization for causality between gut microbiota and six lung diseases.Front. Med. (Lausanne)202310127923910.3389/fmed.2023.1279239 38162878
    [Google Scholar]
  35. FengF. LiR. TianR. WuX. ZhangN. NieZ. The causal relationship between gut microbiota and immune skin diseases: A bidirectional Mendelian randomization.PLoS One2024193e029844310.1371/journal.pone.0298443 38512926
    [Google Scholar]
  36. EmdinC.A. KheraA.V. KathiresanS. Mendelian Randomization.JAMA2017318191925192610.1001/jama.2017.17219 29164242
    [Google Scholar]
  37. KurilshikovA. Medina-GomezC. BacigalupeR. RadjabzadehD. WangJ. DemirkanA. Le RoyC.I. Raygoza GarayJ.A. FinnicumC.T. LiuX. ZhernakovaD.V. BonderM.J. HansenT.H. FrostF. RühlemannM.C. TurpinW. MoonJ.Y. KimH.N. LüllK. BarkanE. ShahS.A. FornageM. Szopinska-TokovJ. WallenZ.D. BorisevichD. AgreusL. AndreassonA. BangC. BedraniL. BellJ.T. BisgaardH. BoehnkeM. BoomsmaD.I. BurkR.D. ClaringbouldA. CroitoruK. DaviesG.E. van DuijnC.M. DuijtsL. FalonyG. FuJ. van der GraafA. HansenT. HomuthG. HughesD.A. IjzermanR.G. JacksonM.A. JaddoeV.W.V. JoossensM. JørgensenT. KeszthelyiD. KnightR. LaaksoM. LaudesM. LaunerL.J. LiebW. LusisA.J. MascleeA.A.M. MollH.A. MujagicZ. QibinQ. RothschildD. ShinH. SørensenS.J. StevesC.J. ThorsenJ. TimpsonN.J. TitoR.Y. Vieira-SilvaS. VölkerU. VölzkeH. VõsaU. WadeK.H. WalterS. WatanabeK. WeissS. WeissF.U. WeissbrodO. WestraH.J. WillemsenG. PayamiH. JonkersD.M.A.E. Arias VasquezA. de GeusE.J.C. MeyerK.A. StokholmJ. SegalE. OrgE. WijmengaC. KimH.L. KaplanR.C. SpectorT.D. UitterlindenA.G. RivadeneiraF. FrankeA. LerchM.M. FrankeL. SannaS. D’AmatoM. PedersenO. PatersonA.D. KraaijR. RaesJ. ZhernakovaA. Large-scale association analyses identify host factors influencing human gut microbiome composition.Nat. Genet.202153215616510.1038/s41588‑020‑00763‑1 33462485
    [Google Scholar]
  38. SakaueS. KanaiM. TanigawaY. KarjalainenJ. KurkiM. KoshibaS. NaritaA. KonumaT. YamamotoK. AkiyamaM. IshigakiK. SuzukiA. SuzukiK. ObaraW. YamajiK. TakahashiK. AsaiS. TakahashiY. SuzukiT. ShinozakiN. YamaguchiH. MinamiS. MurayamaS. YoshimoriK. NagayamaS. ObataD. HigashiyamaM. MasumotoA. KoretsuneY. ItoK. TeraoC. YamauchiT. KomuroI. KadowakiT. TamiyaG. YamamotoM. NakamuraY. KuboM. MurakamiY. YamamotoK. KamataniY. PalotieA. RivasM.A. DalyM.J. MatsudaK. OkadaY. A cross-population atlas of genetic associations for 220 human phenotypes.Nat. Genet.202153101415142410.1038/s41588‑021‑00931‑x 34594039
    [Google Scholar]
  39. LuoM. SunM. WangT. ZhangS. SongX. LiuX. WeiJ. ChenQ. ZhongT. QinJ. Gut microbiota and type 1 diabetes: a two-sample bidirectional Mendelian randomization study.Front. Cell. Infect. Microbiol.202313116389810.3389/fcimb.2023.1163898 37313342
    [Google Scholar]
  40. YuX.H. YangY.Q. CaoR.R. BoL. LeiS.F. The causal role of gut microbiota in development of osteoarthritis.Osteoarthritis Cartilage202129121741175010.1016/j.joca.2021.08.003 34425228
    [Google Scholar]
  41. LiX. LiangZ. Causal effect of gut microbiota on pancreatic cancer: A Mendelian randomization and colocalization study.J. Cell. Mol. Med.2024288e1825510.1111/jcmm.18255 38526030
    [Google Scholar]
  42. TziomalosK. AthyrosV.G. Diabetic Nephropathy: New Risk Factors and Improvements in Diagnosis.Rev. Diabet. Stud.2015121-211011810.1900/RDS.2015.12.110 26676664
    [Google Scholar]
  43. KamatM.A. BlackshawJ.A. YoungR. SurendranP. BurgessS. DaneshJ. ButterworthA.S. StaleyJ.R. PhenoScanner V2: an expanded tool for searching human genotype–phenotype associations.Bioinformatics201935224851485310.1093/bioinformatics/btz469 31233103
    [Google Scholar]
  44. BurgessS. ThompsonS.G. Avoiding bias from weak instruments in Mendelian randomization studies.Int. J. Epidemiol.201140375576410.1093/ije/dyr036 21414999
    [Google Scholar]
  45. LuoS. LiW. LiQ. ZhangM. WangX. WuS. LiY. Causal effects of gut microbiota on the risk of periodontitis: a two-sample Mendelian randomization study.Front. Cell. Infect. Microbiol.202313116099310.3389/fcimb.2023.1160993 37305424
    [Google Scholar]
  46. YanC. BaoJ. JinJ. Exploring the interplay of gut microbiota, inflammation, and LDL-cholesterol: a multiomics Mendelian randomization analysis of their causal relationship in acute pancreatitis and non-alcoholic fatty liver disease.J. Transl. Med.202422117910.1186/s12967‑024‑04996‑0 38374155
    [Google Scholar]
  47. LongY. TangL. ZhouY. ZhaoS. ZhuH. Causal relationship between gut microbiota and cancers: a two-sample Mendelian randomisation study.BMC Med.20232116610.1186/s12916‑023‑02761‑6 36810112
    [Google Scholar]
  48. ZhouJ. ZhangX. XieZ. LiZ. Exploring reciprocal causation: bidirectional mendelian randomization study of gut microbiota composition and thyroid cancer.J. Cancer Res. Clin. Oncol.202415027510.1007/s00432‑023‑05535‑y 38308705
    [Google Scholar]
  49. BurgessS. ButterworthA. ThompsonS.G. Mendelian randomization analysis with multiple genetic variants using summarized data.Genet. Epidemiol.201337765866510.1002/gepi.21758 24114802
    [Google Scholar]
  50. BowdenJ. Davey SmithG. BurgessS. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression.Int. J. Epidemiol.201544251252510.1093/ije/dyv080 26050253
    [Google Scholar]
  51. BowdenJ. Davey SmithG. HaycockP.C. BurgessS. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator.Genet. Epidemiol.201640430431410.1002/gepi.21965 27061298
    [Google Scholar]
  52. LiK. ZhangC. DengJ. ZengH. ZhangY. LaiG. ZhongX. XieB. Causal effects of gut microbiome on HIV infection: a two-sample mendelian randomization analysis.BMC Infect. Dis.202424128010.1186/s12879‑024‑09176‑5 38438963
    [Google Scholar]
  53. HemaniG. ZhengJ. ElsworthB. WadeK.H. HaberlandV. BairdD. LaurinC. BurgessS. BowdenJ. LangdonR. TanV.Y. YarmolinskyJ. ShihabH.A. TimpsonN.J. EvansD.M. ReltonC. MartinR.M. Davey SmithG. GauntT.R. HaycockP.C. The MR-Base platform supports systematic causal inference across the human phenome.eLife20187e3440810.7554/eLife.34408 29846171
    [Google Scholar]
  54. XuJ. ZhangS. TianY. SiH. ZengY. WuY. LiuY. LiM. SunK. WuL. ShenB. Genetic Causal Association between Iron Status and Osteoarthritis: A Two-Sample Mendelian Randomization.Nutrients20221418368310.3390/nu14183683 36145059
    [Google Scholar]
  55. LiY. FuR. LiR. ZengJ. LiuT. LiX. JiangW. Causality of gut microbiome and hypertension: A bidirectional mendelian randomization study.Front. Cardiovasc. Med.202310116734610.3389/fcvm.2023.1167346 37215554
    [Google Scholar]
  56. XiaoQ.A. YangY.F. ChenL. XieY.C. LiH.T. FuZ.G. HanQ. QinJ. TianJ. ZhaoW.J. CaiF. HuY.T. AiL.F. LiC. ChenX.Y. WangD. TanY.Y. XiaX. ZhangX.L. The causality between gut microbiome and liver cirrhosis: a bi-directional two-sample Mendelian randomization analysis.Front. Microbiol.202314125687410.3389/fmicb.2023.1256874 37920262
    [Google Scholar]
  57. WangK. WangS. ChenY. LuX. WangD. ZhangY. PanW. ZhouC. ZouD. Causal relationship between gut microbiota and risk of gastroesophageal reflux disease: A genetic correlation and bidirectional Mendelian randomization study.Front. Immunol.202415132750310.3389/fimmu.2024.1327503 38449873
    [Google Scholar]
  58. WeiZ. YangB. TangT. XiaoZ. YeF. LiX. WuS. HuangJ. JiangS. Gut microbiota and risk of five common cancers: A univariable and multivariable Mendelian randomization study.Cancer Med.2023129103931040510.1002/cam4.5772 36880394
    [Google Scholar]
  59. LuoM. CaiJ. LuoS. HongX. XuL. LinH. ChenX. FuW. Causal effects of gut microbiota on the risk of chronic kidney disease: A Mendelian randomization study.Front. Cell. Infect. Microbiol.202313114214010.3389/fcimb.2023.1142140 37065213
    [Google Scholar]
  60. BurgessS. ThompsonS.G. Interpreting findings from Mendelian randomization using the MR-Egger method.Eur. J. Epidemiol.201732537738910.1007/s10654‑017‑0255‑x 28527048
    [Google Scholar]
  61. Erratum to “Renalase regulates renal tubular injury in diabetic nephropathy via the p38MAPK signaling pathway.FASEB J.2024381e2333610.1096/fj.202302343 38174882
    [Google Scholar]
  62. KarimiZ. DaryaborG. MasjediF. Effects of conditioned media derived from human Wharton’s jelly mesenchymal stem cells on diabetic nephropathy and hepatopathy via modulating TGF-β and apelin signaling pathways in male rats.BMC Endocr. Disord.2024241610.1186/s12902‑023‑01535‑8 38178017
    [Google Scholar]
  63. LiuY.H. ChenJ. ChenX. LiuH. Factors of faecal microbiota transplantation applied to cancer management.J. Drug Target.202432210111410.1080/1061186X.2023.2299724 38174845
    [Google Scholar]
  64. HeX. SunJ. LiuC. YuX. LiH. ZhangW. LiY. GengY. WangZ. Compositional Alterations of Gut Microbiota in Patients with Diabetic Kidney Disease and Type 2 Diabetes Mellitus.Diabetes Metab. Syndr. Obes.20221575576510.2147/DMSO.S347805 35280499
    [Google Scholar]
  65. SekidoY. NishimuraJ. NakanoK. OsuT. ChowC.E.T. MatsunoH. OginoT. FujinoS. MiyoshiN. TakahashiH. UemuraM. MatsudaC. KayamaH. MoriM. DokiY. TakedaK. UchinoM. IkeuchiH. MizushimaT. Some Gammaproteobacteria are enriched within CD14+ macrophages from intestinal lamina propria of Crohn’s disease patients versus mucus.Sci. Rep.2020101298810.1038/s41598‑020‑59937‑w 32076066
    [Google Scholar]
  66. PanL. AiX. FuT. RenL. ShangQ. LiG. YuG. In vitro fermentation of hyaluronan by human gut microbiota: Changes in microbiota community and potential degradation mechanism.Carbohydr. Polym.202126911831310.1016/j.carbpol.2021.118313 34294327
    [Google Scholar]
  67. LetchumananG. AbdullahN. MarliniM. BaharomN. LawleyB. OmarM.R. MohideenF.B.S. AddnanF.H. Nur FarihaM.M. IsmailZ. PathmanathanS.G. Gut Microbiota Composition in Prediabetes and Newly Diagnosed Type 2 Diabetes: A Systematic Review of Observational Studies.Front. Cell. Infect. Microbiol.20221294342710.3389/fcimb.2022.943427 36046745
    [Google Scholar]
  68. ZhangZ. ChengL. NingD. Gut microbiota and sepsis: Bidirectional Mendelian study and mediation analysis.Front. Immunol.202314123492410.3389/fimmu.2023.1234924 37662942
    [Google Scholar]
  69. ZhouX. RuanW. WangT. LiuH. DuL. HuangJ. Exploring the Impact of Gut Microbiota on Abdominal Aortic Aneurysm Risk through a Bidirectional Mendelian Randomization Analysis.J. Vasc. Surg.2024794763775 38042512
    [Google Scholar]
  70. ChenY.J. LeeW.H. HoH.J. TsengC.H. WuC.Y. An altered fecal microbial profiling in rosacea patients compared to matched controls.J. Formos. Med. Assoc.2021120125626410.1016/j.jfma.2020.04.034 32446756
    [Google Scholar]
  71. HemmingsS.M.J. Malan-MüllerS. van den HeuvelL.L. DemmittB.A. StanislawskiM.A. SmithD.G. BohrA.D. StamperC.E. HydeE.R. MortonJ.T. MarotzC.A. SieblerP.H. BraspenningM. Van CriekingeW. HoisingtonA.J. BrennerL.A. PostolacheT.T. McQueenM.B. KrauterK.S. KnightR. SeedatS. LowryC.A. The Microbiome in Posttraumatic Stress Disorder and Trauma-Exposed Controls: An Exploratory Study.Psychosom. Med.201779893694610.1097/PSY.0000000000000512 28700459
    [Google Scholar]
  72. VaccaM. CelanoG. CalabreseF.M. PortincasaP. GobbettiM. De AngelisM. The Controversial Role of Human Gut Lachnospiraceae.Microorganisms20208457310.3390/microorganisms8040573 32326636
    [Google Scholar]
  73. FuB.C. HullarM.A.J. RandolphT.W. FrankeA.A. MonroeK.R. ChengI. WilkensL.R. ShepherdJ.A. MadeleineM.M. Le MarchandL. LimU. LampeJ.W. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study.Am. J. Clin. Nutr.202011161226123410.1093/ajcn/nqaa015 32055828
    [Google Scholar]
  74. Castillo-RodriguezE. Fernandez-PradoR. EsterasR. Perez-GomezM. Gracia-IguacelC. Fernandez-FernandezB. KanbayM. TejedorA. LazaroA. Ruiz-OrtegaM. Gonzalez-ParraE. SanzA. OrtizA. Sanchez-NiñoM. Impact of Altered Intestinal Microbiota on Chronic Kidney Disease Progression.Toxins (Basel)201810730010.3390/toxins10070300 30029499
    [Google Scholar]
  75. ZafarH. SaierM.H.Jr Gut Bacteroides species in health and disease.Gut Microbes2021131184815810.1080/19490976.2020.1848158 33535896
    [Google Scholar]
  76. DurantL. StentzR. NobleA. BrooksJ. GichevaN. ReddiD. O’ConnorM.J. HoylesL. McCartneyA.L. ManR. PringE.T. DilkeS. HendyP. SegalJ.P. LimD.N.F. MisraR. HartA.L. ArebiN. CardingS.R. KnightS.C. Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease.Microbiome2020818810.1186/s40168‑020‑00868‑z 32513301
    [Google Scholar]
  77. LiN. WangY. WeiP. MinY. YuM. ZhouG. YuanG. SunJ. DaiH. ZhouE. HeW. ShengM. GaoK. ZhengM. SunW. ZhouD. ZhangL. Causal Effects of Specific Gut Microbiota on Chronic Kidney Diseases and Renal Function—A Two-Sample Mendelian Randomization Study.Nutrients202315236010.3390/nu15020360 36678231
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073311197240425073859
Loading
/content/journals/cchts/10.2174/0113862073311197240425073859
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test